EP0149714B1 - Redensified propellant charge, its process of manufacture and device for executing this process - Google Patents

Redensified propellant charge, its process of manufacture and device for executing this process Download PDF

Info

Publication number
EP0149714B1
EP0149714B1 EP84110002A EP84110002A EP0149714B1 EP 0149714 B1 EP0149714 B1 EP 0149714B1 EP 84110002 A EP84110002 A EP 84110002A EP 84110002 A EP84110002 A EP 84110002A EP 0149714 B1 EP0149714 B1 EP 0149714B1
Authority
EP
European Patent Office
Prior art keywords
propellant charge
elements
accordance
section
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84110002A
Other languages
German (de)
French (fr)
Other versions
EP0149714A3 (en
EP0149714A2 (en
Inventor
Rudolf Dipl.-Ing. Romer
Michael Schwenzer
Reinhard Dr. Dipl.-Phys. Synofzik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Industrie AG
Original Assignee
Rheinmetall GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall GmbH filed Critical Rheinmetall GmbH
Publication of EP0149714A2 publication Critical patent/EP0149714A2/en
Publication of EP0149714A3 publication Critical patent/EP0149714A3/en
Application granted granted Critical
Publication of EP0149714B1 publication Critical patent/EP0149714B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/16Cartridges, i.e. cases with charge and missile characterised by composition or physical dimensions or form of propellant charge, with or without projectile, or powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/02Filling cartridges, missiles, or fuzes; Inserting propellant or explosive charges
    • F42B33/025Filling cartridges, missiles, or fuzes; Inserting propellant or explosive charges by compacting

Definitions

  • the invention relates to a post-compressed propellant charge.
  • a propellant charge of the type mentioned is known from DE-OS 25 04 756. It relates to a method and a device for compressing finely divided solid explosives in a garnet shell or in a propellant charge case: explosive is filled into the propellant charge case; an elastic sack is introduced into the propellant charge sleeve through the neck of the propellant charge sleeve and its neck opening is sealed. The propellant charge sleeve is then evacuated and the sack is then expanded using a pressure medium. As a result, the explosive is compressed again into a charge. It is also provided that the explosive is filled and recompressed in several stages, each time using a smaller sack.
  • this method also proves to be complex and cumbersome. In addition, it can only lead to an axial density gradient. This disadvantageously complicates the ignition of the post-compressed propellant charge.
  • the invention has for its object to provide a post-compressed propellant charge with improved ignition properties.
  • the device has a frame 10 with a base plate 12 with first elements 14.1,.
  • the latter have an essentially isosceles-triangular cross section and have a curved boundary surface 16 between plane-level boundary surfaces 17 and 18, which will be explained later.
  • the first elements 14.1, ... are arranged on a circle with the same pitch, each with a passage 20 of essentially rectangular cross section remaining between mutually facing boundary surfaces 17 and 18 of adjacent first elements, for example 14.1 and 14.2.
  • the passages 20 serve for the radially movable reception of second elements 22.1, ..., the lateral boundary surfaces 25 and 26 of which face away from one another are each directly adjacent to a boundary surface 17 or 18 of the first elements 14.1, ....
  • the boundary surfaces 16 and 24 form essential areas of a wall of a room 38.
  • This is assigned a support 48 on the underside and a cover 50 on the upper side.
  • a projectile 41 with a projectile tail 42 protrudes into space 38.
  • the projectile tail 42 is delimited on the circumference by a gas pressure receiving surface 46 of a sabot not specified and carries at its rear end a stabilizing tail 43 with five stabilizing wings 44.1,... 44.5, which are supported radially against the boundary surfaces 16 of the first elements 14.1, ... 14.5. 1 and 2 show the second elements 22, 1, ... in their starting position.
  • Propellant powder 40 is poured into the space 38. The bulk quantity is equal to a propellant charge 52 (FIG. 3). Then the second elements 22.1, ... are simultaneously moved radially from their starting position in the direction of arrow 30 against the central longitudinal axis A. They act as pressing jaws and lead to a recompression of the poured propellant powder 40.
  • a radial density gradient increases over the entire length.
  • the process is ended as soon as the boundary surfaces 24 of the second elements 22.1, ..., 22.5 form a circle 28 together with the boundary surfaces 16 of the first elements 14.1, ..., 14.5 and thus the space 38 has assumed its circular cylindrical end cross-section, such as this is shown in Figures 3 and 4.
  • the circle 28 is equal to the circumference of the propellant charge 52 or smaller by a predeterminable amount.
  • an end-use space for the propellant charge 52 for example the interior 62 of a propellant charge sleeve 58 (see FIG. 5) has a slight taper.
  • a longitudinally axial movement in the direction of an arrow 60 causes the projectile 41, which is only partially shown, with the propellant charge 52 compacted around the projectile tail 42 from the space 38 of the device into the interior 62 of the propellant charge sleeve positioned in an axially aligned manner in a receptacle 56 58 transferred.
  • the circle 28 corresponds to the clear insertion cross section of the propellant charge sleeve, and after that Transferring to the interior of the propellant 52 relaxes slightly in some areas and fills the volume of the interior.
  • the procedure is as follows: As can be seen by way of example in FIG. 2 from a dividing line 35, the second elements 22.1,.. . To pour in the propellant powder 40, an upper-side second part 36 is brought into an initial position at which the radial distance from the boundary surface 24 is greater than that of a lower-side first part 34.
  • the propellant charge 52 has a greater density in the area of the upper-side second parts 36 than in the area of the lower-side first parts 34 of the second elements 22.1,... and the radial one also becomes an axial one Density gradient overlaid. This can still be present in the relevant area of the propellant charge sleeve 52 after the aforementioned slight relaxation and can be predetermined. In this advantageously simple manner, a comparatively higher density can be achieved, preferably in the rear region of the propellant charge 52, which has advantages in terms of interior ballistics.
  • the ignition of the propellant charge 52 in its central axial region is favored because the compression of the propellant charge powder 40 is less there. This also favors a better separation behavior of the propellant powder with a simultaneous increase in the internal ballistic performance achieved by the recompression.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Description

