EP0151314B1 - Gas-operated motor with a gas supply apparatus - Google Patents

Gas-operated motor with a gas supply apparatus Download PDF

Info

Publication number
EP0151314B1
EP0151314B1 EP84116384A EP84116384A EP0151314B1 EP 0151314 B1 EP0151314 B1 EP 0151314B1 EP 84116384 A EP84116384 A EP 84116384A EP 84116384 A EP84116384 A EP 84116384A EP 0151314 B1 EP0151314 B1 EP 0151314B1
Authority
EP
European Patent Office
Prior art keywords
gas
operated motor
intermediate case
intermediate housing
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84116384A
Other languages
German (de)
French (fr)
Other versions
EP0151314A1 (en
Inventor
Peter A. Dr.Sc.Techn. Neukomm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PEWA TECHNIC AG
Original Assignee
PEWA TECHNIC AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PEWA TECHNIC AG filed Critical PEWA TECHNIC AG
Priority to AT84116384T priority Critical patent/ATE28919T1/en
Publication of EP0151314A1 publication Critical patent/EP0151314A1/en
Application granted granted Critical
Publication of EP0151314B1 publication Critical patent/EP0151314B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B25/00Regulating, controlling, or safety means
    • F01B25/02Regulating or controlling by varying working-fluid admission or exhaust, e.g. by varying pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • F01B29/10Engines
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H29/00Drive mechanisms for toys in general
    • A63H29/10Driving mechanisms actuated by flowing media
    • A63H29/16Driving mechanisms actuated by flowing media by steam or compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/34Ultra-small engines, e.g. for driving models

