EP0144873A2 - Kühlsystem für indirekt gekühlte supraleitende Magnete - Google Patents

Kühlsystem für indirekt gekühlte supraleitende Magnete Download PDF

Info

Publication number
EP0144873A2
EP0144873A2 EP84114197A EP84114197A EP0144873A2 EP 0144873 A2 EP0144873 A2 EP 0144873A2 EP 84114197 A EP84114197 A EP 84114197A EP 84114197 A EP84114197 A EP 84114197A EP 0144873 A2 EP0144873 A2 EP 0144873A2
Authority
EP
European Patent Office
Prior art keywords
helium
cooling
storage vessel
cooling system
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84114197A
Other languages
English (en)
French (fr)
Other versions
EP0144873B1 (de
EP0144873A3 (en
Inventor
Cord-Henrich Dr. Dipl.-Phys. Dustmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Germany
Original Assignee
Brown Boveri und Cie AG Germany
BBC Brown Boveri AG Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6216165&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0144873(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Brown Boveri und Cie AG Germany, BBC Brown Boveri AG Germany filed Critical Brown Boveri und Cie AG Germany
Publication of EP0144873A2 publication Critical patent/EP0144873A2/de
Publication of EP0144873A3 publication Critical patent/EP0144873A3/de
Application granted granted Critical
Publication of EP0144873B1 publication Critical patent/EP0144873B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/888Refrigeration
    • Y10S505/892Magnetic device cooling

Definitions

  • the invention relates to a cooling system for indirectly cooled superconducting magnets with cooling channels through which liquid helium flows and which are in close thermal contact with the superconducting winding.
  • Indirectly cooled magnets have cooling coils through which liquid helium is pressed. This is no problem when using supercritical helium. However, a pump is required to push the liquid helium through the cooling coils. If the cooling coils are connected to a refrigeration system, the pump can be part of the refrigeration system. However, if the helium is removed from a storage vessel, a separate helium pump is required.
  • the object of the invention is to provide adespstem for indirectly cooled superconducting magnets, allows weleches Eipe convection and the input S-mentioned disadvantages are avoided.
  • a winding body for the superconducting winding has a lower supply channel and an upper collecting channel parallel to the horizontal magnetic axis and parallel cooling channels that connect the supply channel and the collecting channel with each other, and that the supply channel with the outflow of a compared to the winding body, the helium vessel is arranged in a higher position.
  • Flow line is connected, and the collecting duct is connected via a return line to a connecting piece of the helium vessel.
  • the liquid helium can flow through the outflow of the helium vessel into the lower feed channel and from there rises in parallel through the cooling channels into the upper collecting channel.
  • the helium which in the meantime has been heated and can be in the vapor phase, is passed into the return line, which directs the helium above the helium level back into the helium storage vessel. No pump is required for the helium circulation, it is done by convection.
  • the winding body can advantageously be produced by roller seam welding and inflating the cooling channels, care being taken to ensure that the curvature of the inflated cooling channels faces away from the winding he follows. This enables inexpensive production with high quality.
  • the winding body can be made of austenitic steel or aluminum, the latter material increasing the quench security according to the "quench bare" principle.
  • An advantageous embodiment of the invention provides that the end of the cold head of a mini-refrigerator, which works according to the Gifford-McMahon principle, for example, protrudes into the helium storage vessel.
  • the temperature of the cold head end is 4.2 K or below.
  • the end of the cold head protrudes into the gas space of the helium storage vessel and recondenses the helium gas flowing back through the return.
  • the invention provides in an expedient embodiment that the helium storage vessel has a connecting flange for a helium lifter, which can be arranged above the outflow.
  • the helium lifter is pushed through the connecting flange until it partially protrudes into the supply line and is screwed in.
  • the other end of the helium lifter protrudes into a helium can. So much helium is passed from the helium can into the helium storage container and the winding former until these have cooled and are filled to a certain height.
  • the helium storage vessel also contains a closable opening through which the still warm, gaseous helium can escape.
  • FIG. 1 shows a cylindrical winding body 10, in whose cooling surface cooling channels are embedded.
  • a feed channel 11 runs axially in the lower area of the winding body 10 and a collecting channel 12 runs axially in the upper area of the winding body 10.
  • Such a winding body 10 can be produced by roller seam welding and subsequent inflation of the cooling channels.
  • the lower feed channel 11 is connected to the bottom outlet 15 of a helium storage vessel 16 via a feed line 14.
  • the liquid helium can be conducted from the helium storage vessel 16 into the cooling channels 13 through these lines.
  • the heated helium (in the liquid or gaseous phase) is collected via the upper collecting channel 12 and reaches the upper region of the helium storage vessel 16 via the return 17.
  • the helium level 18 in the storage vessel 16 lies below the return inlet.
  • the end 20 of the cold head 22 has a sufficiently low temperature to condense the gaseous helium back.
  • the helium storage vessel 16 has a connecting flange 23 through which a helium lifter 24 is inserted.
  • the connecting flange 23 lies above the bottom outlet 15. For a first filling of the system, the helium lifter 24 is pushed into the feed line 14 and screwed.
  • FIG. 2 shows the cross section of a magnetic winding 25 with a cooling and vacuum system.
  • the magnet winding 25 is arranged concentrically around an examination opening 26 and consists of superconducting wire.
  • the superconducting winding 25 is applied to a winding body 10 which is designed according to FIG. 1.
  • the supply duct 11, the collecting duct 12 and two cooling ducts 13 can be seen in FIG.
  • Magnet winding 25 and coil carrier 10 are shielded on all sides by cold shields 27, 28.
  • the entire system is housed in a vacuum container consisting of an inner jacket 29 and an outer jacket 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

