EP0142663B1 - Defrost control method and device for heat pumps - Google Patents

Defrost control method and device for heat pumps Download PDF

Info

Publication number
EP0142663B1
EP0142663B1 EP84111031A EP84111031A EP0142663B1 EP 0142663 B1 EP0142663 B1 EP 0142663B1 EP 84111031 A EP84111031 A EP 84111031A EP 84111031 A EP84111031 A EP 84111031A EP 0142663 B1 EP0142663 B1 EP 0142663B1
Authority
EP
European Patent Office
Prior art keywords
signal
temperature
temperature difference
supplied
instruction signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84111031A
Other languages
German (de)
French (fr)
Other versions
EP0142663A3 (en
EP0142663A2 (en
Inventor
Karl Ing. grad. Mötz
Friedrich Jobst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MT Aerospace AG
Original Assignee
MAN Technologie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Technologie AG filed Critical MAN Technologie AG
Priority to AT84111031T priority Critical patent/ATE38555T1/en
Publication of EP0142663A2 publication Critical patent/EP0142663A2/en
Publication of EP0142663A3 publication Critical patent/EP0142663A3/en
Application granted granted Critical
Publication of EP0142663B1 publication Critical patent/EP0142663B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits

Definitions

  • the invention relates to a method for defrosting heat pumps with features according to the preamble of claim 1.
  • the invention is based on a method for defrosting a heat pump, which is known from FR-A-2 362 350.
  • a defrosting process is controlled as a function of the temperature difference between the evaporator temperature and the ambient or supply air temperature of the evaporator.
  • the continuously ascertained actual value signals of the ambient or supply air temperature and the evaporator temperature are fed to a difference former which determines the relevant temperature difference.
  • this actual temperature difference is compared with a target temperature difference value, which is changed as a function of the ambient or supply air temperature. On the basis of this comparison, a defrost signal is emitted when the actual temperature difference exceeds the target temperature difference.
  • the solution according to the invention is based on the knowledge that icing from the coldest outside air temperature to temperatures above 0 ° C. can occur in heat pumps operating with ambient air. Due to the approximately constant or decreasing volume flow of the refrigerant flowing through the evaporator when the outside air temperature falls, a comparatively high cooling capacity occurs at a comparatively high outside or ambient air temperature or evaporator temperature due to the vapor density, while the when the outside or ambient air temperature falls or is comparatively low, the Cooling capacity decreases sharply. For a given evaporator, therefore, the temperature difference between the outside or supply air temperature and the evaporator temperature is significantly higher at high outside or ambient air temperatures, for example 2 to 3 times, than at low temperatures.
  • the target temperature difference is varied according to the ambient temperature and thus adapted to the evaporator behavior. This creates a reliable control in which unnecessary defrosting is prevented and, on the other hand, the defrosting is initiated in good time to ensure the economical operation of the heat pump.
  • the setpoint temperature difference is preferably changed continuously as a function of the outside temperature or the ambient temperature of the evaporator. However, it is also possible to use a stepwise regulation of the target temperature difference.
  • the initiation of a defrosting process at evaporator temperatures above 0 ° C is blocked in the inventive method. This reliably prevents unnecessary defrosting if, at such evaporator temperatures, the actual temperature difference exceeds the setpoint value calculated from the current outside or ambient air temperature.
  • defrosting processes are carried out quickly and the switch-off pauses of the heat pump are thus kept small.
  • selectable different defrost signals are generated according to a predetermined criterion, with which different defrosting processes are initiated.
  • These defrost signals are from the outside or Supply air temperature dependent and generated in such a way that in an outdoor or Supply air temperature above about 3-5 ° C, a normal defrosting process is initiated, with a defrost by ambient air, whereby only the refrigerant circuit of the heat pump is either switched off or diverted and the evaporator fans continue to operate.
  • supply air temperatures below 5 ° C generate a defrost signal that starts an accelerated defrosting process in which hot gas is directed to the evaporators.
  • Fig. 1 is a compression heat pump System 10 shown, which consists of an evaporator 11 for receiving the energy Q o from the ambient air 12 and a compressor 13 which compresses the refrigerant vapor from the evaporator 11 and feeds a condenser 14 to which a consumer 15 is connected.
  • evaporator 11 for receiving the energy Q o from the ambient air 12
  • compressor 13 which compresses the refrigerant vapor from the evaporator 11 and feeds a condenser 14 to which a consumer 15 is connected.
  • a defrost controller 16 is provided in the heat pump system 10 according to FIG. 1, which receives the signals from an evaporator temperature sensor 17 and an ambient air temperature sensor 18 and outputs a signal to an actuator 19 when defrosting is required. With the actuator 19, the compressor 13 is switched off and thus the defrosting process is initiated.
  • the defrosting process can also be initiated in other ways, such as. B. by reversing or redirecting the refrigerant flow.
  • a hysteresis comparator 21 the actual temperature difference signal ⁇ T thus formed is compared with a target temperature difference signal ⁇ T s , which is generated by a setpoint generator 22 as a function of the ambient temperature. If the measured temperature difference .DELTA.T is higher than the correspondingly calculated target value .DELTA.T s , then the comparator 21 outputs a signal 23 with which the actuator 19 is activated to initiate the defrosting process. When the defrosting process continues, the defrosting process ends when the temperature difference ⁇ T has decreased accordingly.
  • the temperature difference ⁇ T increases by a value a, which also increases approximately linearly with the ambient temperature T a .
  • a linear change in the target value T a with the outside temperature T a can thus be provided, which is shifted by a temperature difference value a with respect to the straight line 31 and may have a greater increase.
  • This straight line is shown at 32 in FIG. 2.
  • FIG. 3 shows a block diagram of a defrost controller 40 with which the method according to the invention can be carried out.
  • Defrost regulator 40 is fed by a direct current source 41, the output voltage U r of which is stabilized and filtered in a reference voltage generator 42.
  • Defrost controller 40 is also connected to ambient air temperature sensor 18 and evaporator temperature sensor 17.
  • the sensors 17 and 18 are fed by a voltage source 47, which transforms the reference voltage U r into a predetermined sensor voltage U S.
  • the temperature signals 43 and 45 generated by the sensors 17, 18 are adapted and standardized to the voltage level of the circuit in amplifiers 50 and 51, respectively.
  • the amplified voltage signals 52 and 53 are processed to form four command signals 54, 55, 56, 57 in the defrost controller 40.
  • the setpoint temperature difference ⁇ T s is generated by a function generator 62, specifically from the current ambient air temperature signal 52 and an externally adjustable voltage value 63 from a potentiometer 64, which corresponds to the temperature difference adapted for the respective application.
  • the setpoint temperature difference ⁇ T s is formed in a first approximation as a linear function according to curve 32 in FIG. 2.
  • the slope K of this function is variable here.
  • the command signal 54 generated in this way gives the commands “switch on defrost process” or “end defrost process ” .
  • the switching process for a defrosting process is triggered by means of two logic AND gates 65 and 66 as a function of further signals, namely the command signals 55, 56 and 57.
  • the command signals 55 indicate whether the evaporator temperature is greater or less than 0 ° C., and they are generated by comparing the evaporator temperature signal 53 with a voltage value U ° corresponding to 0 ° C. in a comparator 71, which is also subject to hysteresis.
  • the command signals 56 and 57 are outside temperature-dependent signals which are generated by comparing the ambient air temperature signal 52 with a voltage U k associated with a corresponding temperature in a third, hysteresis-based comparator 72, the output signal of which forms signal 57 on the one hand and a non-signal on the other Member 73 supplied, there is reversed and forms the signal 56 starting from the latter.
  • Different defrosting processes can be initiated with these outside temperature-dependent command signals 56 and 57, which are each input to one of the logic AND links 65 and 66, respectively.
  • the outside temperature T a and the evaporator temperature T k are measured continuously and the setpoint T s is calculated continuously.
  • the comparator 61 If the temperature difference AT between the measured values exceeds the target value .DELTA.T s , the comparator 61 outputs the defrost signal 54, which is input into both logic AND operations 65 and 66. However, the logic AND link 65 will only output a switching signal 74 if it simultaneously receives the signal 55 for Tk ⁇ 0 ° C. and the signal 56 for T a ⁇ T uk (for example T a less than 5 ° C.). As a result, a first switching process is carried out, for. B. Switching off the heat pump operation and switching on the hot gas defrost.
  • the second logic AND link 66 will output a switching signal 75 with which, for example, only the heat pump operation is switched off.

