EP0142638A1 - Electrodes based on nickel, cobalt, iron, with active coating, and process for their manufacture - Google Patents

Electrodes based on nickel, cobalt, iron, with active coating, and process for their manufacture Download PDF

Info

Publication number
EP0142638A1
EP0142638A1 EP84110050A EP84110050A EP0142638A1 EP 0142638 A1 EP0142638 A1 EP 0142638A1 EP 84110050 A EP84110050 A EP 84110050A EP 84110050 A EP84110050 A EP 84110050A EP 0142638 A1 EP0142638 A1 EP 0142638A1
Authority
EP
European Patent Office
Prior art keywords
base metal
alloy
activatable
nickel
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84110050A
Other languages
German (de)
French (fr)
Other versions
EP0142638B1 (en
Inventor
Jiri Dr. Divisek
Heinz Schmitz
Heinz Wüllenweber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
GEA Group AG
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH, Metallgesellschaft AG filed Critical Forschungszentrum Juelich GmbH
Priority to AT84110050T priority Critical patent/ATE37908T1/en
Publication of EP0142638A1 publication Critical patent/EP0142638A1/en
Application granted granted Critical
Publication of EP0142638B1 publication Critical patent/EP0142638B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for

Definitions

  • the invention relates to a method for producing activated electrodes from base metal on the basis of iron, cobalt, nickel with active coating by means of galvanic deposition and activation, and to electrodes obtainable thereafter.
  • Some technical electrolysis processes such as alkaline water electrolysis or chlor-alkali electrolysis require an electrode with a low hydrogen overvoltage as the cathode. Furthermore, an anode is required for the alkaline water electrolysis, which enables a surge-free development of oxygen. For this reason, catalytically active electrodes are used.
  • Nickel sulfides are known as further catalysts (BE-PS 864 275) and various coatings with mixed transition metal oxides (Seminar on Hydrogen as an Energy Vector, EEC Report Eur 6085, 1978, pages 166-180) or transition metals (GB-PS 1 510 099 or U.S. Patent 4,152,240).
  • Raney nickel electrodes E. Justi, A. Winsel, "Cold Combustion, Fuel Cells", Franz Steiner Verlag, Mainz, 1962.
  • these electrodes which were originally produced using a pressing process, can only be produced with great difficulty and uneconomically in the usual technical dimensions.
  • LURGI has therefore developed an improved rolling process (J. Müller, K. Lohrberg, H. Wüllenweber, Chem.-Ing.-Techn. 52 (1980) pp. 435-36), which enables the electrode work surface to be easily enlarged.
  • nickel or steel sheet is plated with Raney nickel powder and activated in the usual way by treatment with KOH.
  • the excellent long-term behavior of the electrodes produced in this way is remarkable: after an operating time of 1 year at a current density of 2 kA / m 2 and an operating temperature of 92 ° C, the electrode potential was unchanged.
  • Electrodes coated with Raney nickel Similar long-term behavior is also shown by electrodes coated with Raney nickel, which can be obtained particularly simply by activation of an electrodeposited Ni / Zn layer (J. Divisek, H. Schmitz, J. Mergel: Chem.-Ing.-Techn. 52 (1980) p. 465): From a solution containing Ni 2 + and Zn 2 + ions, an Ni / Zn alloy is electrodeposited on an electrode matrix and then activated with KOH solution in the usual way to give R aney nickel. The electrode thus obtained can be used as Serve cathode in alkaline hydrogen evolution or as a cathode and / or anode in alkaline water electrolysis.
  • the matrix used must have good electrical conductivity and can have different geometric shapes, so that one is not bound in this regard when designing an electrolyser.
  • Preferred geometric shapes of such an electrode matrix are wire mesh, expanded metal or perforated sheet. The latter form is particularly important because it enables the so-called “sandwich construction" in an electrolytic cell for alkaline water electrolysis, in which the two electrodes are pressed directly onto the gas separator (diaphragm, ion conductor) with "zero spacing" so that the electrode spacing is minimized and the ohmic voltage drops become negligible.
  • a uniform, error-free and controlled galvanic Ni / Zn coating of thin electrodes with technical dimensions can therefore not be achieved in the usual way.
  • electrodes based on Co and Fe which are coated with an alloy of an electrode base metal and a metal such as tin or zinc which can be removed by lye treatment and then removed this component can be activated.
  • the invention is therefore based on the object of providing a method with which even the thinnest electrodes with a perfect catalytically active coating can be produced in a simple manner.
  • the process according to the invention developed for this purpose is characterized in that both the activatable alloy required for forming the active layer (s) from the base metal and metal which can be removed by lye treatment, in particular zinc, as well as the base metal in a removable electrically conductive carrier deposits the sequence required for the electrode to be produced one after the other and activates the activatable alloy before, during or in particular after removal of the carrier by lye treatment.