Definitions

  • the present invention relates to a gas engine with a gas supply device, comprising an intermediate housing to which at least one compressed gas container containing at least one liquid gas contained in a sleeve and at least one gas engine are attached, and a gas superheater channel arranged in the course of a gas supply channel leading from the compressed gas container to the gas engine.
  • a gas engine with a gas supply device of the type mentioned is known.
  • it is provided to surround the pressurized gas container thermally separated from the gas engine and the gas superheater channel with a latent heat storage substance.
  • This heat storage substance must be heated sufficiently above the freezing or crystallization temperature before commissioning, otherwise the heat storage substance remains ineffective.
  • the thermal conductivity of the heat storage substance is very low, especially in the solid state. Therefore, this substance can only be used in relatively thin layers, e.g. 0.5mm.
  • the heat emission and heat absorption time must be chosen long enough (minutes).
  • the gas superheater channel which is thermally separated from the pressurized gas container and from the surrounding heat storage substance is heated either by a second heat storage substance with a higher melting or crystallization temperature or by a ribbed, well heat-conducting metal part exposed to the ambient air.
  • the heat storage substance around the gas superheater channel must be brought to a higher temperature than the heat storage substance around the compressed gas container. This means some difficulties in practical operation, especially when the ambient temperature is in the range or below the melting or crystallization temperature of the second heat storage substance. If the second heat storage substance remains ineffective due to insufficient heating, the unheated saturated gas in the engine can condense back into its liquid or solid state and cause engine damage.
  • the temperature around the gas superheater channel will at most reach the ambient temperature.
  • the temperature of the gas superheater channel can in turn be too low above the temperature determined in the pressurized gas container by the heat storage substance surrounding it, so that the gas in the engine can also condense back into its liquid or even solid state, causing engine damage.
  • the commercially available heat storage substances also have a relatively short lifespan because after a few hundred conversions they reduce their latent heat storage capacity. This gas engine and the associated gas supply device also consist of too many parts and are therefore relatively expensive and complicated.
  • the object of the invention is to provide a gas engine with a gas supply device which can be operated at all practically occurring ambient temperatures without engine damage, is of simple construction and can be warmed up uniformly by the ambient heat within a relatively short time, especially after an interruption in operation.
  • the intermediate housing consists of a material with a relatively high specific heat and has a bell shape that is open on one side and has ribs on at least one of its inner and / or outer surfaces, and that the intermediate housing, the gas superheater channel, has the good thermal conductivity the pressurized gas container thermally connected sleeve and a thermally conductive cylinder enclosing at least the working space of the gas engine are thermally connected.
  • the intermediate housing advantageously consists of aluminum.
  • the mass of the intermediate housing is preferably at least seven times higher than the mass of the gas that can be stored in the compressed gas container.
  • the surface of the intermediate housing that can be brushed with air is at least 20 cm 2 per gram of the gas that can be stored in the compressed gas container.
  • the gas superheater channel can have a helical shape formed from a truncated screw thread that is in thermal connection with the intermediate housing.
  • a liquid separator chamber which reverses the direction of the gas flow can be connected downstream of the gas superheater channel.
  • the invention is described in more detail below using an exemplary embodiment.
  • the single figure shows a gas engine with a gas supply device in section.
  • the piston 1 of the gas engine shown is reciprocally guided in a cylinder 2 and is connected via a connecting rod 3 to a crankshaft 5 mounted in an intermediate housing 4.
  • the cylinder 2 consisting of a good heat-conducting material is attached to the intermediate housing 4.
  • the crankshaft 5 can drive the wheels of a toy car or directly the propeller of a model airplane via a gear, not shown.
  • the use of the gas engine is by no means limited to toys.
  • the cylinder head 6 is screwed onto an extension of the cylinder 2 and carries on in the bore of the cylinder 2 projecting part provided with an O-ring 7 a gas inlet valve 9 tightly guided in the cylinder bore by an O-ring 8.
  • the closure part of the gas inlet valve 9 consists of an extension 10 formed on the top of the piston 1 by a Gas inlet opening 11 impactable ball 12.
  • the gas inlet valve 9 moves in the cylinder bore, as a result of which the timing of the valve opening and thus the speed of the gas engine can be regulated.
  • the gas released in the cylinder chamber escapes through the exhaust opening 13 when the piston 1 is in the lowest position.
  • the actual gas supply device is connected to the inlet side of the gas inlet valve 9 via a gas supply channel 14.
  • the drive gas consisting of carbon dioxide or nitrous oxide is partially stored in a compressed gas container 15 in liquid form.
  • the compressed gas container 15 consists of a commercially available carbon dioxide cartridge and is located in a sleeve 16, which is screwed onto the intermediate housing 4 and is made of a good heat-conducting material. A good thermal connection exists between the sleeve 16 and the compressed gas container 15.
  • an intermediate piece 19 provided with two O-rings 17, 18 and consisting of a good heat-conducting material, is screwed into the intermediate housing 4.
  • the O-ring 17 holds the neck of the compressed gas container 15 in the intermediate piece 19 and the O-ring 18 the intermediate piece in the intermediate housing 4.
  • a nozzle body 20 is screwed into the intermediate piece 19.
  • the front of the nozzle body 20 has an opening pin 21 intended for piercing the cartridge closure and allowing the gas to flow out of the cartridge, and then a zone provided with fine longitudinal grooves 22 on the circumference for filtering the gas.
  • the screw thread is blunted both on the nozzle body 20 and in the intermediate piece 19.
  • the helical channel thus formed serves as a gas superheater channel 23 and is in good thermal connection with the intermediate housing 4.
  • the gas enters from the gas superheater channel 23 through the bore 24 into a liquid separator chamber 25, is forced to change direction there and leaves it through the bore 26. From the bore 26 to the inlet side of the gas inlet valve 9, the gas supply channel 14 is free.
  • the intermediate housing 4 consists of a material with a relatively high specific heat, advantageously of aluminum, or of an aluminum alloy suitable for a spraying process, so that as much heat as possible can be stored in the intermediate housing 4.
  • the sensible heat stored in this way is particularly necessary for heating the gas superheater channel 23 and the cylinder 2 in the event of a high power consumption for a short time.
  • the shape of the intermediate housing 4 is selected so that the ambient air can coat as large a surface as possible.
  • the intermediate housing 4 should be able to absorb as much heat as possible from the ambient air in the shortest possible time. Therefore, the intermediate housing 4 has a bell shape open on one side and is provided with ribs 27, 28 on its outer and inner surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Glass Compositions (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compressor (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Air Bags (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A gas engine with a gas supply device contains a substantially bell-shaped aluminum intermediate housing open on one side and provided with fins on the interior and exterior. A cylinder of the gas engine with good thermal conduction properties and a sleeve accommodating a pressurized gas container having good thermal conduction properties are fastened to this intermediate housing. A gas supply conduit leads from the pressurized gas container to the gas engine. A gas superheater conduit structure is in thermal communication with the intermediate housing and situated at the beginning of the gas supply conduit. The thermal unit formed jointly by the intermediate housing, the cylinder, the sleeve surrounding the pressurized gas container and the gas superheater conduit structure permits operation of the gas engine under all practically arising ambient temperatures without damage to the gas engine, since this thermal unit prevents the gas in the gas engine from condensing back to its fluid or even solid state.