Abstract

1. A defrosting control method for heat pumps, a defrosting operation being controlled in dependence upon the temperature difference between the evaporator temperature and the ambient or supply air temperature of the evaporator, the actual temperature difference (DELTA T) being compared with a set-value temperature difference (DELTA Tm ) which varies in dependence upon the ambient or supply air temperature (Tm ), a defrosting signal being delivered on the basis of such comparison when the actual temperature difference exceeds the set-value temperature difference, characterised in that the continuously detected actual value signals of the ambient or supply air temperature (Tm ) and the evaporator temperature (Tk ) are supplied to a subtractor (60) determining the temperature difference DELTA T = Tm -Tk , the actual value signal (Tm ) is also supplied to a function former (62) which forms the set-value temperature difference (DELTA Tm ) from the actual-value signal (Tm ) and an adjusted temperature difference signal (Uv ), the actual-temperature difference signal (DELTA T) output by the subtractor (60) and the set-value temperature difference signal (DELTA Tm ) output by the function former (62) are supplied to a hysteretic comparator (61) which when DELTA T > DELTA Tm produces an output signal transmitted as first instruction signal (54) to a facility (65, 66) for triggering different defrosting signals, the actual value signal (Tm ) is also supplied to a hysteretic comparator (72) and compared therein with a signal (Uk ) corresponding to a fixed temperature above 0 degree C, more particularly 5 degrees C, and an output signal supplied as second instruction signal (56, 57 respectively) to the facility (65, 66) is produced, the actual value signal (Tk ) is supplied to a hysteretic comparator (71) and compared therein with a signal (Uo ) corresponding to a temperature of 0 degree C, and only when (Tk ) is below 0 degree C is an output signal produced which is supplied as third instruction signal (55) to the facility (65, 66) and when the first instruction signal (54) and the third instruction signal (55), the latter signalling a temperature Tk < 0 degree C, are present, the facility (65, 66) : a) if the second instruction signal (56, 57 respectively) signals a temperature Tm < Tuk , triggers a switching process whereby the heat pump drive is stopped and accelerated defrosting with heating gas is started or b) if the second instruction signal (56, 57 respectively) signals a temperature Tm > Tuk triggers a switching process whereby the heat pump drive is stopped and a normal defrosting process started.

Description

Die Erfindung betrifft ein Verfahren zur Abtauregelung von Wärmepumpen mit Merkmalen entsprechend dem Oberbegriff des Anspruchs 1.The invention relates to a method for defrosting heat pumps with features according to the preamble of claim 1.

Es ist bekannt, daß bei einer mit Umgebungsluft als Energiequelle arbeitenden Wärmepumpe der Wasseranteil der Luft auf der Verdampferoberfläche kondensiert und gefriert, wenn die Verdampfertemperatur unter 0 °C liegt. Es ist deshalb erforderlich, diese Vereisung zu überwachen und nötigenfalls Abtaumaßnahmen einzuleiten. Hierzu sind bereits verschiedene Verfahrensweisen vorgeschlagen worden.It is known that in a heat pump working with ambient air as an energy source, the water portion of the air on the evaporator surface condenses and freezes when the evaporator temperature is below 0 ° C. It is therefore necessary to monitor this icing and to initiate defrosting if necessary. Various procedures have already been proposed for this.