Die Erfindung betrifft eine nachverdichtete Treibladung.The invention relates to a post-compressed propellant charge.

Hierdurch soll die innenballistische Leistung gesteigert werden. Eine Treibladung der genannten Art ist bekannt aus der DE-OS 25 04 756. Sie betrifft ein Verfahren und eine Vorrichtung zum-Zusammenpressen von feinteiligen festen Explosivstoffen in einem Granatmantel oder in einer Treibladungshülse: Explosivstoff wird in die Treibladungshülse eingefüllt; durch den Hals der Treibladungshülse wird ein elastischer Sack in die Treibladungshülse eingebracht und deren halsseitige Öffnung dicht verschlossen. Dann wird die Treibladungshülse evakuiert und anschließend der Sack mit Hilfe eines Druckmediums ausgedehnt. Hierdurch wird der Explosivstoff zu einer Ladung nachverdichtet. Es ist ferner vorgesehen, das Einfüllen und Nachverdichten des Explosivstoffes in mehreren Stufen vorzunehmen, wobei jedesmal ein kleinerer Sack verwendet wird.This is intended to increase indoor ballistic performance. A propellant charge of the type mentioned is known from DE-OS 25 04 756. It relates to a method and a device for compressing finely divided solid explosives in a garnet shell or in a propellant charge case: explosive is filled into the propellant charge case; an elastic sack is introduced into the propellant charge sleeve through the neck of the propellant charge sleeve and its neck opening is sealed. The propellant charge sleeve is then evacuated and the sack is then expanded using a pressure medium. As a result, the explosive is compressed again into a charge. It is also provided that the explosive is filled and recompressed in several stages, each time using a smaller sack.