Es wird ein Kühlsystem für indirekt gekühlte supraleitende Magnete mit von flüssigem Helium durchflossenen Kühlkanälen (13), die in engem thermischem Kontakt mit der supraleitenden Wicklung (25) stehen, angegeben, durch welches wine Konvektionskühlung ohne Verwendung von Heliumpumpen ermöglicht wird. Hierfür wird ein Wickelkörper (10) für die Wicklung (25) derart ausgebildet, daß er einen unteren Zuleitungskanal (11) und einen oberen Sammelkanal (12) sowie parallel geschaltete Kühlkanäle (13), die den Zuleitungskanal (11) und den Sammelkanal (12) miteinander verbinden, zuweist. Der Zuleitungskanal (11) ist mit dem Bodenausfluß (15) eines gegenüber dem Wickelkörper (10) erhöht angeordneten Heliumvorratsgefäßes (16) über eine Vorlaufleitung (14) verbunden. Der Sammelkanal (12) ist über einen Rücklauf (17) mit einem Anschlußstutzen (19) des Heliumvorratsgefäßes (16) verbunden. Der Kaltkopf (22) eines Minirefrigerators kondensiert das gasförmige Helium zurück, so daß sich ein laufendes Nachfüllen des Heliumvorratsgefäßes (16) erübrigt.

