EP0147350A2 - Converflo trailing element - Google Patents
Converflo trailing element Download PDFInfo
- Publication number
- EP0147350A2 EP0147350A2 EP84630167A EP84630167A EP0147350A2 EP 0147350 A2 EP0147350 A2 EP 0147350A2 EP 84630167 A EP84630167 A EP 84630167A EP 84630167 A EP84630167 A EP 84630167A EP 0147350 A2 EP0147350 A2 EP 0147350A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- headbox
- slice
- machine direction
- stock
- constructed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 11
- 239000012530 fluid Substances 0.000 claims abstract description 4
- 230000001052 transient effect Effects 0.000 claims abstract description 4
- 238000004873 anchoring Methods 0.000 claims abstract 5
- 239000000463 material Substances 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 10
- 230000006872 improvement Effects 0.000 claims description 10
- -1 polypropylene Polymers 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229920000271 Kevlar® Polymers 0.000 claims description 3
- 229920000877 Melamine resin Polymers 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 3
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 229920000180 alkyd Polymers 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 3
- 239000004761 kevlar Substances 0.000 claims description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 229920001169 thermoplastic Polymers 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 239000004416 thermosoftening plastic Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims 3
- 239000004411 aluminium Substances 0.000 claims 1
- 239000002648 laminated material Substances 0.000 claims 1
- 238000013461 design Methods 0.000 description 18
- 239000006185 dispersion Substances 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F5/00—Dryer section of machines for making continuous webs of paper
- D21F5/02—Drying on cylinders
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/02—Head boxes of Fourdrinier machines
- D21F1/028—Details of the nozzle section
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F1/00—Wet end of machines for making continuous webs of paper
- D21F1/02—Head boxes of Fourdrinier machines
Definitions
- the invention relates to improvements in paper machine headboxes, and more particularly to improvements in the slice chamber of headboxes wherein trailing elements extend freely toward the slice opening for maintaining fine scale turbulence in the stock at the slice opening.
- a basic limitation in headbox design has been that the means for generating turbulence in fiber suspension in order to disperse the fibers have been only comparativey large-scale devices. With such devices, it is possible to develop small scale turbulence by increasing the intensity of turbulence generated. Thus, the turbulence energy is transferred naturally from large to small scales and the higher the intensity, the greater the rate of energy transfer and hence, the smaller the scales of turbulence sustained. However, a detrimental effect also ensued from this high intensity large-scale turbulence, namely, the large waves and free surface disturbance developed on the Fourdrinier table. Thus a general rule of headbox performance has been that the degree of dispersion and level of turbulence in the headbox discharge was closely correlated; the higher the turbulence, the better the dispersion.
- a heacibox design under this limiting condition then, one could choose at the extreme, either a design that produces a highly turbulent, well-dispersed discharge, or one that produces a low-turbulent, poorly dispersed discharge. Since either a very high level of turbulence or a very low level (and consequent poor dispersion) produces defects in sheet formation on the Fourdrinier machine, the art of the headbox design has consisted of making a suitable compromise between these two extremes. That is, a primary objective of the headbox design up to that time had been to generate a level of turbulence which was high enough for dispersion, but low enough to avoid free surface defects during the formation period. It will be appreciated that the best compromise would be different for different types of papermaking furnishes, consistencies , Fourdrinier table design, machine design, machine speed etc.
- the method by which the above is accomplished is to pass the fiber suspension through a system of parallel cross machine channels of uniform small size but large in percentage open area. Both of these conditions, uniform small channel size and large exit percentage open area, are necessary.
- the largest scales of turbulence developed in the channel flow have the same order of size as the depth of the individual channels by maintaining the individual channel depth small, the resulting scale of turbulence will be small. It is necessary to have a large exit percentage open area to prevent the development of large scales of turbulence in the zone of discharge. That is, large solid areas between the channel's exits, would result in large-scale turbulence in the wake of these areas.
- the flow channel must change from a large entrance to a small exit size. This change should occur over a substantial distance to allow time for the large-scale coarse flow disturbance generated in the wake of the entrance structure to be degraded to the small-scale turbulence desired.
- the area between channels approaches the small dimension that it must have at the exit end. This concept of simultaneous convergence is an important concept of design of this invention.
- the trailing members which are employed to obtain the fine scale turbulence are not necessarily stable.
- Cross-machine transient pressures tend to bend the trailing element in the cross-machine direction and cause cross-machine uniformity variances in the paper.