Die Erfindung geht aus von einem Verfahren zur Abtauregelung einer Wärmepumpe, das aus der FR-A-2 362 350 bekannt ist. Bei diesem Verfahren wird ein Abtauvorgang in Abhängigkeit von der Temperaturdifferenz zwischen Verdampfertemperatur und Umgebung- bzw. Zulufttemperatur des Verdampfers gesteuert. Ferner werden die fortlaufend ermittelten Istwert-Signale der Umgebungs- bzw. Zulufttemperatur und der Verdampfertemperatur einem die diesbezügliche Temperaturdifferenz ermittelnden Differenzbildner zugeführt. Außerdem wird diese Ist-Temperaturdifferenz mit einem Soll-Temperaturdifferenzwert, der in Abhängigkeit von der Umgebungs- bzw. Zulufttemperatur verändert wird, verglichen. Aufgrund dieses Vergleiches wird dann ein Abtausignal abgegeben, wenn die Ist-Temperaturdifferenz die Soll-Temperaturdifferenz übersteigt. Aufgrund dieses Abtausignales wird ein Abtauprozeß in Gang gesetzt, der in allen Fällen gleich ist. Dies kann dazu führen, daß der Abtauprozeß zu lange dauert, so daß sich unerwünscht lange Abschaltpausen der Wärmepumpe ergeben. Außerdem kann mit dieser bekannten Regelung auch nicht ein an sich unnötiges Abtauen verhindert werden.The invention is based on a method for defrosting a heat pump, which is known from FR-A-2 362 350. In this method, a defrosting process is controlled as a function of the temperature difference between the evaporator temperature and the ambient or supply air temperature of the evaporator. Furthermore, the continuously ascertained actual value signals of the ambient or supply air temperature and the evaporator temperature are fed to a difference former which determines the relevant temperature difference. In addition, this actual temperature difference is compared with a target temperature difference value, which is changed as a function of the ambient or supply air temperature. On the basis of this comparison, a defrost signal is emitted when the actual temperature difference exceeds the target temperature difference. Because of this defrost signal, a defrost process is started which is the same in all cases. This can lead to the defrosting process taking too long, so that there is an undesirably long shutdown pause for the heat pump. In addition, this known regulation cannot prevent defrosting that is unnecessary per se.

Es ist deshalb Aufgabe der Erfindung, ein Verfahren für eine zuverlässige Abtauregelung von Wärmepumpen zu schaffen, bei dem unnötige Abtauvorgänge verhindert, aber notwendige Abtauvorgänge rechtzeitig eingeleitet und den Erfordernissen entsprechend angepaßt durchgeführt werden.It is therefore an object of the invention to provide a method for reliable defrost control of heat pumps, in which unnecessary defrosting is prevented, but necessary defrosting processes are initiated in good time and carried out according to the requirements.

Diese Aufgabe ist durch ein Verfahren mit den im Kennzeichen des Anspruches 1 angegebenen Merkmalen gelöst. Details dieses Verfahrens sind im Unteranspruch 2 angegeben.This object is achieved by a method having the features specified in the characterizing part of claim 1. Details of this method are given in sub-claim 2.

Der erfindungsgemäßen Lösung liegt die Erkenntnis zugrunde, daß bei mit Umgebungsluft arbeitenden Wärmepumpen eine Vereisung von der kältesten Außenlufttemperatur bis zu Temperaturen über 0 °C auftreten kann. Aufgrund des etwa konstanten bzw. bei fallender Außenlufttemperatur abnehmenden Volumenstromes des den Verdampfer durchströmenden Kältemittels tritt bei vergleichsweise hoher Außen- bzw. Umgebungslufttemperatur bzw. Verdampfertemperatur wegen der Dampfdichte eine vergleichsweise hohe Kälteleistung auf, während bei fallender bzw. vergleichsweise niedriger Außen- bzw. Umgebungslufttemperatur die Kälteleistung stark abnimmt. Deshalb ist bei einem gegebenen Verdampfer schon im nicht vereisten Zustand die Temperaturdifferenz zwischen Außen- bzw. Zulufttemperatur und Verdampfertemperatur bei hohen Außen- bzw. Umgebungslufttemperaturen wesentlich höher, beispielsweise 2- bis 3-fach, als bei niedrigen.The solution according to the invention is based on the knowledge that icing from the coldest outside air temperature to temperatures above 0 ° C. can occur in heat pumps operating with ambient air. Due to the approximately constant or decreasing volume flow of the refrigerant flowing through the evaporator when the outside air temperature falls, a comparatively high cooling capacity occurs at a comparatively high outside or ambient air temperature or evaporator temperature due to the vapor density, while the when the outside or ambient air temperature falls or is comparatively low, the Cooling capacity decreases sharply. For a given evaporator, therefore, the temperature difference between the outside or supply air temperature and the evaporator temperature is significantly higher at high outside or ambient air temperatures, for example 2 to 3 times, than at low temperatures.

Bei dem erfindungsgemäßen Verfahren wird die Soll-Temperaturdifferenz entsprechend der Umgebungstemperatur-variiert und damit an das Verdampferverhalten angepaßt. Hierdurch ist eine zuverlässige Regelung geschaffen, bei der unnötige Abtauvorgänge verhindert und andererseits zur Wahrung des wirtschaftlichen Betriebes der Wärmepumpe die Abtauvorgänge rechtzeitig eingeleitet werden. Die Soll-Temperaturdifferenz wird vorzugsweise kontinuierlich in Abhängigkeit von der Außentemperatur bzw. der Umgebungstemperatur des Verdampfers verändert. Es ist aber auch möglich, eine stufenweise Regelung der Soll-Temperaturdifferenz anzuwenden.In the method according to the invention, the target temperature difference is varied according to the ambient temperature and thus adapted to the evaporator behavior. This creates a reliable control in which unnecessary defrosting is prevented and, on the other hand, the defrosting is initiated in good time to ensure the economical operation of the heat pump. The setpoint temperature difference is preferably changed continuously as a function of the outside temperature or the ambient temperature of the evaporator. However, it is also possible to use a stepwise regulation of the target temperature difference.