  • electrode base metal such as, in particular, pure nickel
  • activatable alloy in particular Ni / Zn alloy (with a uniform or changing Zn concentration)
  • an electrically well-conductive base Such removable carriers for the galvanic production of metal sheets and components are known in the art.
  • an activatable alloy for example NiZn
  • pure base metal for example nickel
  • an activatable alloy layer for example again NiZn
  • the alloy layer is activated in the usual way by lye treatment, which is carried out before the multilayer deposition is detached from the support or simultaneously with it.
  • lye treatment which is carried out before the multilayer deposition is detached from the support or simultaneously with it.
  • the galvanic deposition is first removed from the carrier and then activated by lye treatment.
  • self-supporting activated electrodes with a thickness of less than 1 mm are obtained, in particular by a rapid process in which the layers are deposited with a current strength of approximately 10-20 A / dm 2 .
  • the thickness of the core layer is preferably about 0.1-0.5 mm, in particular between 0.1 and 0.3 mm, and that of the activatable alloy is about 10-100 ⁇ m.
  • the core layer (as well as the activation layers) are made in the desired form, e.g. produced continuously or as a perforated plate or the like, which is easily possible by metting or by using photoresist in the manner in which printed circuits are produced.
  • the layers of the electrodes to be activated can also be provided with a "hole pattern" different from the core layer, so that the finished electrode has bright metallic areas which then makes pressure contacting of the electrodes possible.
  • the first activatable layer formed on the removable base can be formed with a hole pattern corresponding to the later points of contact of the electrode on a base such as a checker plate, after which the core layer is applied including these areas.
  • Such hole pattern formation only in the activation layer can be achieved according to known technology with the help of two-layer photomasks or two single-layer masks. At such bare metal areas of the activated electrode, the contact resistance is practically negligible when the electrodes are loosely springy in contact with a metallic conductive "base".
  • a 50 ⁇ m thick layer of Ni / Zn alloy (Ni / Zn weight ratio 60:40) was first electroplated onto a cathodically polarized base made of polished chrome-plated steel.
  • the electrolyte contained NiCl 2 , ZnCl 2 and H 3 B0 3 .
  • Electrolysis was carried out at 60 ° C. and a cathodic current density of 5 A / dm 2 .
  • a 150 ⁇ m thick layer of pure nickel was then deposited.
  • Electrolysis was carried out with a current density of 5 A / dm 2 and bath temperature of 50 ° C. in an electrolyte which contained N iS0 4 , N aCl and H 3B 0 3 .
  • a third 50 ⁇ m thick Ni / Zn layer of the same composition as the first was then galvanically produced.
  • Example 1 chrome-plated On a polished / steel base, a paint mask was created photographically using the technique common to printed circuits, the pattern of which enabled the galvanic deposition of a perforated plate (hole diameter 4 mm, free surface 41%). As in Example 1, three layers were again electrodeposited (first Ni / Zn, second Ni, third Ni / Zn), the perforated plate formed in this way was mechanically removed from the stainless steel base and activated with KOH.
  • the obtained active electrodes were fitted together with a N i O -Diaphragma in an electrolysis cell for alkaline water electrolysis, and performing the electrolysis.
  • a cell voltage of 1.52 V was measured in K OH solution at 100 ° C. and 200 mA / cm 2 .
  • the entire current-voltage curve is shown in FIG. 2.
  • the electrodes produced according to the invention are not only characterized by high effectiveness, but also by easy manufacture and lower material consumption, and are therefore very inexpensive. Very thin, large-area, active electrodes can only be produced galvanically in this way: Starting from a given thin nickel sheet of 150 ⁇ m, for example, larger electrodes could not be activated in a uniform and controlled manner by Ni / Zn deposition and subsequent alkali treatment because of the contact difficulties mentioned above .
  • Example 1 The procedure of Example 1 was repeated, but the nickel layer was deposited from an electrolyte with carbonyl nickel powder whirled up therein, so that powder particles were galvanically fixed together with the nickel layer which formed. In this way, a roughening could be built into the Ni intermediate layer, which is useful for some purposes, e.g. to reduce potential differences by increasing the geometric surface.
  • This electrode also showed the same excellent properties in water electrolysis after activation as the electrode according to Example 1.
  • Ni: Zn ratio can also be provided by varying the current density, and in this way not only three discrete layers but also a multi-layer material can be produced. The latter procedure is useful for certain special purposes.