- Resistance to deformation along the machine direction length of the trailing elements can cause slight digressions in the uniform velocity of the stock flowing off the surfaces at the trailing edge of the trailing element.
- Static or dynamic instability can occur at certain operating conditions and resonant frequencies can be reached dependent on the hydrodynamic forces. It has been discovered that the inertia and hydrodynamic couplings can be broken by suitable distribution of the mass and elasticity of the trailing structure with proper mass distribution and stiffness distribution being of importance.
- the objectives are attained by providing a trailing element which has a greater structural stiffness (preferably at the downstream tip) in the cross-machine direction than in the machine direction, and in a preferred form which is made of an anisotropic material, preferably one being formed of a laminate with separate layers of the laminate providing the qualities of cross-machine stiffness and machine direction strength and flexibility by either material properties, direction, size or number. Alternates of woven or needled material with weave directions or materials, or size or numbers of filaments controlling directional stiffness.
- anisotropic material By utilizing an anisotropic material,..design factors which are otherwise not always available can be included such as strength, stiffness, corrosion resistance, wear resistance, weight, fatigue life, thermal expansion or contraction, thermal insulation, thermal conductivity acoustical insulation, damping of vibrations, buckling, low friction and optimal design in manufacture.
- FIGS. lA, lB and lC are side elevational views in section, shown somewhat schematic of a paper machine headbox embodying the principles of the present invention.
- Figure 2 is a perspective view partially in section of a trailing element of the headbox of Figure 1.
- a headbox 10 has papermaking stock 11 delivered thereto to flow through the headbox toward a slice chamber.
- various arrangements are positioned upstream of the slice chamber to control the flow and turbulence of the stock.
- the stock flows forwardly through openings in a wall 14 at the entry to the slice chamber.
- Trailing eements 18 and 19, Figure 1A extend downstream in the slice chamber pivoted at their upper ends and free along their lengths and at their lower ends to be positionable solely due to forces of the stock flowing toward the slice opening 16.
- the stock is emitted from the slice opening 16, it is delivered onto a traveling forming surface.
- the trailing elements are pivotally mounted at their upstream ends, and the pivotal mounting is immediately followed by a bent or angular portion which permits a short portion of the trailing elements to extend at right angles to the wall 14 and because of the bend, the trailing elements immediately turn and extend in the direction of the slice chamber.
- two outer trailing elements 18' extend substantially the length of the slice chamber, and an intermediate trailing element 19' is constructed of greater length to extend through and slightly beyond the slice opening.
- the downstream ends of the trailing elements 18" and 19" are curved to substantially conform to the curvature of the slice chamber- as shown in Figure 1C.
- the upper trailing element 18' terminates short of the slice opening 16, whereas the lower trailing element 19" extends beyond the slice opening a short distance.
- FIG 2 a form of trailing element 18' ' ' is shown in detail.
- the trailing element 18' ' ' has outer layers 18a and 18b and a central integrally sandwiched intermediate layer 18c therebetween.
- the upper end of the trailing element is pivotally supported in a wall 14' such as by an enlarged or bulbous ridge 24 at the upper end pivotally mounted in a slot 25 in the wall 14'.
- Directional lines are shown with a machine direction line shown at the 90° axis and the cross-machine direction shown at the 0° axis and the intermediate direction shown by the double arrowed line with the angle between the double arrowed line and the machine direction line shown as ⁇ .
- headboxes may be employed as will be recognized by those versed in the art, including such as shown schematically in the aforementioned patents, RE 28 269 and 3 939 037.
- the trailing elements were formed of metal or plastic or woven and were isotropic in nature in the sense that the trailing element stiffness (Young's modulus)was the same in the flow and cross-flow direction.
- the trailing elements which extend flat in a cross-flow direction either in separate strips or continuous from pondside to pondside can be a single layer or multilayered, flat or curved, (in the flow direction) uniform thickness, or tapered; thin or thick.
- the material is anisotropic so as to have different strength and/or stiffness characteristics in different directions.
- the anisotropic trailing elements have a greater stiffness in the cross-machine direction than in the machine direction. This being more important at the downstream tip of the trailing element.
- the difference between the stiffness in a cross-machine direction and a machine direction is a minimum of 5% and preferred to be 500% or more.