Außerdem wird beim erfindungsgemäßen Verfahren die Einleitung eines Abtauvorganges bei Verdampfertemperaturen über 0 °C gesperrt. Hierdurch wird ein unnötiges Abtauen zuverlässig in dem Fall verhindert, wenn bei derartigen Verdampfertemperaturen die Ist-Temperaturdifferenz den aus der momentanen Außen- bzw. Umgebungslufttemperatur errechneten Sollwert übersteigt.In addition, the initiation of a defrosting process at evaporator temperatures above 0 ° C is blocked in the inventive method. This reliably prevents unnecessary defrosting if, at such evaporator temperatures, the actual temperature difference exceeds the setpoint value calculated from the current outside or ambient air temperature.

Außerdem wird aufgrund des erfindungsgemäßen Verfahrens ein weitgehend kontinuierlicher Betrieb der Wärmepumpe erreicht, weil Abtauvorgänge rasch durchgeführt werden und damit die Abschaltpausen der Wärmepumpe klein gehalten sind. Dies wird dadurch erreicht, daß nach einem vorbestimmten Kriterium wählbare unterschiedliche Abtausignale erzeugt werden, mit denen unterschiedliche Abtauprozesse eingeleitet werden. Diese Abtausignale werden yon der Außenbzw. Zulufttemperatur abhängig und in der Weise erzeugt, daß bei einer Außenbzw. Zulufttemperatur oberhalb von etwa 3-5 °C ein normaler Abtauprozeß eingeleitet wird, mit einer Abtauung durch Umgebungsluft, wobei lediglich der Kältemittelkreislauf der Wärmepumpe entweder abgeschaltet oder umgeleitet wird und die Verdampferlüfter weiter in Betrieb bleiben. Bei Außenbzw. Zulufttemperaturen unter 5 °C wird dagegen ein Abtausignal erzeugt, mit dem ein beschleunigter Abtauprozeß in Gang gesetzt wird, bei dem Heißgas an die Verdampfer geleitet wird.In addition, largely continuous operation of the heat pump is achieved due to the method according to the invention, because defrosting processes are carried out quickly and the switch-off pauses of the heat pump are thus kept small. This is achieved in that selectable different defrost signals are generated according to a predetermined criterion, with which different defrosting processes are initiated. These defrost signals are from the outside or Supply air temperature dependent and generated in such a way that in an outdoor or Supply air temperature above about 3-5 ° C, a normal defrosting process is initiated, with a defrost by ambient air, whereby only the refrigerant circuit of the heat pump is either switched off or diverted and the evaporator fans continue to operate. With outside or In contrast, supply air temperatures below 5 ° C generate a defrost signal that starts an accelerated defrosting process in which hot gas is directed to the evaporators.

Nachstehend ist das erfindungsgemäße Verfahren anhand der Zeichnung noch näher erläutert. In der Zeichnung zeigen :

  • Fig. 1 ein Grundprinzip einer Wärmepumpenanlage mit Abtauregelung,
  • Fig. 2 ein Temperaturdiagramm, und
  • Fig. 3 ein Ausführungsbeispiel einer Abtauregeleinrichtung zur Durchführung des erfindungsgemäßen Verfahrens.
The method according to the invention is explained in more detail below with reference to the drawing. The drawing shows:
  • 1 is a basic principle of a heat pump system with defrost control,
  • Fig. 2 is a temperature diagram, and
  • Fig. 3 shows an embodiment of a defrost control device for performing the method according to the invention.

In Fig. 1 ist eine Kompressions-Wärmepumpen-Anlage 10 dargestellt, die aus einem Verdampfer 11 zur Aufnahme der Energie Qo aus der Umgebungsluft 12 und einem Verdichter 13 besteht, der den Kältemitteldampf aus dem Verdampfer 11 verdichtet und einem Verflüssiger 14 zuleitet, an dem ein Verbraucher 15 angeschlossen ist.In Fig. 1 is a compression heat pump System 10 shown, which consists of an evaporator 11 for receiving the energy Q o from the ambient air 12 and a compressor 13 which compresses the refrigerant vapor from the evaporator 11 and feeds a condenser 14 to which a consumer 15 is connected.

Es ist bekannt, daß ein der Außen- bzw. Umgebungsluft 12 ausgesetzter Verdampfer 11 aufgrund der Wasseranteile der Luft an seiner Außenseite dann vereist, wenn die Verdampfertemperatur Tk bzw. die Temperatur an der Verdampferoberfläche einen Wert unterhalb des Gefrierpunktes hat. Um einen Abtauvorgang bei Bedarf automatisch einzuleiten, ist bei der Wärmepumpenanlage 10 gemäß Fig. 1 ein Abtauregler 16 vorgesehen, der die Signale eines Verdampfer-Temperaturfühlers 17 und eines Umgebungslufttemperaturfühlers 18 empfängt und bei Abtaubedarf ein Signal an ein Stellglied 19 ausgibt. Mit dem Stellglied 19 wird der Verdichter 13 ausgeschaltet und damit der Abtauvorgang eingeleitet. Der Abtauvorgang kann auch auf andere Weise eingeleitet werden, wie z. B. durch Umkehrung oder Umleitung des Kältemittelstromes.It is known that an evaporator 11 exposed to the outside or ambient air 12 ices on the outside due to the water content of the air when the evaporator temperature T k or the temperature at the evaporator surface has a value below the freezing point. In order to automatically initiate a defrosting process if required, a defrost controller 16 is provided in the heat pump system 10 according to FIG. 1, which receives the signals from an evaporator temperature sensor 17 and an ambient air temperature sensor 18 and outputs a signal to an actuator 19 when defrosting is required. With the actuator 19, the compressor 13 is switched off and thus the defrosting process is initiated. The defrosting process can also be initiated in other ways, such as. B. by reversing or redirecting the refrigerant flow.