Abstract

A process for the manufacture of thin activated electrodes including a base metal, which can be iron, cobalt or nickel, with a good adhering active surface layer. Both the base metal and the surface layer are galvanically sequentially deposited as separate layers on a removable electrically-conductive carrier. The surface layer is deposited as an activatable alloy including the base metal and a leachable metal, particularly zinc. The galvanizing deposited layers are subsequently separated as a unit from the carrier. The alloy is activated by leaching the leachable metal therefrom before, during or after separation of the carrier. Two activatable layers of alloy can be deposited on the carrier with a layer of the base metal deposited between the alloy layers.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von aktivierten Elektroden aus Grundmetall auf der Basis von Eisen, Kobalt, Nickel mit aktiver Beschichtung durch galvanische Abscheidung und Aktivierung sowie auf danach erhältliche Elektroden.The invention relates to a method for producing activated electrodes from base metal on the basis of iron, cobalt, nickel with active coating by means of galvanic deposition and activation, and to electrodes obtainable thereafter.

Einige technische Elektrolyseverfahren wie die alkalische Wasserelektrolyse oder die Chloralkalielektrolyse benötigen als Kathode eine Elektrode mit geringer Wasserstoffüberspannung. Ferner ist für die alkalische Wasserelektrolyse eine Anode wünschenswert, die eine überspannungsfreie Sauerstoffentwicklung ermöglicht. Aus diesem Grunde werden katalytisch wirksame Elektroden angewandt.Some technical electrolysis processes such as alkaline water electrolysis or chlor-alkali electrolysis require an electrode with a low hydrogen overvoltage as the cathode. Furthermore, an anode is required for the alkaline water electrolysis, which enables a surge-free development of oxygen. For this reason, catalytically active electrodes are used.

Der beste bekannte Katalysator für die Wasserstoffentwicklung ist Platin. Wegen seines hohen Preises werden allerdings nur sehr dünne Pt-Beschichtungen auf den Elektroden vorgesehen, die typischerweise unter 1 mg Pt/cm2 liegen, was auf Kosten der Effektivität geht, die dann nicht mehr voll befriedigt. Wie aus Vergleichsversuchen von Teledyne Energy Systems (Hydrogen Energy Progress-IV, Editors T.N. Veziroglu, W.D. Van Vorst, J.H. Kelley, Pergamon Press, Oxford, 1982 Seiten 151-158) hervorgeht, sind dann Katalysatoren auf der Basis von Nicht-Edelmetallen insgesamt günstiger.The best known catalyst for hydrogen evolution is platinum. Because of its high price, however, only very thin Pt coatings are provided on the electrodes, which are typically below 1 mg Pt / cm 2 , which is at the expense of effectiveness, which is then no longer fully satisfactory. As can be seen from comparative experiments by Teledyne Energy Systems (Hydrogen Energy Progress-IV, Editors TN Veziroglu, WD Van Vorst, JH Kelley, Pergamon Press, Oxford, 1982 pages 151-158), catalysts based on non-noble metals are generally cheaper .