Description

  • Die Erfindung betrifft ein Kühlsystem für indirekt gekühlte supraleitende Magnete mit von flüssigem Helium durchflossenen Kühlkanälen, die in engem thermischen Kontakt mit der supraleitenden Wicklung stehen.
  • Indirekt gekühlte Magnete haben Kühlschlangen, durch die flüssiges Helium hindurchgedrückt wird. Dies .ist bei Verwendung von überkritiechem Helium problemlos. Es ist jedoch eine Pumpe erforderlich, die das flüssige Helium durch die Kühlschlangen drückt. Sind die Kühlschlangen an eine Kälteanlagen angeschlossen, so kann die Pumpe Bestandteil der Kälteanlage sein. Wird jedoch das Helium einem Vorratsgefäß entnommen, so ist eine separate Heliumpumpe erforderlich.
  • Soll die Verwendung einer Heliumpumpe vermieden werden und/oder soll mit zweiphasigem Helium gekühlt werden, so besteht die Gefahr von Instabilitäten durch den sogenannten Gartenschlaucheffekt, wenn die Kühlkanäle in vertikaliegenden Schlangen angeordnet sind, wie es bei Magneten mit horizontaler Magnetfeldachse häufig der Fall ist. Der Gartenschlaucheffekt macht eine Kühlung mit zweiphasigem Helium mit umlaufenden Kühlkanälen bei Verwendung eines Heliumvorratsgefäßes und Minirefrigerators, der keine Expansionsmaschine erfordert, unmög- lich.
  • Aufgabe der Erfindung ist es, ein Kühlspstem für indirekt gekühlte supraleitende Magnete anzugeben, weleches eipe Konvektionskühlung ermöglicht und die eingangs genannten Nachteile vermeidet.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein Wickelkörper für die supraleitende Wicklung einen unteren Zuleitungskanal und einen oberen Sammelkanal parallel zur horizontalen Magnetachse sowie parallel geschaltete Kühlkanäle, die den Zuleitungskanal und den Sammelkanal miteinander.verbinden, aufweist, und daß der Zuleitungskanal mit dem Ausfluß eines gegenüber dem Wickelkörper erhöht angeordneten Heliumgefäßes über eine . Vorlaufleitung verbunden ist, und der Sammelkanal über einen Rücklauf mit einem Anschlußstutzen.des Heliumgefäßes verbunden ist. Das flüssige Helium kann durch den Ausfluß des Heliumgefäßes in den unteren Zuleitungskanal fließen und steigt von hier parallel durch die Kühlkanäle in den oberen Sammelkanal. Vom Sammelkanal wird das Helium, das inzwischen erwärmt und in dampfförmiger Phase vorliegen kann, in den Rücklauf geleitet, welcher das Helium oberhalb des Heliumspiegels in das Heliumvorratsgefäß zurückleitet. Für die Heliumumwälzung ist keine Pumpe erforderlich, sie erfolgt durch Konvektion.
  • Der Wickelkörper läßt sich vorteilhaft durch Rollnahtschweißen und Aufblasen der Kühlkanäle fertigen, wobei dafür Sorge getragen Wird, daß die Wölbung der aufgeblasenen Kühlkanäle zu der Wicklung abgewandten.Seite erfolgt. Dies ermöglicht eine preisgünstige Herstellung bei hoher Qualität.
  • Der Wickelkörper kann aus austenitischem Stahl oder Aluminium gefertigt werden, wobei letzteres Material die Quenchsicherheit nach dem "quench bare"-Prinzip erhöht.
  • Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß in das Heliumvorratsgefäß das Ende des Kaltkopfes eines Minirefrigerators, der z.B.nach dem Gifford-McMahon-Prinzip arbeitet, ragt. Die Temperatur des Kaltkopfendes liegt bei 4,2 K oder darunter. Das Ende des Kaltkopfes ragt in den-Gasraum des Heliumvorratsgefäßes und rekondensiert das durch den Rücklauf zurückströmende Heliumgas.