Der Abtauregler 16 enthält einen Differenzbildner 20, mit dem die Temperaturdifferenz ΔT = Ta-Tk gebildet wird, wobei Ta die Umgebungstemperatur ist. In einem hysteresebehafteten Komparator 21 wird das so gebildete Ist-Temperaturdifferenz-Signal ΔT mit einem Soll-Temperaturdifferenz-Signal ΔTs verglichen, das von einem Sollwertbildner 22 in Abhängigkeit von der Umgebungstemperatur erzeugt wird. Ist die gemessene Temperaturdifferenz ΔT höher als der entsprechend errechnete Sollwert ΔTs, dann gibt der Komparator 21 ein Signal 23 aus, mit dem zur Einleitung des Abtauvorganges das Stellglied 19 aktiviert wird. Bei Fortschreiten des Abtauvorganges wird der Abtauvorgang beendet, wenn die Temperaturdifferenz ΔT entsprechendabgesunken ist.The defrost controller 16 contains a difference generator 20, with which the temperature difference ΔT = T a -T k is formed, where T a is the ambient temperature. In a hysteresis comparator 21, the actual temperature difference signal ΔT thus formed is compared with a target temperature difference signal ΔT s , which is generated by a setpoint generator 22 as a function of the ambient temperature. If the measured temperature difference .DELTA.T is higher than the correspondingly calculated target value .DELTA.T s , then the comparator 21 outputs a signal 23 with which the actuator 19 is activated to initiate the defrosting process. When the defrosting process continues, the defrosting process ends when the temperature difference ΔT has decreased accordingly.

Aufgrund von Messungen und Rechnungen könnte die Funktion ΔT = f(Ta) der Temperaturdifferenz zwischen Verdampfungs- und Außentemperatur in Abhängigkeit von der Außentemperatur ermittelt werden, die einen in Fig. 2 mit der Ziffer 30 gekennzeichneten Verlauf hat. Diese Funktion ΔT = f(Ta) kann in erster Näherung durch eine Gerade 31 (ΔT' = kTa) ersetzt werden. Die Gerade 31 entspricht somit etwa der Funktion ΔT = f(Ta), wenn keine Vereisung am Verdampfer 11 stattfindet. Durch Bereifung des Verdampfers vergrößert sich jedoch die Temperaturdifferenz ΔT um einen Wert a, der in etwa auch linear mit der Umgebungstemperatur Ta ansteigt. Damit kann eine lineare Änderung des Sollwertes Ta mit der Außentemperatur Ta vorgesehen werden, die gegenüber der Geraden 31 um einen Temperaturdifferenzwert a verschoben ist und gegebenenfalls eine größere Steigerung hat. Diese Gerade ist mit Ziffer 32 in Fig. 2 dargestellt.On the basis of measurements and calculations, the function .DELTA.T = f (T a ) of the temperature difference between the evaporation temperature and the outside temperature could be determined as a function of the outside temperature, which has a curve marked with the number 30 in FIG. 2. In a first approximation, this function ΔT = f (T a ) can be replaced by a straight line 31 (ΔT '= kT a ). The straight line 31 thus corresponds approximately to the function ΔT = f (T a ) if there is no icing on the evaporator 11. By frosting the evaporator, however, the temperature difference ΔT increases by a value a, which also increases approximately linearly with the ambient temperature T a . A linear change in the target value T a with the outside temperature T a can thus be provided, which is shifted by a temperature difference value a with respect to the straight line 31 and may have a greater increase. This straight line is shown at 32 in FIG. 2.

In Fig. 3 ist demgegenüber ein Blockschaltbild eines Abtaureglers 40 dargestellt, mit dem das erfindungsgemäße Verfahren durchführbar ist.In contrast, FIG. 3 shows a block diagram of a defrost controller 40 with which the method according to the invention can be carried out.

Der Abtauregler 40 wird von einer Gleichstromquelle 41 gespeist, deren Ausgangsspannung Ur in einem Referenzspannungs-Erzeuger 42 stabilisiert und gefiltert wird. Ferner ist der Abtauregler 40 an den Umgebungslufttemperatur-Sensor 18 und den Verdampfertemperatur-Sensor 17 angeschlossen. Die Sensoren 17 und 18 werden von einer Spannungsquelle 47 gespeist, die die Referenzspannung Ur in eine vorbestimmte Sensorspannung US transformiert.Defrost regulator 40 is fed by a direct current source 41, the output voltage U r of which is stabilized and filtered in a reference voltage generator 42. Defrost controller 40 is also connected to ambient air temperature sensor 18 and evaporator temperature sensor 17. The sensors 17 and 18 are fed by a voltage source 47, which transforms the reference voltage U r into a predetermined sensor voltage U S.

Die von den Meßfühlern 17, 18 erzeugten Temperatursignale 43 und 45 werden jeweils in Verstärkern 50 bzw. 51 dem Spannungsniveau der Schaltung angepaßt und normiert. Die verstärkten Spannungssignale 52 und 53 werden zur Bildung von vier Kommandosignalen 54, 55, 56, 57 im Abtauregler 40 verarbeitet. Zum einen wird, wie im Fall gemäß Fig. 1, mit einem Differenzbildner 60 die Temperaturdifferenz ΔT = Tä-Tk gebildet, die zur Erzeugung des ersten Kommandosignales 54 mittels eines hysteresebehafteten Komparators 61 mit der Soll-Temperaturdifferenz ΔTs verglichen wird. Die Soll-Temperaturdifferenz ΔTs wird von einem Funktionsbildner 62 erzeugt, und zwar aus dem momentanen Umgebungslufttemperatursignal 52 und einem extern einstellbaren Spannungswert 63 aus einem Potentiometer 64, der der für den jeweiligen Anwendungsfall angepaßten Temperaturdifferenz entspricht.The temperature signals 43 and 45 generated by the sensors 17, 18 are adapted and standardized to the voltage level of the circuit in amplifiers 50 and 51, respectively. The amplified voltage signals 52 and 53 are processed to form four command signals 54, 55, 56, 57 in the defrost controller 40. On the one hand, as in the case according to FIG. 1, the temperature difference ΔT = T ä- T k is formed with a difference generator 60, which is compared with the target temperature difference ΔT s to generate the first command signal 54 by means of a hysteresis comparator 61. The setpoint temperature difference ΔT s is generated by a function generator 62, specifically from the current ambient air temperature signal 52 and an externally adjustable voltage value 63 from a potentiometer 64, which corresponds to the temperature difference adapted for the respective application.