Als Beispiel dafür hat Teledyne vom BP Research Centre in Middlesex entwickelte Nickel/Molybdän-Katalysatoren (EP-Patentanmeldung 79 301 963.9) überprüft. Ferner wurden Nickelborid-Katalysatoren (DE-PS 2 307 852) getestet, die jedoch im Vergleich zu Platinbeschichtungen höhere Wasserstoffüberspannungen ergaben (Hydrogen Energy Progress III-Editors T.N. Veziroglu, K. Fueki., T.Ohta, Pergamon Press, Oxford, 1981 Seiten 15-27). Als weitere Katalysatoren sind Nickelsulfide bekannt (BE-PS 864 275) und verschiedene Beschichtungen mit gemischten Übergangsmetalloxiden (Seminar on Hydrogen as an Energy Vector, EEC Report Eur 6085, 1978, Seiten 166-180) bzw. übergangsmetallen (GB-PS 1 510 099 bzw. US-PS 4 152 240).As an example of this, Teledyne reviewed nickel / molybdenum catalysts developed by the BP Research Center in Middlesex (EP patent application 79 301 963.9). Furthermore, nickel boride catalysts (DE-PS 2 307 852), which, however, gave higher hydrogen overvoltages compared to platinum coatings (Hydrogen Energy Progress III-Editors TN Veziroglu, K. Fueki., T.Ohta, Pergamon Press, Oxford, 1981 pages 15- 27). Nickel sulfides are known as further catalysts (BE-PS 864 275) and various coatings with mixed transition metal oxides (Seminar on Hydrogen as an Energy Vector, EEC Report Eur 6085, 1978, pages 166-180) or transition metals (GB-PS 1 510 099 or U.S. Patent 4,152,240).

Sehr wirkungsvoll wird die Wasserstoffüberspannung durch Verwendung von Raney-Nickel-Elektroden herabgesetzt (E. Justi, A. Winsel, "Kalte Verbrennung, Fuel Cells", Franz Steiner Verlag, Mainz, 1962). Diese ursprünglich nach einem Pressverfahren erzeugten Elektroden lassen sich allerdings nur umständlich und unwirtschaftlich in technisch üblichen Dimensionen herstellen. Daher wurde von LURGI ein verbessertes Walzverfahren entwickelt (J. Müller, K. Lohrberg, H. Wüllenweber, Chem.-Ing.-Techn.52 (1980) S. 435-36), das eine einfache Vergrößerung der Elektroden-Arbeitsfläche ermöglicht. Danach wird Nickel-oder Stahlblech mit Raney-Nickel-Pulver plattiert und durch Behandlung mit KOH in üblicher Weise aktiviert. Neben einer geringen Überspannung ist das ausgezeichnete Langzeitverhalten der so erzeugten Elektroden bemerkenswert: Nach einer Betriebszeit von 1 Jahr bei einer Stromdichte von 2 kA/m2 und 92 °C Betriebstemperatur war das Elektrodenpotential unverändert.The hydrogen overvoltage is reduced very effectively by using Raney nickel electrodes (E. Justi, A. Winsel, "Cold Combustion, Fuel Cells", Franz Steiner Verlag, Mainz, 1962). However, these electrodes, which were originally produced using a pressing process, can only be produced with great difficulty and uneconomically in the usual technical dimensions. LURGI has therefore developed an improved rolling process (J. Müller, K. Lohrberg, H. Wüllenweber, Chem.-Ing.-Techn. 52 (1980) pp. 435-36), which enables the electrode work surface to be easily enlarged. Then nickel or steel sheet is plated with Raney nickel powder and activated in the usual way by treatment with KOH. In addition to a low overvoltage, the excellent long-term behavior of the electrodes produced in this way is remarkable: after an operating time of 1 year at a current density of 2 kA / m 2 and an operating temperature of 92 ° C, the electrode potential was unchanged.