  • Für das erste Abkühlen des Wickelkörpers ist in der Regel die Verwendung eines Minirefrigerators ungeeignet. Hierfür sieht die Erfindung in einer zweckmäßigen Ausgestaltung vor, daß das Heliumvorratsgefäß einen Anschlußflansch für einen Heliumheber aufweist, der über dem Ausfluß anordenbar ist. Für das Auffüllen des Systems mit flüssigem Helium wird der Heliumheber durch den Anschlußflansch soweit hindurchgeschoben, daß er teilweise in die Vorlaufleitung hineinragt und eingeschraubt wird. Das andere Ende des Heliumhebers ragt in eine Heliumkanne. Es wird soviel Helium aus der Heliumkanne in das Heliumvorratsgefäß und den Wickelkörper geleitet, bis diese abgekühlt und bis zu einer bestimmten Höhe gefüllt sind. Das Heliumvorratsgefäß enthält ebenfalls eine verschließbare Öffnung, durch die das noch warme, gasförmige Helium austreten kann.
  • Anhand der Zeichnung, in der ein Ausführungsbeispiel der Erfindung gezeigt ist, sollen die Erfindung sowie weitere vorteilhafte Ausgestaltungen und Weiterbildungen näher erläutert werden.
  • Es zeigt:
    • Fig. 1 eine schematische Darstellung des erfindungsgemäßen Kühlsystems und
    • Fig. 2 den Querschnitt einer in einem Kryostaten befindlichen supraleitenden Spule.
  • In der Figur 1 ist ein zylindrischer Wickelkörper 10 dargestellt, in dess.en Zylinderfläche Kühlkanäle eingebettet sind. Im unteren Bereich des Wickelkörpers 10 verläuft axial ein Zuleitungskanal 11 und im oberen-Bereich des Wickelkörpers 10 verläuft axial ein Sammelkanal 12. Der Zuleitungskanal 11 und der Sammelkanal 12 sind durch mehrere, parallel geführte in die Innenseite des Wiokelkörpers 10 eingebettete Kühlkanäle 13 verbunden.
  • Die Herstellung eines derartigen Wickelkörpers 10 kann durch Rollnahtschweißen und anschließendes Aufblasen der Kühlkanäle erfolgen.
  • Der untere Zuleitungskanal 11 ist über eine Vorlaufleitung 14 mit dem Bodenausfluß 15 eines Heliumvorratsgefäßes 16 verbunden. Durch diese Leitungen kann das flüssige Helium aus dem Heliumvorratsgefäß 16 in die Kühlkanäle 13 geleitet werden. Über den oberen Sammelkanal 12 wird das erwärmte Helium (in flüssiger oder gasförmiger Phase) gesammelt und gelangt über den Rücklauf 17 in den oberen Bereich des Heliumvorratsgefäßes 16. Der Heliumspiegel 18 im Vorratsgefäß 16 liegt unterhalb des Rücklaufeintrittes. In den Gasraum des Heliumvorratsgefäßes 16 ragt das Ende 20 des mit einem Kompressor 21 verbundenen Kaltkopfes 22 eines Minirefrigerators. Das Ende 20 des Kaltkopfes 22 weist eine hinreichend niedrige Temperatur auf um das gasförmige Helium zurückzukondensieren.
  • Ferner weist das Heliumvorratsgefäß 16 einen Anschlußflansch 23 auf, durch den ein Heliumheber 24 gesteckt ist. Der Anschlußflansch 23 liegt über dem Bodenausfluß 15. Für eine erste Füllung des Systems wird der Heliumheber 24 in die Vorlaufleitung 14 eingeschoben und verschraubt.
  • Der Figur 2 ist der Querschnitt einer Magnetwicklung 25 mit Kühl- und Vakuumsystem entnehmbar. Die Magnetwicklung 25 ist konzentrisch um eine Untersuchungsöffnung 26 angeordnet und besteht aus supraleitendem Draht. Die supraleitende Wicklung 25 ist auf einen Wickelkörper 10 aufgebracht, der gemäß Fig. 1 ausgebildet ist. Es sind in Figur 2 der Zuleitungskanal 11, der Sammelkanal 12 sowie zwei Kühlkanäle 13 erkennbar. Magnetwicklung 25 und Spulenträger 10 werden allseits durch Kälteschilde 27,28 abgeschirmt. Das gesamte System ist in einem Vakuumbehälter, bestehend aus innerem Mantel 29 und äußerem Mantel 30 untergebracht.