Die Soll-Temperaturdifferenz ΔTs wird in erster Näherung als eine lineare Funktion gemäß Kurve 32 von Fig. 2 gebildet. Die Steigung K dieser Funktion ist hierbei variabel. Das so erzeugte Kommandosignal 54 gibt die Befehle « Abtauvor- gang einschalten » bzw. « Abtauvorgang beenden ".The setpoint temperature difference ΔT s is formed in a first approximation as a linear function according to curve 32 in FIG. 2. The slope K of this function is variable here. The command signal 54 generated in this way gives the commands “switch on defrost process” or “end defrost process .

Der Schaltprozeß für einen Abtauvorgang wird jedoch mittels zweier Logisch-UND-Verknüpfungen 65 und 66 in Abhängigkeit von weiteren Signalen, nämlich den Kommandosignalen 55, 56 und 57, ausgelöst.However, the switching process for a defrosting process is triggered by means of two logic AND gates 65 and 66 as a function of further signals, namely the command signals 55, 56 and 57.

Die Kommandosignale 55 geben an, ob die Verdampfertemperatur größer oder kleiner als 0°C ist, und sie werden durch Vergleich des Verdampfertemperatur-Signales 53 mit einer dem 0°C entsprechenden Spannungswert U° in einem ebenfalls hysteresebehafteten Komparator 71 erzeugt.The command signals 55 indicate whether the evaporator temperature is greater or less than 0 ° C., and they are generated by comparing the evaporator temperature signal 53 with a voltage value U ° corresponding to 0 ° C. in a comparator 71, which is also subject to hysteresis.

Die Kommandosignale 56 und 57 sind außentemperaturabhängige Signale, die durch den Vergleich des Umgebungslufttemperatursignales 52 mit einer, einer entsprechenden Temperatur zugeordneten Spannung Uk in einem dritten, hysteresebehafteten Komparator 72 erzeugt werden, dessen Ausgangssignal zum einen das Signal 57 bildet, und zum anderen einem Nicht-Glied 73 zugeführt, dort umgekehrt wird und ausgangs des letzteren das Signal 56 bildet. Mit diesen außentemperaturabhängigen Kommandosignalen 56 und 57, die jeweils einer der Logisch-UND-Verknüpfung 65 bzw. 66 eingegeben werden, können unterschiedliche Abtauvorgänge eingeleitet werden. So läßt sich beispielsweise bei unterschiedlichen Außentemperaturen entweder lediglich der Wärmepumpenbetrieb ausschalten und bei einer anderen Temperatur zusätzlich ein Heißluftgebläse einschalten. Für diesen Fall kann Uk für eine Außentemperatur Tuk = 5 °C entsprechend ausgelegt werden. Die Außentemperatur Ta und die Verdampfertemperatur Tk werden kontinuierlich gemessen und der Sollwert Ts kontinuierlich berechnet.The command signals 56 and 57 are outside temperature-dependent signals which are generated by comparing the ambient air temperature signal 52 with a voltage U k associated with a corresponding temperature in a third, hysteresis-based comparator 72, the output signal of which forms signal 57 on the one hand and a non-signal on the other Member 73 supplied, there is reversed and forms the signal 56 starting from the latter. Different defrosting processes can be initiated with these outside temperature-dependent command signals 56 and 57, which are each input to one of the logic AND links 65 and 66, respectively. For example, at different outside temperatures, either only the heat pump operation can be switched off and, at a different temperature, an additional heat switch on the air blower. In this case, U k can be designed accordingly for an outside temperature T uk = 5 ° C. The outside temperature T a and the evaporator temperature T k are measured continuously and the setpoint T s is calculated continuously.

Übersteigt die Temperaturdifferenz AT zwischen den Meßwerten den Sollwert ΔTs so gibt der Komparator 61 das Abtausignal 54 ab, das in beide Logisch-UND-Verknüpfungen 65 und 66 eingeht. Die Logisch-UND-Verknüpfung 65 wird jedoch nur dann ein Schaltsignal 74 ausgeben, wenn sie gleichzeitig das Signal 55 für Tk < 0 °C sowie das Signal 56 für Ta < Tuk (beispielsweise Ta kleiner als 5 °C) erhält. Hierdurch wird ein erster Schaltprozeß durchgeführt, z. B. Abschalten des Wärmepumpenbetriebes und Einschalten der Heißgasabtauung.If the temperature difference AT between the measured values exceeds the target value .DELTA.T s , the comparator 61 outputs the defrost signal 54, which is input into both logic AND operations 65 and 66. However, the logic AND link 65 will only output a switching signal 74 if it simultaneously receives the signal 55 for Tk <0 ° C. and the signal 56 for T a <T uk (for example T a less than 5 ° C.). As a result, a first switching process is carried out, for. B. Switching off the heat pump operation and switching on the hot gas defrost.

Ist hingegen die Außentemperatur Ta höher als der gegebene Wert Tuk so wird die zweite Logisch-UND-Verknüpfung 66 ein Schaltsignal 75 ausgeben, mit dem beispielsweise lediglich der Wärmepumpenbetrieb ausgeschaltet wird.If, on the other hand, the outside temperature Ta is higher than the given value T uk , the second logic AND link 66 will output a switching signal 75 with which, for example, only the heat pump operation is switched off.