Ein ähnliches Langzeitverhalten zeigen auch mit Raney-Nickel beschichtete Elektroden, die besonders einfach durch Aktivierung - einer galvanisch abgeschiedenen Ni/Zn-Schicht erhalten werden (J. Divisek, H. Schmitz, J. Mergel: Chem.-Ing.-Techn. 52 (1980) S. 465): Aus einer Ni2+- und Zn2+-Ionen enthaltenden Lösung wird auf einer Elektroden-Matrix eine Ni/Zn-Legierung galvanisch abgeschieden und anschließend mit KOH-Lösung in üblicher Weise zu Raneynickel aktiviert. Die so erhaltene Elektrode kann als Kathode bei der alkalischen Wasserstoffentwicklung bzw. als Kathode und/oder Anode bei der alkalischen Wasserelektrolyse dienen. Die verwendete Matrix muß eine gute elektrische Leitfähigkeit besitzen und kann unterschiedliche geometrische Formen haben, so daß man bei der Konstruktion eines Elektrolyseurs in dieser Hinsicht von vornherein nicht gebunden ist. Bevorzugte geometrische Formen einer solchen Elektroden-Matrix sind Drahtnetze, Streckmetall oder Lochblech. Insbesondere die letztere Form ist wichtig, da sie die sog. "SandwichBauweise" bei einer Elektrolysezelle für alkalische Wasserelektrolyse ermöglicht, bei der die beiden Elektroden direkt an den Gasseparator (Diaphragma, Ionenleiter) mit "Nullabstand" angepreßt werden, so daß die Elektrodenabstände minimalisiert sind und die ohmschen Spannungsabfälle vernachlässigbar werden.Similar long-term behavior is also shown by electrodes coated with Raney nickel, which can be obtained particularly simply by activation of an electrodeposited Ni / Zn layer (J. Divisek, H. Schmitz, J. Mergel: Chem.-Ing.-Techn. 52 (1980) p. 465): From a solution containing Ni 2 + and Zn 2 + ions, an Ni / Zn alloy is electrodeposited on an electrode matrix and then activated with KOH solution in the usual way to give R aney nickel. The electrode thus obtained can be used as Serve cathode in alkaline hydrogen evolution or as a cathode and / or anode in alkaline water electrolysis. The matrix used must have good electrical conductivity and can have different geometric shapes, so that one is not bound in this regard when designing an electrolyser. Preferred geometric shapes of such an electrode matrix are wire mesh, expanded metal or perforated sheet. The latter form is particularly important because it enables the so-called "sandwich construction" in an electrolytic cell for alkaline water electrolysis, in which the two electrodes are pressed directly onto the gas separator (diaphragm, ion conductor) with "zero spacing" so that the electrode spacing is minimized and the ohmic voltage drops become negligible.

Bei der Aktivierung von dünnen Nickel-Elektroden, insbesondere bei Lochblechen treten nun allerdings Schwierigkeiten auf: Brauchbare Abscheidungen von Raney-Legierungen, insbesondere von Ni/Zn-Legierungen aus einem Ni2+- und Zn2+-Ionen enthaltenden Elektrolyten erfordern Kathodenstromdichten von 4-7 A/dm2 oder mehr. Gleichzeitig muß das Potential über die Gesamtfläche der mit aktivierbarer Legierung zu beschichtenden Elektroden-Matrix möglichst einheitlich sein, d.h., für eine gleichmäßige, kontrollierte Abscheidung dürfen die durch ohmschen Spannungsabfall verursachten Potentialdifferenzen innerhalb der Kathode nicht über 40 mV hinausgehen. Bei geringen Blechstärken der Elektroden-Matrix von etwa 0,2 - 0,5 mm, wie sie für die alkalische Wasserelektrolyse wegen des geringeren Preises und technologischer Vorteile gegenüber Blechstärken um 1mm und höher bevorzugt werden, ist jedoch mit solchen Potentialdifferenzen innerhalb der Kathodenfläche zu rechnen: So fließen beispielsweise bei der galvanischen Ni/Zn-Beschichtung einer technisch dimensionierten Elektroden-Matrix für die alkalische Wasserelektrolyse von 2 - 4 m2, während der galvanischen Abscheidung elektrische Ströme in der Größenordnung von 1000 - 3000 A. Um bei solchen Stromstärken die galvanische Abscheidung noch mit einer Potentialdifferenz in der Elektrode von weniger als 40 mV durchführen zu können, muß der Ohm'sche Widerstand im Blech entsprechend klein gehalten werden. Entweder erhöht man dazu die Blechdicke der Elektroden und nimmt erhebliche technologische Nachteile und erhöhte Kosten in Kauf, oder man hält den Stromweg durch die Elektroden hindurch bei der galvanischen Abscheidung entsprechend kurz. Das geht bei größeren Elektrodenflächen nur durch eine Vielzahl von Kontaktierungspunkten oder -linien.Erst dann wird die galvanische Abscheidung einheitlich und reproduzierbar und kann durch anschließende Behandlung mit KOH in eine aktivierte Schicht (Raney-Nickel-Schicht) einer Elektrode für die Chloralkalielektrolyse oder alkalische Wasserelektrolyse umgewandelt werden.In the activation of thin nickel electrodes, especially when perforated sheets now, however, difficulties arise: Useful deposits of Raney alloys, particularly Ni Zn alloys of a Ni 2 + / -, and Zn 2+ ions electrolyte containing require cathode current densities of 4 -7 A / dm 2 or more. At the same time, the potential across the entire surface of the electrode matrix to be coated with an activatable alloy must be as uniform as possible, ie, for uniform, controlled deposition, the potential differences within the cathode caused by ohmic voltage drop must not exceed 40 mV. With small sheet thicknesses of the electrode matrix of approximately 0.2-0.5 mm, as are preferred for alkaline water electrolysis because of the lower price and technological advantages compared to sheet thicknesses of 1 mm and higher, such potential differences within the cathode surface can be expected : For example, with the electroplated Ni / Zn coating of a technically dimensioned electrode Matrix for the alkaline water electrolysis of 2 - 4 m 2 , during the electrodeposition electrical currents in the order of 1000 - 3000 A. In order to be able to carry out the electrodeposition at such currents with a potential difference in the electrode of less than 40 mV, the ohmic resistance in the sheet must be kept correspondingly small. Either you increase the sheet thickness of the electrodes and accept considerable technological disadvantages and increased costs, or you keep the current path through the electrodes correspondingly short during the electrodeposition. In the case of larger electrode areas, this is only possible through a large number of contact points or lines. Only then can the galvanic deposition become uniform and reproducible and, after subsequent treatment with KOH, can be placed in an activated layer (Raney nickel layer) of an electrode for chloralkali electrolysis or alkaline water electrolysis being transformed.