Description

Die vorliegende Erfindung betrifft einen Gasmotor mit einer Gasversorgungseinrichtung, bestehend aus einem Zwischengehäuse an welchem mindestens ein in einer Hülse untergebrachter teilweise Flüssiggas enthaltender Druckgasbehälter und mindestens ein Gasmotor angebracht sind und aus einem im Zuge eines vom Druckgasbehälter zum Gasmotor führenden Gaszufuhrkanals angeordneten Gasüberhitzerkanal.The present invention relates to a gas engine with a gas supply device, comprising an intermediate housing to which at least one compressed gas container containing at least one liquid gas contained in a sleeve and at least one gas engine are attached, and a gas superheater channel arranged in the course of a gas supply channel leading from the compressed gas container to the gas engine.

Aus der DE-A- 27 00 727 ist ein Gasmotor mit einer Gasversorgungseinrichtung der eingangs erwähnten Art bekannt. Bei dieser Anordnung ist es vorgesehen, den vom Gasmotor und vom Gasüberhitzerkanal thermisch getrennten Druckgasbehälter mit einer Latentwärmespeichersubstanz zu umgeben. Diese Wärmespeichersubstanz muss vor der Inbetriebnahme ausreichend hoch über die Gefrier- oder Kristallisationstemperatur erwärmt werden, sonst bleibt die Wärmespeichersubstanz wirkungslos. Die thermische Leitfähigkeit der Wärmespeichersubstanz ist insbesondere in festem Zustand sehr gering. Deshalb kann diese Substanz nur in relativ dünnen Schichten, z.B. 0,5mm, aufgetragen werden. Die Wärmeabgabe-und die Wärmeaufnahmezeit müssen genügend lang (Minuten) gewählt werden. Der vom Druckgasbehälter und von der ihn umgebenden Wärmespeichersubstanz thermisch getrennte Gasüberhitzerkanal wird entweder durch eine zweite Wärmespeichersubstanz mit einer höheren Schmelz- oder Kristallisationstemperatur oder durch einen der Umgebungsluft ausgesetzten, mit Rippen versehenen, gut wärmeleitenden Metallteil erwärmt. Im ersten Fall muss die Wärmespeichersubstanz um den Gasüberhitzerkanal auf eine höhere Temperatur gebracht werden als die Wärmespeichersubstanz um den Druckgasbehälter. Dies bedeutet im praktischen Betrieb einige Schwierigkeiten, insbesondere dann, wenn die Umgebungstemperatur im Bereich oder unter der Schmelz- oder Kristallisationstemperatur der zweiten Wärmespeichersubstanz liegt. Wenn die zweite Wärmespeichersubstanz wegen ungenügender Erwärmung wirkungslos bleibt, kann das nichtüberhitzte gesättigte Gas im Motor in seinen flüssigen oder festen Zustand zurückkondensieren und Motorschaden verursachen. Im zweiten Fall wird die Temperatur um den Gasüberhitzerkanal höchstens die Umgebungstemperatur erreichen. Bei niedrigen Umgebungsemperaturen kann die Temperatur des Gasüberhitzerkanals wiederum zu wenig hoch über die im Druckgasbehälter durch die ihn umgebende Wärmespeichersubstanz bestimmte Temperatur liegen, so dass das Gas im Motor auch wiederum in seinen flüssigen oder gar festen Zustand zurückkondensieren kann, wodurch Motorschäden entstehen. Die handelsüblichen Wärmespeichersubstanzen besitzen im weiteren eine relativ kurze Lebensdauer, weil sie nach einigen hundert Umwandlungen ihre Latentwärmespeicherfähigkeit vermindern. Dieser Gasmotor und die dazugehörende Gasversorgungseinrichtung bestehen ausserdem aus zu vielen Teilen und sind daher relativ teuer und kompliziert.From DE-A-27 00 727 a gas engine with a gas supply device of the type mentioned is known. In this arrangement, it is provided to surround the pressurized gas container thermally separated from the gas engine and the gas superheater channel with a latent heat storage substance. This heat storage substance must be heated sufficiently above the freezing or crystallization temperature before commissioning, otherwise the heat storage substance remains ineffective. The thermal conductivity of the heat storage substance is very low, especially in the solid state. Therefore, this substance can only be used in relatively thin layers, e.g. 0.5mm. The heat emission and heat absorption time must be chosen long enough (minutes). The gas superheater channel which is thermally separated from the pressurized gas container and from the surrounding heat storage substance is heated either by a second heat storage substance with a higher melting or crystallization temperature or by a ribbed, well heat-conducting metal part exposed to the ambient air. In the first case, the heat storage substance around the gas superheater channel must be brought to a higher temperature than the heat storage substance around the compressed gas container. This means some difficulties in practical operation, especially when the ambient temperature is in the range or below the melting or crystallization temperature of the second heat storage substance. If the second heat storage substance remains ineffective due to insufficient heating, the unheated saturated gas in the engine can condense back into its liquid or solid state and cause engine damage. In the second case, the temperature around the gas superheater channel will at most reach the ambient temperature. At low ambient temperatures, the temperature of the gas superheater channel can in turn be too low above the temperature determined in the pressurized gas container by the heat storage substance surrounding it, so that the gas in the engine can also condense back into its liquid or even solid state, causing engine damage. The commercially available heat storage substances also have a relatively short lifespan because after a few hundred conversions they reduce their latent heat storage capacity. This gas engine and the associated gas supply device also consist of too many parts and are therefore relatively expensive and complicated.