- the stiffness limit as designated by Young's modulus in the cross-machine direction is a maximum 100 000 000 psi, and a minimum stiffness in the machine direction is 50 000 psi, due to existing materials properties.
- the anisotropic trailing elements can be formed of a composite material, that is, a laminate wherein the different physical properties of the different layers can be taken advantage of.
- the outer layers can be formed with cross-direction fibers of a material such as graphite, with the inner layer containing a weaker stiffness material oriented in the machine direction, such as fiberglass. This would give greater stiffness in the cross direction, and less stiffness in the machine direction due to material stiffness, and material position within the matrix.
- the anisotropic trailing elements can be formed from composite materials such as graphite, kevlar, boron, glass, carbon, beryllium, steel , titanium, or aluminum fibers in matrices such as epoxy, polyamide, carbon, polyester, phenolic, silicone, alkyd, melamine, fluorocarbon, polycarbonate, acrylic , acetal, polypropylene, ABS copolymer, polysulfone, polyethylene, PEEK, polystyrene, PPS, nylon, thermoset, plastics, thermoplastics, glass, metal or other matrices. Different materials can be combined, not such as in alloying where the result is homogeneous, and isotropic.
- matrices such as epoxy, polyamide, carbon, polyester, phenolic, silicone, alkyd, melamine, fluorocarbon, polycarbonate, acrylic , acetal, polypropylene, ABS copolymer, polysulfone, polyethylene, PEEK, polystyrene,
- the advantage of a composite laminate is that it may attain the best qualities of the constituents and often qualities that neither alone possess. Tailoring of an anisotropic material yields not only the stiffness, strength, thermal expansion, thermal conductivity, acoustic insulation, fatigue and life required in a given direction, but functions in an improved manner during service of the headbox. The relative factors sought after are : strength, stiffness, thermal expansion, thermal conductivity and so forth. If an isotropic material were used, a compromise would have to be reached as to the material chosen. This compromise is not necessary in an anisotropic structure, wherein the desirable properties of different directions may be exploited. Outstanding mechanical properties can be combined with unique flexibility.
- Properties that can be improved by using an anisotropic design are strength, stiffness, corrosion resistance, wear resistance, weight, fatigue, life, thermal expansion or contraction, thermal insulation, thermal conductivity, acoustical insulation, damping of vibrations, buckling, low friction and optimum design and manufacture.
- inertia and hydrodynamic couplings can be broken by suitable distribution of the mass and elasticity of the structure with proper mass and stiffness distribution being of significant importance.
- An anisotropic design can attain stability with improved function of the trailing elements.
- trailing element While the structure is shown with the trailing elements being pivotally mounted at their upstream end, this is a preferred arrangement and other forms of mounting may be employed which need not be pivotal. It is important, however, that the trailing element be self-positionable so that the position is controlled by the pressure of the stock flowing on opposite sides of the trailing element.
- the element is preferably free of attachment at the pondsides, but can be attached at the pondsides in some structures where -movement due to hydraulic forces is small.
- a trailing element formed of a single material may be used, a laminate may be employed such as illustrated in Figure 2 wherein different physical properties of different layers can be taken advantage of.
- Various thicknesses of the trailing edge of the elements may be employed, but 10 to 120 mils is a thickness that has been found to be satisfactory.
Landscapes
- Paper (AREA)
- Laminated Bodies (AREA)
- Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)
Abstract
Description
- The invention relates to improvements in paper machine headboxes, and more particularly to improvements in the slice chamber of headboxes wherein trailing elements extend freely toward the slice opening for maintaining fine scale turbulence in the stock at the slice opening.
- The concept of providing a freely movable self- positionable trailing element in the slice chamber of a headbox was first disclosed in U.S. Patent 3 939 037, Hill. In U.S. Patent RE 28 269, Hill et al, trailing elements are disclosed extending pondside to pondside. These trailing elements are capable of generating or maintaining fine scale turbulence in the paper stock flowing toward and through the slice opening. The concepts of the foregoing patents may also be employed to utilize their advantage and to function in a machine for making multi-ply paper wherein stocks of different characteristics are fed to chambers on opposite sides of the trailing elements where the elements extend pondside to pondside.