Innerhalb des Elektrolyseurs für die alkalische Elektrolyse werden ebenfalls häufig Mehrfach-Kontaktierungen über die Elektrodenfläche hinweg benötigt, die sich allerdings mit den vorstehend beschriebenen in der Regel nicht decken, so daß die für die Beschichtung verwendeten Kontakte wieder entfernt und neue angebracht werden müssen. Dadurch entstehen auf der Elektrodenoberfläche die Einheitlichkeit und damit Leistung störende Fehler. Wenn man andererseits bei der galvanischen Abscheidung der Nickel-Legierung Druckkontakte für die Stromverteilung vorsieht, so entstehen an den Druckstellen unbeschichtete Bereiche, die später ebenfalls bei der Elektrolyse stören.Within the electrolyser for alkaline electrolysis, multiple contacts across the electrode surface are also often required, but these do not usually coincide with the ones described above, so that the contacts used for the coating have to be removed again and new ones have to be attached. This creates uniformity on the electrode surface and thus errors that interfere with performance. If, on the other hand, one provides pressure contacts for the current distribution during the electrodeposition of the nickel alloy, then uncoated areas arise at the pressure points, which later also interfere with the electrolysis.

Eine einheitliche, fehlerfreie und kontrollierte galvanische Ni/Zn-Beschichtung von dünnen Elektroden mit technischen Ausmaßen ist mithin in der üblichen Weise nicht erreichbar. Das Gleiche gilt selbstverständlich auch für Elektroden auf Co-und Fe-Basis, die durch Beschichtung mit einer Legierung aus Elektrodengrundmetall und einem durch Laugebehandlung herauslösbaren Metall wie Zinn oder Zink und abschließende Herauslösung dieser Komponente aktiviert werden.A uniform, error-free and controlled galvanic Ni / Zn coating of thin electrodes with technical dimensions can therefore not be achieved in the usual way. The same naturally also applies to electrodes based on Co and Fe, which are coated with an alloy of an electrode base metal and a metal such as tin or zinc which can be removed by lye treatment and then removed this component can be activated.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren vorzusehen, mit dem auch dünnste Elektroden mit einwandfreier katalytisch wirksamer Beschichtung auf einfache Weise herstellbar sind.The invention is therefore based on the object of providing a method with which even the thinnest electrodes with a perfect catalytically active coating can be produced in a simple manner.