Dieses Verfahren erweist sich auch mit Rücksicht auf die Vorrichtung und die erforderliche Zeit als aufwendig und umständlich. Außerdem kann es ausschließlich zu einem axialen Dichtegradient führen. Dieser erschwert nachteiligerweise das Durchzünden der nachverdichteten Treibladung.With regard to the device and the time required, this method also proves to be complex and cumbersome. In addition, it can only lead to an axial density gradient. This disadvantageously complicates the ignition of the post-compressed propellant charge.

Der Erfindung liegt die Aufgabe zugrunde, eine nachverdichtete Treibladung mit verbesserten Durchzündeigenschaften zu schaffen.The invention has for its object to provide a post-compressed propellant charge with improved ignition properties.

Gelöst wird diese Aufgabe durch die im Kennzeichen des Patentanspruchs 1 angegebene Erfindung. Sie wird nachstehend anhand der Zeichnung eines bevorzugten Ausführungsbeispiels der Vorrichtung näher erläutert,This object is achieved by the invention specified in the characterizing part of patent claim 1. It is explained in more detail below with reference to the drawing of a preferred exemplary embodiment of the device,

und es zeigen

  • Fig. 1 die Vorrichtung in ihrer Ausgangsposition in einem Schnitt quer zur zentralen Längsachse (A) mit einem in der Vorrichtung lösbar fixierten Heckteil eines Geschosses mit Stabilisierungsleitwerk,
  • Fig. 2 die Vorrichtung in einem längsaxialen Schnitt nach Fig 1,
  • Fig. 3 die Vorrichtung in ihrer Endposition im Schnitt quer zur zentralen Längsachse (A),
  • Fig. 4 die Vorrichtung im Schnitt nach Fig. 3 und
  • Fig. 5 im längsaxialen Schnitt die Vorrichtung beim Ausbringen der um das Geschoßheck herum nachverdichteten Treibladung aus dem von der Vorrichtung umschlossenen Raum und deren Einbringung in eine Treibladungshülse.
and show it
  • 1 shows the device in its starting position in a section transverse to the central longitudinal axis (A) with a rear part of a projectile with stabilizing stabilizer which is detachably fixed in the device,
  • 2 shows the device in a longitudinal axial section according to FIG. 1,
  • 3 shows the device in its end position in section transverse to the central longitudinal axis (A),
  • Fig. 4 shows the device in section according to Fig. 3 and
  • 5 shows the device in longitudinal axial section when the propellant charge compressed around the rear of the projectile is discharged from the space enclosed by the device and its introduction into a propellant charge sleeve.