- A basic limitation in headbox design has been that the means for generating turbulence in fiber suspension in order to disperse the fibers have been only comparativey large-scale devices. With such devices, it is possible to develop small scale turbulence by increasing the intensity of turbulence generated. Thus, the turbulence energy is transferred naturally from large to small scales and the higher the intensity, the greater the rate of energy transfer and hence, the smaller the scales of turbulence sustained. However, a detrimental effect also ensued from this high intensity large-scale turbulence, namely, the large waves and free surface disturbance developed on the Fourdrinier table. Thus a general rule of headbox performance has been that the degree of dispersion and level of turbulence in the headbox discharge was closely correlated; the higher the turbulence, the better the dispersion.
- In selecting a heacibox design under this limiting condition then, one could choose at the extreme, either a design that produces a highly turbulent, well-dispersed discharge, or one that produces a low-turbulent, poorly dispersed discharge. Since either a very high level of turbulence or a very low level (and consequent poor dispersion) produces defects in sheet formation on the Fourdrinier machine, the art of the headbox design has consisted of making a suitable compromise between these two extremes. That is, a primary objective of the headbox design up to that time had been to generate a level of turbulence which was high enough for dispersion, but low enough to avoid free surface defects during the formation period. It will be appreciated that the best compromise would be different for different types of papermaking furnishes, consistencies , Fourdrinier table design, machine design, machine speed etc.
- Furthermore, because these compromises always sacrifice the best possible dispersion and/or the best possible flow pattern on the Fourdrinier wire, it is deemed that there is a great potential for improvement in headbox design today.
- The unique and novel combination of elements of the aforementioned patents provide for delivery of the stock slurry to a forming surface of a papermaking machine having a high degree of fiber dispersion with a low level of turbulence in the discharge jet. Under these conditions, a fine scale dispersion of the fibers is produced which will not deteriorate to the extent that occurs in the turbulent dispersion which are produced by conventional headbox designs. It has been found that is the absence of large-scale turbulence which precludes the gross refloccu- lation of the fibers since flocculation is predominately a consequence of small scale turbulence decay and the persistence of the large scales. Sustaining the dispersion in the flow on the Fourdrinier wire then, leads directly to improved formation.
- The method by which the above is accomplished, that is, to produce fine scale turbulence without large scale eddies, is to pass the fiber suspension through a system of parallel cross machine channels of uniform small size but large in percentage open area. Both of these conditions, uniform small channel size and large exit percentage open area, are necessary. Thus, the largest scales of turbulence developed in the channel flow have the same order of size as the depth of the individual channels by maintaining the individual channel depth small, the resulting scale of turbulence will be small. It is necessary to have a large exit percentage open area to prevent the development of large scales of turbulence in the zone of discharge. That is, large solid areas between the channel's exits, would result in large-scale turbulence in the wake of these areas.
- In concept then, the flow channel must change from a large entrance to a small exit size. This change should occur over a substantial distance to allow time for the large-scale coarse flow disturbance generated in the wake of the entrance structure to be degraded to the small-scale turbulence desired. The area between channels approaches the small dimension that it must have at the exit end. This concept of simultaneous convergence is an important concept of design of this invention.
- Under certain operating conditions, the trailing members which are employed to obtain the fine scale turbulence are not necessarily stable. Cross-machine transient pressures tend to bend the trailing element in the cross-machine direction and cause cross-machine uniformity variances in the paper. Resistance to deformation along the machine direction length of the trailing elements can cause slight digressions in the uniform velocity of the stock flowing off the surfaces at the trailing edge of the trailing element. Static or dynamic instability can occur at certain operating conditions and resonant frequencies can be reached dependent on the hydrodynamic forces. It has been discovered that the inertia and hydrodynamic couplings can be broken by suitable distribution of the mass and elasticity of the trailing structure with proper mass distribution and stiffness distribution being of importance.
- It is accordingly an object of the invention to provide an improved trailing element design which avoids disadvantages that occur at certain operating conditions in structures heretofore available, and particularly a trailing element which offers resistance to a deflection in the cross-machine direction and which offers minimal resistance to deformation in the fluid flow stream so that pressure are balanced on opposite sides of the trailing edge of the trailing elements.
- Definition of Terms:
- machine direction : flow direction
- isotropic : having the same properties in all directions
- anisotropic : not isotropic, that is exhibiting different properties when tested along axes in different directions
- In accordance with the principles of the invention, the objectives are attained by providing a trailing element which has a greater structural stiffness (preferably at the downstream tip) in the cross-machine direction than in the machine direction, and in a preferred form which is made of an anisotropic material, preferably one being formed of a laminate with separate layers of the laminate providing the qualities of cross-machine stiffness and machine direction strength and flexibility by either material properties, direction, size or number. Alternates of woven or needled material with weave directions or materials, or size or numbers of filaments controlling directional stiffness.