Die Aufgabe der Erfindung ist es, einen Gasmotor mit einer Gasversorgungseinrichtung anzugeben, der bei allen praktisch vorkommenden Umgebungstemperaturen ohne Motorschaden betrieben werden kann, einfach aufgebaut ist und insbesondere nach einem Betriebsunterbruch innert relativ kurzer Zeit durch die Umgebungswärme gleichmässig aufgewärmt werden kann.The object of the invention is to provide a gas engine with a gas supply device which can be operated at all practically occurring ambient temperatures without engine damage, is of simple construction and can be warmed up uniformly by the ambient heat within a relatively short time, especially after an interruption in operation.

Die gestellte Aufgabe ist dadurch gelöst, dass das Zwischengehäuse aus einem Material mit relativ hoher spezifischer Wärme besteht und eine einseitig offene an mindestens einer seinen inneren und/oder äusseren Oberflächen mit Rippen versehene Glockenform aufweist und dass das Zwischengehäuse, der Gasüberhitzerkanal, die gut wärmeleitende mit dem Druckgasbehälter thermisch verbundene Hülse und ein mindestens den Arbeitsraum des Gasmotors umschliessender wärmeleitender Zylinder miteinander thermisch verbunden sind.The object is achieved in that the intermediate housing consists of a material with a relatively high specific heat and has a bell shape that is open on one side and has ribs on at least one of its inner and / or outer surfaces, and that the intermediate housing, the gas superheater channel, has the good thermal conductivity the pressurized gas container thermally connected sleeve and a thermally conductive cylinder enclosing at least the working space of the gas engine are thermally connected.

Vorteilhafterweise besteht das Zwischengehäuse aus Aluminium. Die Masse des Zwischengehäuses liegt bevorzugt mindestens siebenmal höher als die Masse des im Druckgasbehälter speicherbaren Gases.The intermediate housing advantageously consists of aluminum. The mass of the intermediate housing is preferably at least seven times higher than the mass of the gas that can be stored in the compressed gas container.

In einer günstigen Ausführung beträgt die durch Luft bestreichbare Oberfläche des Zwischengehäuses mindestens 20 cm2 pro Gramm des im Druckgasbehälter speicherbaren Gases.In a favorable embodiment, the surface of the intermediate housing that can be brushed with air is at least 20 cm 2 per gram of the gas that can be stored in the compressed gas container.

Der Gasüberhitzerkanal kann eine aus einem abgestumpften mit dem Zwischengehäuse in Wärmeverbindung stehenden Schraubengewinde gebildete Schraubenlinienform aufweisen. Dem Gasüberhitzerkanal kann eine eine Richtungsumkehr der Gasströmung bewirkende Flüssigkeitsabscheiderkammer nachgeschaltet sein.The gas superheater channel can have a helical shape formed from a truncated screw thread that is in thermal connection with the intermediate housing. A liquid separator chamber which reverses the direction of the gas flow can be connected downstream of the gas superheater channel.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles näher beschrieben. Die einzige Figur zeigt einen Gasmotor mit einer Gasversorgungseinrichtung im Schnitt.The invention is described in more detail below using an exemplary embodiment. The single figure shows a gas engine with a gas supply device in section.