Gemäß den Figuren 1 und 2 weist die Vorrichtung ein Gestell 10 mit einer Grundplatte 12 mit oberseitig auf ihr befestigten ersten Elementen 14.1, ... auf. Letztere sind von im wesentlich gleichschenklig- dreieckigem Querschnitt und weisen zwischen planebenen Begrenzungsflächen 17 und 18 eine gekrümmte Begrenzungsfläche 16 auf, die noch erläutert wird. Die ersten Elemente 14.1, ... sind auf einem Kreis mit gleicher Teilung angeordnet, wobei zwischen einander zugewandten Begrenzungsflächen 17 und 18 einander benachbarter erster Elemente, beispielsweise 14.1 und 14.2, jeweils ein Durchlaß 20 im wesentlichen rechteckigen Querschnitts verbleibt. Die Durchlässe 20 dienen der radialbeweglichen Aufnahme zweiter Elemente 22.1,..., deren voneinander abgewandte seitlichen Begrenzungsflächen 25 und 26 jeweils einer Begrenzungsfläche 17 oder 18 der ersten Elemente 14.1, ... unmittelbar benachbart sind. Die zweiten Elemente 22.1, ... sind in Richtung eines Pfeils 30 gegen eine zentrale Längsachse A (und in Gegenrichtung nach einem Pfeil 32) beweglich angeordnet, wobei eine der zentralen Längsachse A zugewandte Begrenzungsfläche 24 die nämliche Krümmung aufweist, wie die Begrenzungsfläche 16 des betreffenden ersten Elements 14.1, .... Im in den Fig. 1 und 2 dargestellten Anfangszustand bilden die Begrenzungsflächen 16 und 24 wesentliche Bereiche einer Wandung eines Raumes 38. Diesem ist unterseitig ein Auflager 48 und oberseitig eine Abdeckung 50 zugeordnet. In den Raum 38 ragt ein Geschoß 41 mit einem Geschoßheck 42. Im dargestellten Fall wird das Geschoßheck 42 von einer Gasdruckaufnahmefläche 46 eines nicht näher bezeichneten Treibkäfigs umfangsseitig begrenzt und trägt an seinem rückseitigen Ende ein Stabilisierungsleitwerk 43 mit fünf Stabilisierungsflügeln 44.1, ... 44.5, die sich radial gegen die Begrenzungsflächen 16 der ersten Elemente 14.1, ...14.5 abstützen. Die Fig. 1 und 2 zeigen die zweiten Elemente 22,1, ... in ihrer Ausgangsposition. In den Raum 38 wird Treibladungspulver 40 geschüttet. Die Schüttmenge ist einer Treibladung 52 (Fig. 3) massegleich. Dann werden die zweiten Elemente 22.1, ... gleichzeitig aus ihrer Ausgangsposition in Richtung des Pfeils 30 radial gegen die zentrale Längsachse A bewegt. Sie wirken dabei als Preßbacken und führen zu einer Nachverdichtung des eingeschütteten Treibladungspulvers 40. In der nachverdichteten Schüttung stellt sich über die gesamte Länge ein radialer, zum Umfang hin zunehmender Dichtegradient ein. Der Vorgang ist beendet, sobald die Begrenzungsflächen 24 der zweiten Elemente 22.1, ..., 22.5 gemeinschaftlich mit den Begrenzungsflächen 16 der ersten Elemente 14.1,..., 14.5 einen Kreis 28 bilden und damit der Raum 38 seinen kreiszylindrischen Endquerschnitt eingenommen hat, wie dies in den Figuren 3 und 4 dargestellt ist. Der Kreis 28 ist dem Umfang der Treibladung 52 gleich oder um ein vorgebbares Maß kleiner.According to FIGS. 1 and 2, the device has a frame 10 with a base plate 12 with first elements 14.1,. The latter have an essentially isosceles-triangular cross section and have a curved boundary surface 16 between plane-level boundary surfaces 17 and 18, which will be explained later. The first elements 14.1, ... are arranged on a circle with the same pitch, each with a passage 20 of essentially rectangular cross section remaining between mutually facing boundary surfaces 17 and 18 of adjacent first elements, for example 14.1 and 14.2. The passages 20 serve for the radially movable reception of second elements 22.1, ..., the lateral boundary surfaces 25 and 26 of which face away from one another are each directly adjacent to a boundary surface 17 or 18 of the first elements 14.1, .... The second elements 22.1, ... are arranged to be movable in the direction of an arrow 30 against a central longitudinal axis A (and in the opposite direction according to an arrow 32), a boundary surface 24 facing the central longitudinal axis A having the same curvature as the boundary surface 16 of the relevant first element 14.1,... in the initial state shown in FIGS. 1 and 2, the boundary surfaces 16 and 24 form essential areas of a wall of a room 38. This is assigned a support 48 on the underside and a cover 50 on the upper side. A projectile 41 with a projectile tail 42 protrudes into space 38. In the illustrated case, the projectile tail 42 is delimited on the circumference by a gas pressure receiving surface 46 of a sabot not specified and carries at its rear end a stabilizing tail 43 with five stabilizing wings 44.1,... 44.5, which are supported radially against the boundary surfaces 16 of the first elements 14.1, ... 14.5. 1 and 2 show the second elements 22, 1, ... in their starting position. Propellant powder 40 is poured into the space 38. The bulk quantity is equal to a propellant charge 52 (FIG. 3). Then the second elements 22.1, ... are simultaneously moved radially from their starting position in the direction of arrow 30 against the central longitudinal axis A. They act as pressing jaws and lead to a recompression of the poured propellant powder 40. In the post-compacted bed, a radial density gradient increases over the entire length. The process is ended as soon as the boundary surfaces 24 of the second elements 22.1, ..., 22.5 form a circle 28 together with the boundary surfaces 16 of the first elements 14.1, ..., 14.5 and thus the space 38 has assumed its circular cylindrical end cross-section, such as this is shown in Figures 3 and 4. The circle 28 is equal to the circumference of the propellant charge 52 or smaller by a predeterminable amount.