- By utilizing an anisotropic material,..design factors which are otherwise not always available can be included such as strength, stiffness, corrosion resistance, wear resistance, weight, fatigue life, thermal expansion or contraction, thermal insulation, thermal conductivity acoustical insulation, damping of vibrations, buckling, low friction and optimal design in manufacture.
- Other objects, advantages and features will become more apparent with the teaching of the principles of the invention in connection with the disclosure of the preferred embodiment in the specification, claims and drawings, in which:
- Figures lA, lB and lC are side elevational views in section, shown somewhat schematic of a paper machine headbox embodying the principles of the present invention; and
- Figure 2 is a perspective view partially in section of a trailing element of the headbox of Figure 1.
- As illustrated in Figure 1, a
headbox 10 haspapermaking stock 11 delivered thereto to flow through the headbox toward a slice chamber. In a headbox, various arrangements are positioned upstream of the slice chamber to control the flow and turbulence of the stock. The stock flows forwardly through openings in awall 14 at the entry to the slice chamber.Trailing eements wall 14 and because of the bend, the trailing elements immediately turn and extend in the direction of the slice chamber. - In Figure 1B, two outer trailing elements 18' extend substantially the length of the slice chamber, and an intermediate trailing element 19' is constructed of greater length to extend through and slightly beyond the slice opening.
- In the arrangement of Figure 1C, the downstream ends of the
trailing elements 18" and 19" are curved to substantially conform to the curvature of the slice chamber- as shown in Figure 1C. The upper trailing element 18' terminates short of the slice opening 16, whereas the lowertrailing element 19" extends beyond the slice opening a short distance. - In Figure 2, a form of trailing element 18' ' ' is shown in detail. The trailing element 18' ' ' has
outer layers 18a and 18b and a central integrally sandwichedintermediate layer 18c therebetween. The upper end of the trailing element is pivotally supported in a wall 14' such as by an enlarged orbulbous ridge 24 at the upper end pivotally mounted in a slot 25 in the wall 14'. Directional lines are shown with a machine direction line shown at the 90° axis and the cross-machine direction shown at the 0° axis and the intermediate direction shown by the double arrowed line with the angle between the double arrowed line and the machine direction line shown as α. - Various forms of headboxes may be employed as will be recognized by those versed in the art, including such as shown schematically in the aforementioned patents, RE 28 269 and 3 939 037.
- In structures heretofore available, the trailing elements were formed of metal or plastic or woven and were isotropic in nature in the sense that the trailing element stiffness (Young's modulus)was the same in the flow and cross-flow direction. In accordance with the present invention, the trailing elements which extend flat in a cross-flow direction either in separate strips or continuous from pondside to pondside, can be a single layer or multilayered, flat or curved, (in the flow direction) uniform thickness, or tapered; thin or thick.
- The material is anisotropic so as to have different strength and/or stiffness characteristics in different directions. In a preferred form, the anisotropic trailing elements have a greater stiffness in the cross-machine direction than in the machine direction. This being more important at the downstream tip of the trailing element.
- By increasing the stiffness in the cross direction, deformations due to pressure variations are reduced or eliminated. By having the trailing element flexible in the machine direction, effects or pressure differences upstream on the trailing element have a minimum effect on the position of the downstream edge of the trailing element so that it functions to maintain the velocities equal of the layers emerging off of the edge to minimize shear between the layers.
- In a preferred arrangement, the difference between the stiffness in a cross-machine direction and a machine direction is a minimum of 5% and preferred to be 500% or more. Presently, the stiffness limit as designated by Young's modulus in the cross-machine direction is a maximum 100 000 000 psi, and a minimum stiffness in the machine direction is 50 000 psi, due to existing materials properties.