Claims (5)

1. Kühlsystem für indirekt gekühlte supraleitende Magnete mit von flüssigem Helium durchflossenen Kühlkanälen, die in engem thermischen Kontakt mit der supraleitenden Wicklung (25) stehen, dadurch gekennzeichnet, daß ein Wickelkörper (10) einen unteren Zuleitungskanal (11) und einen oberen Sammelkanal (12) sowie parallel geschaltete Kühlkanäle (13), die den Zuleitungskanal (11) und den Sammelkanal (12) miteinander verbinden, aufweist und daß der Zuleitungskanal (11) mit dem Ausfluß (15) eines gegenüber dem Wickelkörper (10) erhöht angeordneten Heliumgefäßes (16) über eine Vorlaufleitung (14) verbunden ist und der Sammelkanal (12) über einen Rücklauf (17) mit einem Anschlußstutzen (19) des Heliumvorratsgefäßes (16) verbunden ist.
2. Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, daß der Wickelkörper (10) durch Rollnahtschweißen und Aufblasen der Kühlkanäle (11,12,13) gefertigt ist.
3. Kühlsystem nach Anspruch 1. oder 2, dadurch gekennzeichnet, daß in das Heliumvorratsgefäß ( 16) das Ende (20) des Kaltkopfes (22) eines Minirefrigerators ragt.
4. Kühlsystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Heliumvorratsgefäß (16) einen Anschlußflansch (23) für einen Heliumheber (24) aufweisen, der sich über dem Bodenausfluß (15) befindet, wodurch das Einführen des Heliumhebers (24) in die Vorlaufleitung (14) ermöglicht wird.
5. Kühlsystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Wickelkörper (10) mit integrierten Kühlkanälen aus Reinstaluminium ist und damit als queneh bare zur Quenchsicherheit dient.
EP84114197A 1983-12-06 1984-11-23 Kühlsystem für indirekt gekühlte supraleitende Magnete Expired EP0144873B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833344046 DE3344046A1 (de) 1983-12-06 1983-12-06 Kuehlsystem fuer indirekt gekuehlte supraleitende magnete
DE3344046 1983-12-06

Publications (3)

Publication Number Publication Date
EP0144873A2 true EP0144873A2 (de) 1985-06-19
EP0144873A3 EP0144873A3 (en) 1986-02-12
EP0144873B1 EP0144873B1 (de) 1988-01-27

Family

ID=6216165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84114197A Expired EP0144873B1 (de) 1983-12-06 1984-11-23 Kühlsystem für indirekt gekühlte supraleitende Magnete

Country Status (3)