Wenn die Verdampfertemperatur den Gefrierpunkt überschreitet, dann besteht keine Gefahr einer Vereisung des Verdampfers 11. In diesem Fall werden keine Signale 55 ausgegeben, so daß die Logisch-UND-Verknüpfungen 65 und 66 nicht durchgeschaltet werden und ein Abtauvorgang unterbleibt, auch wenn die Temperaturdifferenz ΔT größer ist als ΔTs.If the evaporator temperature exceeds the freezing point, then there is no danger of the evaporator 11 icing up. In this case, no signals 55 are output, so that the logic AND logic operations 65 and 66 are not switched through and defrosting does not take place, even if the temperature difference ΔT is greater than ΔT s .

Claims (2)

1. A defrosting control method for heat pumps, a defrosting operation being controlled in dependence upon the temperature 'difference between the. evaporator temperature and the ambient or supply air temperature of the evaporator, the actual temperature difference (ΔT) being compared with a set-value temperature difference (ATm) which varies in dependence upon the ambient or supply air temperature (Tm), a defrosting signal being delivered on the basis of such comparison when the actual temperature difference exceeds the set-value temperature difference, characterised in that
the continuously detected actual value signals of the ambient or supply air temperature (Tm) and the evaporator temperature (Tk) are supplied to a subtractor (60) determining the temperature difference AT = Tm-Tk,
the actual value signal (Tm) is also supplied to a function former (62) which forms the set-value temperature difference (ΔTm) from the actual- value signal (Tm)- and an adjusted temperature difference signal (Uy),
the actual-temperature difference signal (AT) output by the subtractor (60) and the set-value temperature difference signal (ΔTm) output by the function former (62) are supplied to a hysteretic comparator (61 ) which when ΔT > ΔTm produces an output signal transmitted as first instruction signal (54) to a facility (65, 66) for triggering different defrosting signals,
the actual value signal (Tm) is also supplied to a hysteretic comparator (72) and compared therein with a signal (Uk) corresponding to a fixed temperature above 0 °C, more particularly 5 °C, and an output signal supplied as second instruction signal (56, 57 respectively) to the facility (65, 66) is produced,
the actual value signal (Tk) is supplied to a hysteretic comparator (71) and compared therein with a signal (Uo) corresponding to a temperature of 0 °C, and only when (Tk) is below 0 °C is an output signal produced which is supplied as third instruction signal (55) to the facility (65, 66), and when the first instruction signal (54) and the third instruction signal (55), the latter signalling a temperature Tk < 0 °C, are present, the facility (65, 66) :
a) if the second instruction signal (56, 57 respectively) signals a temperature Tm < Tuk, triggers a switching process whereby the heat pump drive is stopped and accelerated defrosting with heating gas is started or
b) if the second instruction signal (56, 57 respectively) signals a temperature Tm >Tuk triggers a switching process whereby the heat pump drive is stopped and a normal defrosting process started.
2. A method according to claim 1, characterised in that the first instruction signal (54) and the third instruction signal (55) are each supplied to an AND-gate (65, 66 respectively), one (66) of which is supplied directly with the second instruction signal (57) while the other (65) is supplied with the second instruction signal (56) in negated form, and one AND gate (65) produces a signal (74) to trigger accelerated defrosting when the first instruction signal (54) signals a temperature difference(AT > ΔTm),thesecondinstructionsignal (56) signals a temperaure Tm < Tuk and the third instruction signal (55) signals a temperature Tk < 0 °C, while the AND gate (66) outputs a signal (75) triggering normal defrosting when the first instruction signal (54) signals a temperature difference(AT > ΔTm),thesecondinstructionsignal (57) signals a temperature Tm > Tuk and the third instruction signal signals a temperature Tk < 0 °C.
EP84111031A 1983-09-20 1984-09-15 Defrost control method and device for heat pumps Expired EP0142663B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84111031T ATE38555T1 (en) 1983-09-20 1984-09-15 METHOD AND DEVICE FOR DEFROST CONTROL OF HEAT PUMPS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3333907 1983-09-20
DE19833333907 DE3333907A1 (en) 1983-09-20 1983-09-20 METHOD AND DEVICE FOR DEFROSTING HEAT PUMPS

Publications (3)

Publication Number Publication Date
EP0142663A2 EP0142663A2 (en) 1985-05-29
EP0142663A3 EP0142663A3 (en) 1985-07-03
EP0142663B1 true EP0142663B1 (en) 1988-11-09

Family

ID=6209559

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111031A Expired EP0142663B1 (en) 1983-09-20 1984-09-15 Defrost control method and device for heat pumps

Country Status (3)