- The anisotropic trailing elements can be formed of a composite material, that is, a laminate wherein the different physical properties of the different layers can be taken advantage of. For example, if a three layered trailing element is provided, the outer layers can be formed with cross-direction fibers of a material such as graphite, with the inner layer containing a weaker stiffness material oriented in the machine direction, such as fiberglass. This would give greater stiffness in the cross direction, and less stiffness in the machine direction due to material stiffness, and material position within the matrix. The anisotropic trailing elements can be formed from composite materials such as graphite, kevlar, boron, glass, carbon, beryllium, steel , titanium, or aluminum fibers in matrices such as epoxy, polyamide, carbon, polyester, phenolic, silicone, alkyd, melamine, fluorocarbon, polycarbonate, acrylic , acetal, polypropylene, ABS copolymer, polysulfone, polyethylene, PEEK, polystyrene, PPS, nylon, thermoset, plastics, thermoplastics, glass, metal or other matrices. Different materials can be combined, not such as in alloying where the result is homogeneous, and isotropic. The advantage of a composite laminate is that it may attain the best qualities of the constituents and often qualities that neither alone possess. Tailoring of an anisotropic material yields not only the stiffness, strength, thermal expansion, thermal conductivity, acoustic insulation, fatigue and life required in a given direction, but functions in an improved manner during service of the headbox. The relative factors sought after are : strength, stiffness, thermal expansion, thermal conductivity and so forth. If an isotropic material were used, a compromise would have to be reached as to the material chosen. This compromise is not necessary in an anisotropic structure, wherein the desirable properties of different directions may be exploited. Outstanding mechanical properties can be combined with unique flexibility. Properties that can be improved by using an anisotropic design are strength, stiffness, corrosion resistance, wear resistance, weight, fatigue, life, thermal expansion or contraction, thermal insulation, thermal conductivity, acoustical insulation, damping of vibrations, buckling, low friction and optimum design and manufacture.
- By design the inertia and hydrodynamic couplings can be broken by suitable distribution of the mass and elasticity of the structure with proper mass and stiffness distribution being of significant importance.
- An anisotropic design can attain stability with improved function of the trailing elements.
- While the structure is shown with the trailing elements being pivotally mounted at their upstream end, this is a preferred arrangement and other forms of mounting may be employed which need not be pivotal. It is important, however, that the trailing element be self-positionable so that the position is controlled by the pressure of the stock flowing on opposite sides of the trailing element. The element is preferably free of attachment at the pondsides, but can be attached at the pondsides in some structures where -movement due to hydraulic forces is small. While a trailing element formed of a single material may be used, a laminate may be employed such as illustrated in Figure 2 wherein different physical properties of different layers can be taken advantage of. Various thicknesses of the trailing edge of the elements may be employed, but 10 to 120 mils is a thickness that has been found to be satisfactory.
- Thus, it will be seen that we have provided an improved headbox design which meets with the objectives and advantages above set forth and avoids problems existent under certain operating conditions heretofore present in the art.
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55515883A | 1983-11-25 | 1983-11-25 | |
US555158 | 1983-11-25 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0147350A2 true EP0147350A2 (en) | 1985-07-03 |
EP0147350A3 EP0147350A3 (en) | 1986-06-25 |
EP0147350B1 EP0147350B1 (en) | 1989-03-15 |
Family
ID=24216193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84630167A Expired EP0147350B1 (en) | 1983-11-25 | 1984-11-09 | Converflo trailing element |
Country Status (15)
Country | Link |
---|---|
EP (1) | EP0147350B1 (en) |
JP (1) | JPS60134093A (en) |
KR (1) | KR860001627B1 (en) |
AR (1) | AR241606A1 (en) |