Country Link
US (1) US4578962A (de)
EP (1) EP0144873B1 (de)
DE (2) DE3344046A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0175495A2 (de) * 1984-09-17 1986-03-26 Kabushiki Kaisha Toshiba Supraleitender Apparat
EP2390884A3 (de) * 2010-05-25 2012-08-29 General Electric Company Supraleitender Magnetisierer
US9623215B2 (en) 2012-06-01 2017-04-18 Surmodics, Inc. Apparatus and methods for coating medical devices
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
US11090468B2 (en) 2012-10-25 2021-08-17 Surmodics, Inc. Apparatus and methods for coating medical devices
US11628466B2 (en) 2018-11-29 2023-04-18 Surmodics, Inc. Apparatus and methods for coating medical devices
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2589646B1 (fr) * 1985-10-30 1987-12-11 Alsthom Machine synchrone a enroulements stator et rotor supraconducteurs
US4924198A (en) * 1988-07-05 1990-05-08 General Electric Company Superconductive magnetic resonance magnet without cryogens
US4969064A (en) * 1989-02-17 1990-11-06 Albert Shadowitz Apparatus with superconductors for producing intense magnetic fields
JPH0442977A (ja) * 1990-06-07 1992-02-13 Toshiba Corp 超電導磁石装置
US5402648A (en) * 1993-07-01 1995-04-04 Apd Cryogenics Inc. Sealed dewar with separate circulation loop for external cooling at constant pressure
US5461873A (en) * 1993-09-23 1995-10-31 Apd Cryogenics Inc. Means and apparatus for convectively cooling a superconducting magnet
US5613367A (en) * 1995-12-28 1997-03-25 General Electric Company Cryogen recondensing superconducting magnet
EP1115997A2 (de) * 1998-09-14 2001-07-18 Massachusetts Institute Of Technology Supraleitende vorrichtungen und kühlverfahren
DE10020264C1 (de) * 2000-04-25 2001-10-11 Siemens Ag Elektrische Spule
US6668562B1 (en) * 2000-09-26 2003-12-30 Robert A. Shatten System and method for cryogenic cooling using liquefied natural gas
US7018249B2 (en) * 2001-11-29 2006-03-28 Siemens Aktiengesellschaft Boat propulsion system
DE10317967A1 (de) * 2002-06-06 2004-10-28 Siemens Ag Elektrische Maschine mit Statorkühleinrichtung
US6679066B1 (en) * 2002-08-16 2004-01-20 Sumitomo Heavy Industries, Ltd. Cryogenic cooling system for superconductive electric machines
JP4277312B2 (ja) * 2003-11-25 2009-06-10 ツインバード工業株式会社 サーモサイフォン
AU2003300152A1 (en) * 2003-12-29 2005-08-03 Supercool Llc System and method for cryogenic cooling using liquefied natural gas
GB0426838D0 (en) * 2004-12-07 2005-01-12 Oxford Instr Superconductivity Magnetic apparatus and method
US7994664B2 (en) * 2004-12-10 2011-08-09 General Electric Company System and method for cooling a superconducting rotary machine
DE102004061869B4 (de) * 2004-12-22 2008-06-05 Siemens Ag Einrichtung der Supraleitungstechnik und Magnetresonanzgerät
CN101361156B (zh) 2005-11-18 2012-12-12 梅维昂医疗系统股份有限公司 用于实施放射治疗的设备
US7626477B2 (en) * 2005-11-28 2009-12-01 General Electric Company Cold mass cryogenic cooling circuit inlet path avoidance of direct conductive thermal engagement with substantially conductive coupler for superconducting magnet
DE102006046688B3 (de) * 2006-09-29 2008-01-24 Siemens Ag Kälteanlage mit einem warmen und einem kalten Verbindungselement und einem mit den Verbindungselementen verbundenen Wärmerohr
JP2008267496A (ja) * 2007-04-20 2008-11-06 Taiyo Nippon Sanso Corp 水素ガス冷却装置
US20090108969A1 (en) * 2007-10-31 2009-04-30 Los Alamos National Security Apparatus and method for transcranial and nerve magnetic stimulation
US8018102B2 (en) * 2008-08-11 2011-09-13 General Electric Company Shielding of superconducting field coil in homopolar inductor alternator
DE102009022074B4 (de) * 2009-05-20 2011-01-27 Siemens Aktiengesellschaft Magnetfelderzeugungsvorrichtung und zugehöriges Herstellungsverfahren
US8676282B2 (en) * 2010-10-29 2014-03-18 General Electric Company Superconducting magnet coil support with cooling and method for coil-cooling
KR101367142B1 (ko) 2011-10-12 2014-02-26 삼성전자주식회사 초전도 전자석 장치
US9958519B2 (en) * 2011-12-22 2018-05-01 General Electric Company Thermosiphon cooling for a magnet imaging system
US10224799B2 (en) * 2012-10-08 2019-03-05 General Electric Company Cooling assembly for electrical machines and methods of assembling the same
US9283350B2 (en) 2012-12-07 2016-03-15 Surmodics, Inc. Coating apparatus and methods
US9514916B2 (en) * 2013-03-15 2016-12-06 Varian Semiconductor Equipment Associates, Inc. Wafer platen thermosyphon cooling system
WO2014155476A1 (ja) * 2013-03-25 2014-10-02 株式会社日立製作所 超電導磁石装置
GB2529897B (en) 2014-09-08 2018-04-25 Siemens Healthcare Ltd Arrangement for cryogenic cooling
GB2537888A (en) * 2015-04-30 2016-11-02 Siemens Healthcare Ltd Cooling arrangement for superconducting magnet coils
CN106373699B (zh) * 2016-11-22 2018-05-04 宁波健信核磁技术有限公司 一种核磁共振成像装置及其线圈骨架
JP6626816B2 (ja) * 2016-11-24 2019-12-25 ジャパンスーパーコンダクタテクノロジー株式会社 超電導コイルの予冷方法及び超電導マグネット装置
CN111986869B (zh) * 2020-08-20 2022-03-01 合肥中科离子医学技术装备有限公司 一种超导质子回旋加速器的超导线圈骨架结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1912840A1 (de) * 1968-03-15 1969-10-02 Commissariat Energie Atomique Supraleiterkreis
DE2515873B2 (de) * 1974-04-24 1981-03-26 ASEA AB, Västerås Direkt gekühlte Bandlagenwicklung für Transformatoren
US4277769A (en) * 1979-01-15 1981-07-07 Siemens Aktiengesellschaft Arrangement for cooling a superconduction magnet coil winding