Der Kolben 1 des dargestellten Gasmotors ist in einem Zylinder 2 hin- und herbeweglich geführt und über eine Pleuelstange 3 mit einer in einem Zwischengehäuse 4 gelagerten Kurbelwelle 5 verbunden. Der aus gut wärmeleitendem Material bestehende Zylinder 2 ist am Zwischengehäuse 4 befestigt. Die Kurbelwelle 5 kann über ein nicht gezeigtes Getriebe die Räder eines Spielzeugautos oder direkt den Propeller eines Modellflugzeuges antreiben. Die Anwendung des Gasmotors ist aber keineswegs auf Spielzeuge beschränkt. Der Zylinderkopf 6 ist auf eine Verlängerung des Zylinders 2 aufgeschraubt und trägt an seinem in die Bohrung des Zylinders 2 ragenden mit einem O-Ring 7 versehenen Teil ein in der Zylinderbohrung durch einen O-Ring 8 dicht geführtes Gaseinlassventil 9. Der Verschlussteil des Gaseinlassventils 9 besteht aus einer durch einem an der Oberseite des Kolbens 1 gebildeten Fortsatz 10 durch eine Gaseinlassöffnung 11 aufstossbaren Kugel 12. Durch Ein- und Ausschrauben des Zylinderkopfes 6 verschiebt sich das Gaseinlassventil 9 in der Zylinderbohrung, wodurch der Zeitpunkt der Ventilöffnung und somit die Drehzahl des Gasmotors reguliert werden kann. Das im Zylinderraum entspannte Gas entweicht bei der untersten Stellung des Kolbens 1 über die Auspufföffnung 13. An der Einlasseite des Gaseinlassventils 9 ist über einen Gaszufuhrkanal 14 die eigentliche Gasversorgungseinrichtung angeschlossen. Das aus Kohlendioxid oder Lachgas bestehende Antriebsgas ist in einem Druckgasbehälter 15 teilweise in flüssiger Form gespeichert. Der Druckgasbehälter 15 besteht in diesem Ausführungsbeispiel aus einer handelsüblichen Kohlendioxidpatrone und liegt in einer am Zwischengehäuse 4 angeschraubten, aus gut wärmeleitendem Werkstoff hergestellten Hülse 16. Zwischen der Hülse 16 und dem Druckgasbehälter 15 besteht eine gute thermische Verbindung.The piston 1 of the gas engine shown is reciprocally guided in a cylinder 2 and is connected via a connecting rod 3 to a crankshaft 5 mounted in an intermediate housing 4. The cylinder 2 consisting of a good heat-conducting material is attached to the intermediate housing 4. The crankshaft 5 can drive the wheels of a toy car or directly the propeller of a model airplane via a gear, not shown. The use of the gas engine is by no means limited to toys. The cylinder head 6 is screwed onto an extension of the cylinder 2 and carries on in the bore of the cylinder 2 projecting part provided with an O-ring 7 a gas inlet valve 9 tightly guided in the cylinder bore by an O-ring 8. The closure part of the gas inlet valve 9 consists of an extension 10 formed on the top of the piston 1 by a Gas inlet opening 11 impactable ball 12. By screwing the cylinder head 6 in and out, the gas inlet valve 9 moves in the cylinder bore, as a result of which the timing of the valve opening and thus the speed of the gas engine can be regulated. The gas released in the cylinder chamber escapes through the exhaust opening 13 when the piston 1 is in the lowest position. The actual gas supply device is connected to the inlet side of the gas inlet valve 9 via a gas supply channel 14. The drive gas consisting of carbon dioxide or nitrous oxide is partially stored in a compressed gas container 15 in liquid form. In this exemplary embodiment, the compressed gas container 15 consists of a commercially available carbon dioxide cartridge and is located in a sleeve 16, which is screwed onto the intermediate housing 4 and is made of a good heat-conducting material. A good thermal connection exists between the sleeve 16 and the compressed gas container 15.