Letzteres ist dann erforderlich, wenn ein Endverbleibsraum für die Treibladung 52, beispielsweise der Innenraum 62 einer Treibladungshülse 58, (siehe Fig. 5) eine geringfügige Konizität aufweist. Wie aus Fig. 5 erkennbar, wird durch eine längsaxiale Bewegung in Richtung eines Pfeils 60 das nur teilweise dargestellte Geschoß 41 mit der um das Geschoßheck 42 nachverdichteten Treibladung 52 aus dem Raum 38 der Vorrichtung in den Innenraum 62 der in einer Aufnahme 56 achsfluchtend positionierten Treibladungshülse 58 übergeführt. Bei einer konischen Treibladungshülse entspricht der Kreis 28 dem lichten Einführquerschnitt der Treibladungshülse, und nach dem Überführen in deren Innenraum entspannt sich die Treibladung 52 bereichsweise geringfügig und füllt das Volumen des Innenraumes aus. Um hierbei keinen Dichteverlust im betreffenden Bereich, regelmäßig dem rückwärtigen Bereich des Innenraums der Treibladungshülse, in Kauf nehmen zu müssen, wird folgendermaßen verfahren: Wie in Fig. 2 aus einer Trennungslinie 35 beispielhaft erkennbar, können die zweiten Elemente 22.1, ... geteilt sein. Zum Einschütten des Treibladungspulvers 40 wird ein oberseitiger zweiter Teil 36 in eine Ausgangspostion gebracht, bei der der Radialabstand der Begrenzungsfläche 24 größer ist als bei einem unterseitigen ersten Teil 34. Hierdurch entsteht ein nicht dargestellter zusätzlicher Raum in der Vorrichtung zur Aufnahme von Treibladungspulver 40. Nachdem die Teile 34 und 36 ihre Endposition eingenommen haben, weist die Treibladung 52 im Bereich der oberseitigen zweiten Teile 36 eine größere Dichte auf als im Bereich der unterseitigen ersten Teile 34 der zweiten Elemente 22.1,..., und es wird zudem dem radialen ein axialer Dichtegradient überlagert. Dieser kann auch nach der vorerwähnten geringfügigen Entspannung im betreffenden Bereich der Treibladungshülse 52 noch vorhanden sein und läßt sich gezielt vorgeben. Auf diese vorteilhaft einfache Weise kann, vorzugsweise im rückwärtigen Bereich der Treibladung 52, eine vergleichsweise höhere Dichte erzielt werden, was innenballistische Vorteile mit sich bringt.The latter is necessary if an end-use space for the propellant charge 52, for example the interior 62 of a propellant charge sleeve 58 (see FIG. 5) has a slight taper. As can be seen from FIG. 5, a longitudinally axial movement in the direction of an arrow 60 causes the projectile 41, which is only partially shown, with the propellant charge 52 compacted around the projectile tail 42 from the space 38 of the device into the interior 62 of the propellant charge sleeve positioned in an axially aligned manner in a receptacle 56 58 transferred. In the case of a conical propellant charge sleeve, the circle 28 corresponds to the clear insertion cross section of the propellant charge sleeve, and after that Transferring to the interior of the propellant 52 relaxes slightly in some areas and fills the volume of the interior. In order not to have to accept a loss of density in the area in question, regularly the rear area of the interior of the propellant charge sleeve, the procedure is as follows: As can be seen by way of example in FIG. 2 from a dividing line 35, the second elements 22.1,.. . To pour in the propellant powder 40, an upper-side second part 36 is brought into an initial position at which the radial distance from the boundary surface 24 is greater than that of a lower-side first part 34. This creates an additional space (not shown) in the device for accommodating propellant powder 40 the parts 34 and 36 have reached their end position, the propellant charge 52 has a greater density in the area of the upper-side second parts 36 than in the area of the lower-side first parts 34 of the second elements 22.1,... and the radial one also becomes an axial one Density gradient overlaid. This can still be present in the relevant area of the propellant charge sleeve 52 after the aforementioned slight relaxation and can be predetermined. In this advantageously simple manner, a comparatively higher density can be achieved, preferably in the rear region of the propellant charge 52, which has advantages in terms of interior ballistics.