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897382A (en) * 1957-02-04 1959-07-28 British Thomson Houston Co Ltd Dynamo-electric machines
US3074401A (en) * 1959-03-12 1963-01-22 Friedman Daniel Apparatus for controlling body temperature
US3122668A (en) * 1959-07-31 1964-02-25 Bbc Brown Boveri & Cie Arrangement for indicating leakage between cooling systems of turbogenerators
US3238400A (en) * 1963-02-04 1966-03-01 Task Corp Gas input assisted evacuation of rotor-stator gaps
US3241329A (en) * 1963-09-06 1966-03-22 Chemetron Corp Liquefied gas refrigeration system
US3363207A (en) * 1966-09-19 1968-01-09 Atomic Energy Commission Usa Combined insulating and cryogen circulating means for a superconductive solenoid
DE2206841A1 (de) * 1971-02-15 1972-09-21 The British Oxygen Co Ltd, Lon don Flüssigkeitsbehälter
JPS607396B2 (ja) * 1976-05-31 1985-02-23 株式会社東芝 超電導装置
US4277949A (en) * 1979-06-22 1981-07-14 Air Products And Chemicals, Inc. Cryostat with serviceable refrigerator
US4427907A (en) * 1981-11-23 1984-01-24 Electric Power Research Institute, Inc. Spiral pancake armature winding module for a dynamoelectric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1912840A1 (de) * 1968-03-15 1969-10-02 Commissariat Energie Atomique Supraleiterkreis
DE2515873B2 (de) * 1974-04-24 1981-03-26 ASEA AB, Västerås Direkt gekühlte Bandlagenwicklung für Transformatoren
US4277769A (en) * 1979-01-15 1981-07-07 Siemens Aktiengesellschaft Arrangement for cooling a superconduction magnet coil winding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0175495A2 (de) * 1984-09-17 1986-03-26 Kabushiki Kaisha Toshiba Supraleitender Apparat
EP0175495A3 (en) * 1984-09-17 1987-07-01 Kabushiki Kaisha Toshiba Superconducting apparatus
US4726199A (en) * 1984-09-17 1988-02-23 Kabushiki Kaisha Toshiba Superconducting apparatus
EP2390884A3 (de) * 2010-05-25 2012-08-29 General Electric Company Supraleitender Magnetisierer
US8710944B2 (en) 2010-05-25 2014-04-29 General Electric Company Superconducting magnetizer
US9623215B2 (en) 2012-06-01 2017-04-18 Surmodics, Inc. Apparatus and methods for coating medical devices
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
US10099041B2 (en) 2012-06-01 2018-10-16 Surmodics, Inc. Apparatus and methods for coating medical devices
US10507309B2 (en) 2012-06-01 2019-12-17 Surmodics, Inc. Apparatus and methods for coating medical devices
US11090468B2 (en) 2012-10-25 2021-08-17 Surmodics, Inc. Apparatus and methods for coating medical devices
US11628466B2 (en) 2018-11-29 2023-04-18 Surmodics, Inc. Apparatus and methods for coating medical devices
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices

Also Published As

Publication number Publication date
DE3344046A1 (de) 1985-06-20
EP0144873B1 (de) 1988-01-27
US4578962A (en) 1986-04-01
DE3469095D1 (en) 1988-03-03
DE3344046C2 (de) 1987-06-25
EP0144873A3 (en) 1986-02-12

Similar Documents

Publication Publication Date Title
EP0144873A2 (de) Kühlsystem für indirekt gekühlte supraleitende Magnete
DE102004060832B3 (de) NMR-Spektrometer mit gemeinsamen Refrigerator zum Kühlen von NMR-Probenkopf und Kryostat
DE19914778A1 (de) Supraleitende Magnetvorrichtung
EP1628109A3 (de) Kryostatanordnung
DE4129522A1 (de) Kaelte-regler
DE3916212C2 (de)
DE19946371C1 (de) Verbindungskonzept zwischen Kryokühlsystemen und gekühlten NMR-Probenköpfen in einer NMR-Meßvorrichtung mit Kühlanlage und Transferleitung
EP3382411B1 (de) Kryostatanordnung mit einem halsrohr mit einer tragenden struktur und ein die tragende struktur umgebendes aussenrohr zur verringerung des kryogenverbrauchs
DE2308301A1 (de) Verfahren und vorrichtung zur kuehlung eines kuehlobjektes
DE69933982T2 (de) Supraleitender Kryostat-Magnet mit Kältemittel-Durchhalte-Reserve
EP0212093B1 (de) Verfahren zum Kühlen eines Objektes mit Hilfe von suprafluidem Helium (HeII) und Einrichtung zur Durchführung des Verfahrens
DE102010028750A1 (de) Verlustarme Kryostatenanordnung
WO2019110146A1 (de) Transportbehälter mit kühlbarem, thermischen schild
DE4041170C1 (en) Double-walled insulated container - incorporates metal woven band with shield made of aluminium
EP0520937B1 (de) Verfahren und Vorrichtung zum Transport und Verteilen von Helium
DE19645492C1 (de) System und Verfahren zum Aufrechterhalten oder Erhöhen des Drucks in einem Kryotank
DE1501283B1 (de) Vorrichtung zur Kuehlung von Objekten
EP0849550B1 (de) Verfahren zur Kühlung eines Verbrauchers auf Tieftemperatur und Flüssiggas-Kühlungssystem zur Durchführung des Verfahrens
DE3404600A1 (de) Geraet zur erzeugung von bildern und ortsausgeloesten spektren eines untersuchungsobjektes mit magnetischer kernresonanz
DE2054054B2 (de) Vorrichtung zur Zuführung von Kältemittel in Kryostaten
DE1814783A1 (de) Kryostat mit einer in einem Behaelter fuer ein tiefsiedendes fluessiges Kuehlmittel angeordneten Supraleitungsspule
EP0355519A2 (de) Verfahren und Vorrichtung zur Kühlung eines mit Flüssigkeit gefüllten Behälters
DE19850911A1 (de) Flüssiggas-Kühlungssystem zur Kühlung eines Verbrauchers auf Tieftemperatur
DE19909997C1 (de) Behälter zur Speicherung kryogener Medien
DE267509C (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19860326

17Q First examination report despatched

Effective date: 19870518

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REF Corresponds to:

Ref document number: 3469095

Country of ref document: DE

Date of ref document: 19880303

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881123

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19881007

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19891223

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state