In das Zwischengehäuse 4 ist an der Anschlusstelle des Druckgasbehälters 15 ein mit zwei O-Ringen 17, 18 versehenes, aus gut wärmeleitendem Material bestehendes Zwischenstück 19 eingeschraubt. Der O-Ring 17 hält den Hals des Druckgasbehälters 15 im Zwischenstück 19 und der O-Ring 18 das Zwischenstück im Zwischengehäuse 4 dicht. In das Zwischenstück 19 ist ein Düsenkörper 20 eingeschraubt. Der Düsenkörper 20 weist vorne einen zum Durchstechen des Patronenverschlusses bestimmten und das Ausströmen des Gases aus der Patrone ermöglichenden Oeffnerstift 21 und anschliessend eine am Umfang mit feinen Längsnuten 22 versehene zur Filtrierung des Gases dienende Zone auf. Die Schraubengewinde ist sowohl am Düsenkörper 20 als auch im Zwischenstück 19 abgestumpft. Der so gebildete schraubenlinienförmige Kanal dient als Gasüberhitzerkanal 23 und liegt mit dem Zwischengehäuse 4 in guter thermischer Verbindung. Das Gas tritt aus dem Gasüberhitzerkanal 23 durch die Bohrung 24 in eine Flüssigkeitabscheiderkammer 25 ein, wird dort zu Richtungsänderung gezwungen und verlässt diese durch die Bohrung 26. Von der Bohrung 26 bis zur Einlasseite des Gaseinlassventils 9 ist der Gaszufuhrkanal 14 frei.At the connection point of the compressed gas container 15, an intermediate piece 19, provided with two O-rings 17, 18 and consisting of a good heat-conducting material, is screwed into the intermediate housing 4. The O-ring 17 holds the neck of the compressed gas container 15 in the intermediate piece 19 and the O-ring 18 the intermediate piece in the intermediate housing 4. A nozzle body 20 is screwed into the intermediate piece 19. The front of the nozzle body 20 has an opening pin 21 intended for piercing the cartridge closure and allowing the gas to flow out of the cartridge, and then a zone provided with fine longitudinal grooves 22 on the circumference for filtering the gas. The screw thread is blunted both on the nozzle body 20 and in the intermediate piece 19. The helical channel thus formed serves as a gas superheater channel 23 and is in good thermal connection with the intermediate housing 4. The gas enters from the gas superheater channel 23 through the bore 24 into a liquid separator chamber 25, is forced to change direction there and leaves it through the bore 26. From the bore 26 to the inlet side of the gas inlet valve 9, the gas supply channel 14 is free.

Das Zwischengehäuse 4 besteht aus einem Material mit relativ hoher spezifischer Wärme, vorteilhafterweise aus Aluminium, oder aus einer für ein Spritzverfahren geeigneten Aluminiumlegierung, damit im Zwischengehäuse 4 möglichst viel Wärme gespeichert werden kann. Die so gespeicherte fühlbare Wärme ist besonders bei kurzzeitiger hoher Leistungsentnahme am Motor zur Erwärmung des Gasüberhitzerkanals 23 und des Zylinders 2 erforderlich. Die Form des Zwischengehäuses 4 ist so gewählt, dass die Umgebungsluft eine möglichst grosse Oberfläche bestreichen kann. Das Zwischengehäuse 4 soll nebst dem Zylinder 2 und der Hülse 16 aus der Umgebungsluft möglichst viel Wärme in möglichst kurzer Zeit aufnehmen können. Deshalb weist das Zwischengehäuse 4 eine einseitig offene Glockenform auf und ist an seiner äusseren und inneren Oberflächen mit Rippen 27, 28 versehen. Im Normalbetrieb besteht während der ganzen Betriebsdauer zwischen der aus der Umgebungsluft aufgenommenen sowie der gespeicherten fühlbaren Wärme und dem Wärmebedarf des Gasmotors und der Gasversorgungseinrichtung ein Gleichgewicht. Dieses Gleichgewicht ist bei allen praktisch vorkommenden Umgebungstemperaturen, die normalerweise über dem Gefrierpunkt des Wassers liegen, gewährleistet. Bei niedrigen Temperaturen steht natürlich eine etwas geringere Leistung zur Verfügung, Motorschäden werden aber durch die thermische Kopplung zwischen dem Druckgasbehälter 15, dem Gasüberhitzerkanal 23, dem Zylinder 2 und dem Zwischengehäuse 4 verhindert.The intermediate housing 4 consists of a material with a relatively high specific heat, advantageously of aluminum, or of an aluminum alloy suitable for a spraying process, so that as much heat as possible can be stored in the intermediate housing 4. The sensible heat stored in this way is particularly necessary for heating the gas superheater channel 23 and the cylinder 2 in the event of a high power consumption for a short time. The shape of the intermediate housing 4 is selected so that the ambient air can coat as large a surface as possible. In addition to the cylinder 2 and the sleeve 16, the intermediate housing 4 should be able to absorb as much heat as possible from the ambient air in the shortest possible time. Therefore, the intermediate housing 4 has a bell shape open on one side and is provided with ribs 27, 28 on its outer and inner surfaces. In normal operation, there is a balance between the sensible heat absorbed from the ambient air and the stored sensible heat and the heat requirement of the gas engine and the gas supply device during the entire operating time. This equilibrium is guaranteed at all practically occurring ambient temperatures, which are normally above the freezing point of the water. Of course, slightly lower power is available at low temperatures, but engine damage is prevented by the thermal coupling between the compressed gas tank 15, the gas superheater duct 23, the cylinder 2 and the intermediate housing 4.