AU (1) | AU570746B2 (en) |
BR (1) | BR8405925A (en) |
CA (1) | CA1230251A (en) |
DE (2) | DE3477215D1 (en) |
ES (1) | ES537930A0 (en) |
FI (1) | FI81145C (en) |
IN (1) | IN162165B (en) |
MX (1) | MX161597A (en) |
NO (1) | NO162476C (en) |
PH (1) | PH22238A (en) |
ZA (1) | ZA848555B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0536003A1 (en) * | 1991-09-20 | 1993-04-07 | Kimberly-Clark Corporation | Papermaking headbox having extended divider sheet |
EP0681057A3 (en) * | 1994-04-29 | 1997-04-16 | Voith Sulzer Papiermasch Gmbh | Multi-layer headbox. |
US5645689A (en) * | 1994-11-10 | 1997-07-08 | Voith Sulzer Papiermachinen Gmbh | Multilayer headbox |
DE19715790A1 (en) * | 1997-04-16 | 1998-10-22 | Voith Sulzer Papiermasch Gmbh | Suspension distributor for e.g. papermaking machine, delivering over its full width |
WO1998051856A1 (en) * | 1997-05-12 | 1998-11-19 | Beloit Technologies, Inc. | A trailing element device |
EP1199403A3 (en) * | 2000-10-18 | 2003-05-02 | Voith Paper Patent GmbH | Headbox trailing element in a paper-, board-, or tissue machine |
EP1452640A3 (en) * | 2003-02-27 | 2004-11-17 | Voith Paper Patent GmbH | Headbox |
EP0939842B2 (en) † | 1996-06-12 | 2006-06-28 | Metso Paper Karlstad Aktiebolag | A multilayer headbox for a papermaking machine |
EP1897989A1 (en) | 2006-09-08 | 2008-03-12 | Voith Patent GmbH | Trailing element of a headbox of a machine for manufacturing a fibrous web, method for producing the trailing element and use of the trailing element |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19962709A1 (en) * | 1999-12-23 | 2001-06-28 | Voith Paper Patent Gmbh | Head box of papermaking machine, comprises improved hinge joints between lamellae and turbulence-generating sections |
JPWO2006038285A1 (en) | 2004-10-05 | 2008-05-29 | 三菱重工業株式会社 | Paper machine flow sheet and manufacturing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA936722A (en) * | 1970-08-31 | 1973-11-13 | A. Betley Raymond | Headbox slice chamber |
US3939037A (en) * | 1973-03-27 | 1976-02-17 | Beloit Corporation | Headbox with flexible trailing elements |
US4133715A (en) * | 1977-03-29 | 1979-01-09 | Beloit Corporation | Headbox and holders for floating slice chamber dividers |
US4128455A (en) * | 1977-05-20 | 1978-12-05 | Beloit Corporation | Headbox trailing element mounting and method |
US4566945A (en) * | 1984-04-11 | 1986-01-28 | Beloit Corporation | Headbox trailing element |
-
1984
- 1984-09-10 CA CA000462809A patent/CA1230251A/en not_active Expired
- 1984-10-16 FI FI844059A patent/FI81145C/en not_active IP Right Cessation
- 1984-11-01 ZA ZA848555A patent/ZA848555B/en unknown
- 1984-11-05 IN IN768/CAL/84A patent/IN162165B/en unknown
- 1984-11-07 NO NO844431A patent/NO162476C/en unknown
- 1984-11-09 DE DE8484630167T patent/DE3477215D1/en not_active Expired
- 1984-11-09 DE DE198484630167T patent/DE147350T1/en active Pending
- 1984-11-09 PH PH31428A patent/PH22238A/en unknown
- 1984-11-09 EP EP84630167A patent/EP0147350B1/en not_active Expired
- 1984-11-15 AU AU35642/84A patent/AU570746B2/en not_active Expired
- 1984-11-20 JP JP59243572A patent/JPS60134093A/en active Granted
- 1984-11-21 BR BR8405925A patent/BR8405925A/en not_active IP Right Cessation
- 1984-11-21 MX MX203441A patent/MX161597A/en unknown
- 1984-11-21 AR AR84298685A patent/AR241606A1/en active
- 1984-11-23 ES ES537930A patent/ES537930A0/en active Granted
- 1984-11-25 KR KR1019840007217A patent/KR860001627B1/en not_active Expired
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0536003A1 (en) * | 1991-09-20 | 1993-04-07 | Kimberly-Clark Corporation | Papermaking headbox having extended divider sheet |
EP0681057A3 (en) * | 1994-04-29 | 1997-04-16 | Voith Sulzer Papiermasch Gmbh | Multi-layer headbox. |
US5645689A (en) * | 1994-11-10 | 1997-07-08 | Voith Sulzer Papiermachinen Gmbh | Multilayer headbox |
EP0939842B2 (en) † | 1996-06-12 | 2006-06-28 | Metso Paper Karlstad Aktiebolag | A multilayer headbox for a papermaking machine |
DE19715790A1 (en) * | 1997-04-16 | 1998-10-22 | Voith Sulzer Papiermasch Gmbh | Suspension distributor for e.g. papermaking machine, delivering over its full width |
WO1998051856A1 (en) * | 1997-05-12 | 1998-11-19 | Beloit Technologies, Inc. | A trailing element device |
EP1199403A3 (en) * | 2000-10-18 | 2003-05-02 | Voith Paper Patent GmbH | Headbox trailing element in a paper-, board-, or tissue machine |