Country Link
EP (1) EP0142663B1 (en)
AT (1) ATE38555T1 (en)
DE (2) DE3333907A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563877A (en) * 1984-06-12 1986-01-14 Borg-Warner Corporation Control system and method for defrosting the outdoor coil of a heat pump
JPS6192908A (en) * 1984-10-12 1986-05-10 Diesel Kiki Co Ltd Air conditioner for vehicle
US4573326A (en) * 1985-02-04 1986-03-04 American Standard Inc. Adaptive defrost control for heat pump system
DE3539817A1 (en) * 1985-11-09 1987-05-14 Licentia Gmbh Method for metrologically determining, displaying and/or evaluating the icing occurring on the cooling plates of an air cooler
US4835715A (en) * 1986-12-17 1989-05-30 Carrier Corporation Outdoor ambient temperature determination
EP0285690A1 (en) * 1987-04-08 1988-10-12 Viessmann Werke GmbH & Co. Process and apparatus for the temperature dependent defrosting of cooling plants according to demand
US4882908A (en) * 1987-07-17 1989-11-28 Ranco Incorporated Demand defrost control method and apparatus
DE4105880A1 (en) * 1991-02-25 1992-08-27 Kueba Kaeltetechnik Gmbh METHOD AND DEVICE FOR OPTIMIZING THE PERFORMANCE AND DEFROSTING OF REFRIGERANT EVAPORATORS
KR100271974B1 (en) * 1998-08-31 2000-11-15 전주범 De-frost control method
TR200200796T2 (en) * 1999-09-24 2002-06-21 Arçeli̇k A.Ş. Defrost control method inside the refrigerator
US6334321B1 (en) * 2000-03-15 2002-01-01 Carrier Corporation Method and system for defrost control on reversible heat pumps
DE10053422A1 (en) * 2000-10-27 2002-05-08 Bsh Bosch Siemens Hausgeraete Refrigeration device with automatic defrost
DE10223716A1 (en) * 2002-05-28 2003-12-11 Linde Ag Process for controlling the defrosting process of an evaporator
KR20050105029A (en) * 2004-04-30 2005-11-03 엘지전자 주식회사 Defrosting driving method for air conditioner
EP2366968B1 (en) * 2010-03-17 2017-05-17 Wolf GmbH Method and device for thawing an evaporator of a heat pump device
CN103069230B (en) * 2010-07-01 2017-08-04 开利公司 Evaporator refrigerant saturation defrosts immediately
EP2717002B1 (en) * 2012-10-08 2019-01-02 Emerson Climate Technologies GmbH Method for determining thaw times
CN111076364A (en) * 2019-12-25 2020-04-28 珠海格力电器股份有限公司 Heat exchanger assembly, air conditioner and air conditioner control method
DE102020123960B4 (en) 2020-09-15 2023-07-27 Viessmann Climate Solutions Se Method for operating a heat pump and heat pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950962A (en) * 1973-05-01 1976-04-20 Kabushiki Kaisha Saginomiya Seisakusho System for defrosting in a heat pump
DE2637129A1 (en) * 1976-08-18 1978-02-23 Bosch Gmbh Robert DEVICE FOR DEFROSTING EVAPORATORS IN REFRIGERANT CIRCUITS, IN PARTICULAR OF HEAT PUMPS
US4215554A (en) * 1978-05-30 1980-08-05 General Electric Company Frost control system
US4338790A (en) * 1980-02-21 1982-07-13 The Trane Company Control and method for defrosting a heat pump outdoor heat exchanger
DE3227604A1 (en) * 1981-07-29 1983-02-24 Olsberg Gesellschaft für Produktion und Absatz mbH, 5790 Brilon Automatic defrosting device for heat pump evaporators
JPS58150736A (en) * 1982-03-03 1983-09-07 Hitachi Ltd Control circuit for defrosting

Also Published As

Publication number Publication date
DE3475100D1 (en) 1988-12-15
EP0142663A3 (en) 1985-07-03
ATE38555T1 (en) 1988-11-15
DE3333907A1 (en) 1985-04-04
EP0142663A2 (en) 1985-05-29
DE3333907C2 (en) 1988-05-11

Similar Documents

Publication Publication Date Title
EP0142663B1 (en) Defrost control method and device for heat pumps
EP0229942B1 (en) Regulating method for refrigerant flow to the evaporator of a cooling plant or a heat pump
EP0344397B1 (en) Climatic test chamber
EP0899135B1 (en) Method and apparatus for controlling the air-conditioning to prevent the freezing of the evaporator
DE19828061C1 (en) Method for controlling the temperature of a refrigerator and temperature control device for a refrigerator
EP0410330A2 (en) Method and apparatus for operating a refrigeration system
DE3109843C1 (en) Heating system with a boiler and a heat pump
DE3713869A1 (en) CONTROL UNIT FOR THE OVERHEATING TEMPERATURE OF THE EVAPORATOR OF A REFRIGERATION OR HEAT PUMP SYSTEM
DE3517222A1 (en) OPERATING METHOD AND CONTROL ARRANGEMENT FOR A REFRIGERATION SYSTEM
EP0935181A2 (en) Self-learning control method and self-learning control system for the control of a tempering device
DE2646913A1 (en) COOLING SYSTEM WITH HOT GAS DEFROSTING DEVICE
DE3811189C2 (en)
EP0602645B1 (en) Method and device for temperature control in a Peltier heating and cooling installation
EP1775533A2 (en) Method and apparatus for operating a compression type refrigeration system
DE3340736A1 (en) CONTROL DEVICE FOR A COOLING CIRCUIT
DE102019109379A1 (en) Method for air conditioning a vehicle interior with a large volume and air conditioning system set up for this purpose
DE3724430C2 (en)
DE3014580A1 (en) METHOD AND DEVICE FOR REGULATING THE TEMPERATURES IN A REFRIGERATOR WITH FREEZER
DE3034489A1 (en) POWER AND PUMP CONTROLLERS
DE2717050C3 (en) Compressor refrigeration systems with two compartments of different temperatures
DE102012109198A1 (en) Method for controlling defrosting of evaporator of refrigerant circuit for heating systems, involves starting/terminating defrosting of evaporator when difference between evaporation temperatures/pressures exceeds threshold value
DE3714120C1 (en) Control arrangement for an expansion valve of a refrigeration system
EP1275537B1 (en) Method for controlling a heating appliance and heating appliance
EP1152195B1 (en) Method for operating a (compound) refrigeration system
EP1549517B1 (en) Method for regulating an air conditioner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI NL SE

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19850810

17Q First examination report despatched

Effective date: 19860410

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: M A N TECHNOLOGIE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 38555

Country of ref document: AT

Date of ref document: 19881115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3475100

Country of ref document: DE

Date of ref document: 19881215

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN TECHNOLOGIE AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MAN TECHNOLOGIE AKTIENGESELLSCHAFT TE MUENCHEN, BO

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900806

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900807

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900808

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900903

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900919

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910915

Ref country code: AT

Effective date: 19910915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910930

Ref country code: CH

Effective date: 19910930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920401

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920602

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84111031.5

Effective date: 19920408