Claims (6)

1. Gas-operated motor with a gas supply apparatus, consisting of an intermediate case (4) to which at least one compressed-gas tank (15) filled with partially liquefied gas and enclosed in a shell (16), and at least one gas-operated motor, are mounted, and of a gas superheating conduit (23) inserted in a gas supply conduit connecting said compressed-gas tank (15) to said motor, characterised in that said intermediate case (4) is made of a material having a high specific heat, is substantially bell-shaped and open at one end, and provided with cooling fins (27, 28) on at least one of its inner and/or outer surfaces, and that said intermediate case (4), said superheating conduit (23), said shell (16) in good heat-conducting relationship with said compressed-gas tank (15), and a heat-conducting cylinder (2) surrounding at least the working chamber of said motor, are thermally coupled to one another.
2. The gas-operated motor of Claim 1, characterised in that said intermediate case (4) consists of aluminium.
3. The gas-operated motor of any of Claims 1 or 2, characterised in that the mass of said intermediate case (4) is at least seven time the mass of the gas that can be stored in said compressed-gas tank (15).
4. The gas-operated motor of any of Claims 1 - 3, characterised in that the outer surface of the intermediate case (4) that can be swept by the cooling air corresponds to at least 8.8 sq.in. per ounce (20 sq.cm. per gramme) of the gas that can be stored in said compressed-gas tank (15).
5. The gas-operated motor of any of Claims 1 - 4, characterised in that the gas superheating conduit (23) comprises female threads engageable by an injector also provided with truncated threads, said conduit being in thermal contact with said intermediate case (4).
6. The gas-operated motor of Claim 5, characterised in that a liquid-separation chamber (25) is provided downstream of said gas superheating conduit (23) for reversing the direction of the gaseous flow.
EP84116384A 1984-01-25 1984-12-27 Gas-operated motor with a gas supply apparatus Expired EP0151314B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84116384T ATE28919T1 (en) 1984-01-25 1984-12-27 GAS ENGINE WITH A GAS SUPPLY DEVICE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH315/84 1984-01-25
CH315/84A CH662955A5 (en) 1984-01-25 1984-01-25 COMPRESSED GAS ENGINE WITH A GAS SUPPLY DEVICE.

Publications (2)

Publication Number Publication Date
EP0151314A1 EP0151314A1 (en) 1985-08-14
EP0151314B1 true EP0151314B1 (en) 1987-08-12

Family

ID=4184203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84116384A Expired EP0151314B1 (en) 1984-01-25 1984-12-27 Gas-operated motor with a gas supply apparatus

Country Status (13)

Country Link
US (1) US4599864A (en)
EP (1) EP0151314B1 (en)
JP (1) JPS60175701A (en)
KR (1) KR850005547A (en)
AT (1) ATE28919T1 (en)
AU (1) AU3804285A (en)
BR (1) BR8500276A (en)
CH (1) CH662955A5 (en)
DE (1) DE3465359D1 (en)
DK (1) DK599384A (en)
FI (1) FI850256L (en)
NO (1) NO850275L (en)
ZA (1) ZA85379B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1214182B (en) * 1987-05-07 1990-01-10 Caenazzo Alessandro Pasqualott FLUID MICROMOTOR.
EP1803894B1 (en) * 1998-04-09 2018-12-05 Spin Master Toys, Ltd. Pneumatic motor
NZ337744A (en) 1998-10-26 2001-04-27 Charles D Piston-to-cylinder seal for a pneumatic engine with pressure dependent, variable sealing diameter
CN109973153B (en) * 2019-04-24 2021-06-22 浙江麦知网络科技有限公司 Compression ratio regulating and controlling device of steam engine
FR3115313B1 (en) * 2020-10-15 2023-11-03 Reyal Jean Pierre Compressed air injection system in a compressed air engine.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR610031A (en) * 1925-07-22 1926-08-28 Method and device for opposing the freezing of gases at relatively high solidification temperature in gas appliances
FR888386A (en) * 1942-04-22 1943-12-10 Turbo engine powered by carbonic acid
JPS5239162B2 (en) * 1973-02-03 1977-10-04
IN147351B (en) * 1976-01-16 1980-02-09 Rilett John W
GB2018366A (en) * 1978-03-31 1979-10-17 Boc Ltd Gas-operated motors
EP0008929A1 (en) * 1978-09-05 1980-03-19 John Walter Rilett Motors and gas supply apparatus therefor
US4262846A (en) * 1978-10-02 1981-04-21 Albany International Corp. Method for the distribution of biologically active chemicals
US4318274A (en) * 1979-03-30 1982-03-09 Boc Limited Gas-operated motors
FR2457375A1 (en) * 1979-05-25 1980-12-19 Servies Ferdinand Thermal rotary engine construction - uses dissimilar refrigerant fluids and atmospheric heat exchanger for vaporisation