Durch den radial zum Umfang der Treibladung 52 hin zunehmenden Dichtegradient wird das Durchzünden der Treibladung 52 in deren zentralaxialem Bereich begünstigt, weil dort die Nachverdichtung des Treibladungspulvers 40 geringer ist. Dies begünstigt außerdem ein besseres Abbranndverhalten des Treibladungspulvers bei gleichzeitiger durch die Nachverdichtung erzielter Steigerung der innenballistischen Leistung.Due to the density gradient increasing radially towards the circumference of the propellant charge 52, the ignition of the propellant charge 52 in its central axial region is favored because the compression of the propellant charge powder 40 is less there. This also favors a better separation behavior of the propellant powder with a simultaneous increase in the internal ballistic performance achieved by the recompression.

Claims (10)

1. Re-densified propellant charge 52 characterised by a radial density gradient preselectable over the entire length and increasing in the direction of the peripheral zone (16, 24).
2. Propellant charge in accordance with Claim 1, characterised by a density gradient which extends in a longitudinal axial direction and which at least in certain zones is superimposed.
3. Process for the production of a re-densified propellant charge (52) in accordance with Claim 1 or 2, characterised by the following steps and features:
(a) a bulk quantity of a propellant charge powder (40) of the same mass as the propellant charge (52) to be re-densified is fed to a chamber (38) of which the extension in the axial direction is substantially equivalent to that of the propellant charge (52) to be re-densified,
(b) by forces applied radially and by which the cross section of the chamber (38) is reduced to a final cross section the bulk quantity is compressed, the final cross section being smaller than or equal to that of a receiver (58), and
(c) after the final cross section has been reached the re-densified propellant charge (52) is moved axially from the chamber (38) into the receiver (58).
4. Process in accordance with Claim 3, characterised by the fact that the chamber (38) is of approximately the same initial cross section over its entire length.
5. Process in accordance with Claim 3, characterised by the fact that the chamber (38) has initial cross sections of different sizes over its length.
6. Process in accordance with Claim 3, 4 or 5, characterised by the fact that a projectile (41) is detachably affixed by a rear portion (42) in the chamber (38) before the introduction of the bulk quantity of propellant charge powder (40).
7. Process in accordance with Claim 6, characterised by the fact that the projectile (41) is displaced in the axial direction in order to enable the re-densified propellant charge (52) to be extracted axially.
8. Apparatus for the re-densification of a propellant charge (52) with a preselectable density gradient, characterised by the following features:
(a) a frame (10) has a preselectable number of first elements (14,1....) of which the cross section is substantially the shape of an isosceles triangle,
(b) the first elements (14,1....) are mounted in fixed positions and at equal distances apart around a circle, while interfaces (16) facing towards a perpendicular axis (A) are situated on a circle (28) which does not exceed the circumference of the propellant charge (52),
(c) each pair of perpendicular lateral interfaces (17, 18) of the mutually adjacent first elements (14,1....) forms a passage (20) of rectangular cross section for second elements (22,1....)
(d) interfaces (24) belonging to the second elements (22,1....) and facing towards the perpendicular longitudinal axis (A) are curved in such a way as to form parts of the circle (28), and
(e) the second elements (22,1....) are movable from an initial position towards the central longitudinal axis (A) into a final position in which, together with the interfaces (16) of the first elements (14,1....), they form a closed circle (28).
9. Apparatus in accordance with Claim 8, characterised by the fact that the second elements (22, 1) are subdivided into at least one first part (34) and a second part (36) being movable from their respective initial positions in relation to the first parts (34) and together with these latter in the radial direction into the final position.
10. Apparatus in accordance with Claim 8 or 9, characterised by the fact that the number of first elements (14,1....) and second elements (22,1....) in each case corresponds to the number of stabilising fins (44,1....) of the stabilising tail unit (43) of a projectile (41) extending into it.
EP84110002A 1983-09-07 1984-08-22 Redensified propellant charge, its process of manufacture and device for executing this process Expired - Lifetime EP0149714B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833332224 DE3332224A1 (en) 1983-09-07 1983-09-07 RE-COMPRESSED DRIVE CHARGE, METHOD FOR THEIR PRODUCTION AND DEVICE FOR CARRYING OUT THE METHOD
DE3332224 1983-09-07