US6761801B2 (en) | 2000-10-18 | 2004-07-13 | Voith Paper Patent Gmbh | Lamella of a headbox of a paper, cardboard, or tissue machine |
EP1452640A3 (en) * | 2003-02-27 | 2004-11-17 | Voith Paper Patent GmbH | Headbox |
EP1897989A1 (en) | 2006-09-08 | 2008-03-12 | Voith Patent GmbH | Trailing element of a headbox of a machine for manufacturing a fibrous web, method for producing the trailing element and use of the trailing element |
Also Published As
Publication number | Publication date |
---|---|
JPS6146597B2 (en) | 1986-10-15 |
AR241606A1 (en) | 1992-09-30 |
KR850003742A (en) | 1985-06-26 |
ZA848555B (en) | 1985-06-26 |
DE147350T1 (en) | 1986-08-14 |
ES8507641A1 (en) | 1985-10-01 |
FI844059L (en) | 1985-05-26 |
IN162165B (en) | 1988-04-09 |
PH22238A (en) | 1988-07-01 |
KR860001627B1 (en) | 1986-10-14 |
BR8405925A (en) | 1985-09-10 |
NO844431L (en) | 1985-05-28 |
EP0147350B1 (en) | 1989-03-15 |
FI844059A0 (en) | 1984-10-16 |
MX161597A (en) | 1990-11-14 |
JPS60134093A (en) | 1985-07-17 |
AU570746B2 (en) | 1988-03-24 |
EP0147350A3 (en) | 1986-06-25 |
ES537930A0 (en) | 1985-10-01 |
FI81145B (en) | 1990-05-31 |
CA1230251A (en) | 1987-12-15 |
FI81145C (en) | 1990-09-10 |
DE3477215D1 (en) | 1989-04-20 |
AU3564284A (en) | 1985-05-30 |
NO162476B (en) | 1989-09-25 |
NO162476C (en) | 1990-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4617091A (en) | Headbox trailing element | |
US4566945A (en) | Headbox trailing element | |
EP0147350B1 (en) | Converflo trailing element | |
US3843470A (en) | Flexible trailing elements in a paper-making machine headbox having projections thereon extending into the slurry flow | |
GB1595560A (en) | Headbox structures | |
US5639352A (en) | Headbox lamellae and method for reducing turbulence thereabout | |
EP0853703B2 (en) | Method for controlling the anisotropy of a paper web | |
EP1451407B1 (en) | Method of forming a fibrous web and machine therefor | |
GB2099031A (en) | Headbox means for paper machines | |
CA2135163A1 (en) | Jet-speed control in a multi-layer headbox | |
US7166193B2 (en) | Method of ensuring flatness of a vane in a headbox by means of a mounting arrangement, headbox with such a mounting arrangement, a mounting arrangement and vane therefor | |
GB1584226A (en) | Headbox trailing elements | |
EP0939842B1 (en) | A multilayer headbox for a papermaking machine | |
US3939037A (en) | Headbox with flexible trailing elements | |
US5688374A (en) | Headbox and manifold system for producing a multi-ply paper web | |
JPH08413U (en) | Paper machine head box | |
US6146501A (en) | Cross-machine direction stiffened dividers for a papermaking headbox | |
KR100487056B1 (en) | A multilayer headbox for a papermaking machine | |
CN1009118B (en) | Headbox tratling element | |
GB2025479A (en) | Headbox for paper-making machines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LI NL SE |
|
ITCL | It: translation for ep claims filed |
Representative=s name: RICCARDI SERGIO & CO. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
TCNL | Nl: translation of patent claims filed | ||
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
EL | Fr: translation of claims filed | ||
DET | De: translation of patent claims | ||
17P | Request for examination filed |
Effective date: 19860731 |
|
17Q | First examination report despatched |
Effective date: 19871210 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3477215 Country of ref document: DE Date of ref document: 19890420 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 84630167.9 |
|
NLS | Nl: assignments of ep-patents |
Owner name: BELOIT TECHNOLOGIES, INC. |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: BELOIT CORPORATION TRANSFER- BELOIT TECHNOLOGIES I |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19971023 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19971029 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19971030 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 |
|
BERE | Be: lapsed |
Owner name: BELOIT TECHNOLOGIES INC. Effective date: 19981130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19990601 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20031029 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20031103 Year of fee payment: 20 Ref country code: DE Payment date: 20031103 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20031107 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20041108 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
EUG | Se: european patent has lapsed |