Also Published As

Publication number Publication date
KR850005547A (en) 1985-08-26
FI850256A0 (en) 1985-01-21
US4599864A (en) 1986-07-15
BR8500276A (en) 1985-09-03
NO850275L (en) 1985-07-26
DE3465359D1 (en) 1987-09-17
DK599384D0 (en) 1984-12-14
DK599384A (en) 1985-07-26
FI850256L (en) 1985-07-26
AU3804285A (en) 1985-08-01
ATE28919T1 (en) 1987-08-15
JPS60175701A (en) 1985-09-09
EP0151314A1 (en) 1985-08-14
ZA85379B (en) 1985-09-25
CH662955A5 (en) 1987-11-13

Similar Documents

Publication Publication Date Title
DE4029084A1 (en) COOLING DEVICE FOR BREATHING GAS COOLING IN A RESPIRATOR
DE2324680A1 (en) REFILL CARTRIDGE, IN PARTICULAR FOR CONNECTION TO AIR CONDITIONING AND REFRIGERATION SYSTEMS
DE2209883A1 (en) Gas-liquid separator for use in a refrigeration system
EP0151314B1 (en) Gas-operated motor with a gas supply apparatus
DE2910426C2 (en) Device for producing ice, frost or moisture condensation on containers or hollow bodies, in particular glasses
DE2605553B2 (en) Absorption cooler
DE3018709A1 (en) PARALLEL BIVALENT AS AN ABSORBER HEAT PUMP AND A BOILER WORKING TO HEAT A HEAT MEDIUM
DE69826577T2 (en) Ozone watering apparatus
DE2060425A1 (en) Cooling device
DE1141436B (en) Device for cooling thermoplastic molded parts
DE3922736C1 (en) IC engine reactor without inserts - contains zeolite heated by exhaust so working fluid acts on condenser forming part of engine heat carrier circuit
CH663835A5 (en) GAS SUPPLY DEVICE WITH SEVERAL GAS BOTTLES INSERTED IN A PRESSURE GAS CONTAINER.
DE19506486C2 (en) Device for evaporating cryogenic media
DE2923290A1 (en) Shock absorber with plunger and elastomer core - has core retained between plugs screwed into ends of housing sleeve
DE3512039C2 (en)
CH659698A5 (en) METHOD FOR PRE-COOLING A PLANT FOR GENERATING LOW TEMPERATURE GAS, AND DEVICE FOR IMPLEMENTING THE METHOD.
DD157013A1 (en) DEVICE FOR INTRODUCING ACTIVATED SUPPLEMENT IN VACUUM TANK
DE2912556A1 (en) Compressed gas driven motor - has liq. container from which gas evaporates and substance to heat gas fed to motor
DD214172A1 (en) DEVICE FOR THE EVAPORATION OF DEEP DEBRIS, LIQUIDED FUEL GASES
DE2014536A1 (en) Cryogenic cooling device
DE3028217A1 (en) DEVICE FOR GENERATING LOW TEMPERATURES
DE1962050C3 (en) Absorption refrigeration system and procedures for operating the same
EP0290627A1 (en) Heat pipe for cooling substances
EP0185943B1 (en) Pump unit for cryogenic fluids
AT209642B (en) Gas turbine engine for vehicles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19851230

17Q First examination report despatched

Effective date: 19860731

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 28919

Country of ref document: AT

Date of ref document: 19870815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3465359

Country of ref document: DE

Date of ref document: 19870917

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19871231

Ref country code: BE

Effective date: 19871231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: PEWA TECHNIC A.G.

Effective date: 19871231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880701

26N No opposition filed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890707

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900901

EUG Se: european patent has lapsed

Ref document number: 84116384.3

Effective date: 19880913