Publications (3)

Publication Number Publication Date
EP0149714A2 EP0149714A2 (en) 1985-07-31
EP0149714A3 EP0149714A3 (en) 1988-10-05
EP0149714B1 true EP0149714B1 (en) 1990-10-24

Family

ID=6208424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84110002A Expired - Lifetime EP0149714B1 (en) 1983-09-07 1984-08-22 Redensified propellant charge, its process of manufacture and device for executing this process

Country Status (4)

Country Link
US (1) US4619201A (en)
EP (1) EP0149714B1 (en)
DE (2) DE3332224A1 (en)
NO (1) NO843513L (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE449527C (en) * 1985-06-20 1988-12-08 Nobel Kemi Ab EXPLOSIVE CHARGING FOR EXPLOSION OF ROUGH PIPES, AND WAY TO MANUFACTURE THEM
SE452799B (en) * 1985-06-20 1987-12-14 Nobel Kemi Ab SET TO MAKE ANIMAL CHARGES AND ACCORDING TO SETS OF CHARGES
DE3840875A1 (en) * 1988-12-05 1990-06-07 Rheinmetall Gmbh METHOD AND DEVICE FOR COMPRESSING A DRIVE CHARGE AND AMMUNITION PRODUCED BY THE METHOD
DE3843289A1 (en) * 1988-12-22 1990-06-28 Diehl Gmbh & Co DRIVING MIRROR AMMUNITION
DE3939295A1 (en) * 1989-11-28 1991-05-29 Rheinmetall Gmbh METHOD AND DEVICE FOR PRODUCING LARGE-SCALE AMMUNITION
US5456455A (en) * 1994-02-01 1995-10-10 Thiokol Corporation Flare pellet and process for making same
US6352029B1 (en) 2000-03-30 2002-03-05 The United States Of America As Represented By The Secretary Of The Navy Thermally actuated release mechanism
US6846372B1 (en) * 2003-03-31 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Reactively induced fragmentating explosives
CN105083856A (en) * 2015-08-20 2015-11-25 苏州听毅华自动化设备有限公司 Defective product output mechanism
WO2021118666A2 (en) * 2019-09-12 2021-06-17 Carl Salmon Grenade with independently detachable carpel segments
CN112229279B (en) * 2020-09-18 2022-08-19 西安近代化学研究所 Liquid-phase powder-charging warhead shell device without using balancing weight, without changing charging amount and capable of adjusting mass and mass center

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US726901A (en) * 1899-05-27 1903-05-05 George Whitman Mcmullen Explosive charge.
US654471A (en) * 1899-06-26 1900-07-24 Vickers Sons & Maxim Ltd Powder-grain.
US802347A (en) * 1903-07-17 1905-10-17 Henry C Aspinwall Perforated powder-grain.
US2995011A (en) * 1959-09-17 1961-08-08 Phillips Petroleum Co Solid propellant rocket motor
SE391025B (en) * 1974-02-08 1977-01-31 Foerenade Fabriksverken PLEASE COMPACT FINE, FIXED EXPLOSIVE SUBSTANCE AND DEVICE FOR IT IN GRINATE OIL OR CHARGE SLEEVE
US4020736A (en) * 1976-03-29 1977-05-03 The United States Of America As Represented By The Secretary Of The Navy Automatic increment sizer-feeder for press loading
US4331081A (en) * 1980-07-25 1982-05-25 C-I-L Inc. Explosive booster
DE3205152C2 (en) * 1982-02-13 1984-04-12 Mauser-Werke Oberndorf Gmbh, 7238 Oberndorf Propellant charge for shell ammunition and process for their manufacture

Also Published As

Publication number Publication date
DE3332224A1 (en) 1985-03-21
US4619201A (en) 1986-10-28
DE3483469D1 (en) 1990-11-29
NO843513L (en) 1985-03-08
EP0149714A3 (en) 1988-10-05
EP0149714A2 (en) 1985-07-31

Similar Documents

Publication Publication Date Title
EP0149714B1 (en) Redensified propellant charge, its process of manufacture and device for executing this process
EP0429753B1 (en) Procedure and device for the manufacturing of large calibre ammunition
DE112005000795T5 (en) Gas generator arrangement
EP0312491A1 (en) Fragmentation case for a metallic explosive warhead, and method for manufacturing it
DE69917523T2 (en) Process for producing an object of granular material and ignition tube and propellant produced by this process
DE2554851A1 (en) SPREAD BOLTS
EP0390738B1 (en) Cartridge feed strip
DE102009034039B4 (en) Method and device for introducing compressible plastic-bound explosive into cartridges
DE2308398C3 (en) Method for filling warhead covers or the like. with explosives
DE3739683C2 (en) Cutting charge
DE19736298B4 (en) Method and device for delaboring grenades with shaped charge
EP1031006B1 (en) Boundary light cartridge and production method therefor
EP0679723B1 (en) Process for manufacture of a gas- and/or solid injection installation for metallurgical vessels and installation for injection manufactured by said process
DE642465C (en) Process for the production of detonators
DE4202129B4 (en) Compact charge body
DE2751048C3 (en) Amplifier capsule with octogen crystals for projectiles and process for their production
DE3935703A1 (en) BREAKTHROUGH-FREE IGNITION CORD
DE2504756A1 (en) METHOD AND DEVICE FOR COMPRESSING FINE-PARTICULAR SOLID EXPLOSIVE MATERIALS IN A GARNET COAT OR IN A PULLOVER CASE
DE2417589A1 (en) PROCESS AND ARRANGEMENT FOR MANUFACTURING COMPACTED ALLOYED OBJECTS WITH AN INTERNAL PASSAGE
DE3107789C2 (en) Process for the manufacture of pressed explosive charges
DE2738568C3 (en) Sampling device for molten metal
DE3143899A1 (en) Booster charge
EP0372159A1 (en) Process and device for densifying a propellant charge, and ammunition manufactured according to the process
DE2539947A1 (en) COLLECTION ARRANGEMENT FOR DRILLING HOLES
DE2355221C3 (en) Device for interrupting the electrical safety short-circuit of the ignition of ignition charges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19881012

17Q First examination report despatched

Effective date: 19890314

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: CALVANI SALVI E VERONELLI S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3483469

Country of ref document: DE

Date of ref document: 19901129

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930729

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930804

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930831

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970804

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601