Das zu diesem Zweck entwickelte erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man auf einem entfernbaren elektrisch leitenden Träger sowohl die zur Bildung der aktiven Schicht(en) erforderliche aktivierbare Legierung aus dem Grundmetall und durch Laugebehandlung herauslösbarem Metall, insbesondere Zink, als auch das Grundmetall in der für die herzustellende Elektrode erforderlichen Reihenfolge nacheinander abscheidet und die aktivierbare Legierung vor, während oder insbesondere nach Entfernung des Trägers durch Laugebehandlung aktiviert.The process according to the invention developed for this purpose is characterized in that both the activatable alloy required for forming the active layer (s) from the base metal and metal which can be removed by lye treatment, in particular zinc, as well as the base metal in a removable electrically conductive carrier deposits the sequence required for the electrode to be produced one after the other and activates the activatable alloy before, during or in particular after removal of the carrier by lye treatment.

Zwar ist die galvanische Erzeugung von Elektrodenblechen und auch die Aktivierung solcher Bleche durch galvanische Abscheidung von aktivierbaren Legierungen und deren Aktivierung durch Laugebehandlung bekannt, jedoch werden bislang beide Schritte (Blecherzeugung und galvanische Abscheidung von aktivierbarer Legierung) ausnahmslos gesondert vorgenommen, d.h., das bereits fertige Blech wird in einem gesonderten Prozeß galvanisch mit aktivierbarer Legierung versehen. Diese Verfahrensweise hat insbesondere bei der Herstellung von dünnen Elektroden die oben gegenannten Nachteile , wobei noch zusätzlich Haftprobleme der Legierunqsschicht am Elektrodenblech durch schwer erfaßbare Oberflächenveränderungen durch Trocknung, Lagerung, Versand und Manipulation der Bleche auftreten können.Although the galvanic production of electrode sheets and also the activation of such sheets by galvanic deposition of activatable alloys and their activation by alkali treatment are known, so far both steps (sheet production and galvanic deposition of activatable alloy) have been carried out separately without exception, that is, the already finished sheet is galvanically provided with activatable alloy in a separate process. This procedure has the disadvantages mentioned above, in particular in the production of thin electrodes, with additional adhesion problems of the alloy layer on the electrode sheet due to surface changes which are difficult to detect due to drying, storage, shipping and manipulation of the sheets.

Gemäß der Erfindung wird Elektrodengrundmetall, wie insbesondere reines Nickel, als tragende Kernschicht und aktivierbare Legierung, insbesondere Ni/Zn-Legierung (Mit einheitlicher oder sich ändernder Zn-Konzentration), in unterschiedlicher, zweckmäßiger Reihenfolge auf einer elektrisch gut leitenden Unterlage galvanisch abgeschieden. Solche entfernbaren Träger für die galvanische Erzeugung von Blechen und Bauteilen sind im Fachbereich bekannt. Zur Erzeugung einer beidseits aktiven Elektrode wird beispielsweise zunächst aktivierbare Legierung (z.B. NiZn) auf einem Träger abgeschieden und anschließend reines Grundmetall (z.B. Nickel), wonach nochmals eine aktivierbare Legierungsschicht (z.B. wiederum NiZn) aufgetragen wird. Man kann aber auch lediglich einseitig aktivierbare Doppelschichten erzeugen oder auch beipsielsweise zusammen mit dem Grundmetall Pulverteilchen, z.B. Nickelpulver, abscheiden, was zu einer Aufrauhung der Kernschicht führt.According to the invention, electrode base metal, such as, in particular, pure nickel, is electrodeposited as a supporting core layer and activatable alloy, in particular Ni / Zn alloy (with a uniform or changing Zn concentration), in a different, expedient order on an electrically well-conductive base. Such removable carriers for the galvanic production of metal sheets and components are known in the art. To produce an electrode that is active on both sides, for example, an activatable alloy (for example NiZn) is first deposited on a carrier and then pure base metal (for example nickel), after which an activatable alloy layer (for example again NiZn) is applied again. However, it is also possible to produce double layers which can only be activated on one side or, for example, to deposit powder particles, for example nickel powder, together with the base metal, which leads to roughening of the core layer.

Die Aktivierung der Legierungsschicht erfolgt in üblicher Weise durch Laugebehandlung, die vor der Ablösung der mehrschichtigen Abscheidung vom Träger vorgenommen wird oder auch gleichzeitig damit. Insbesondere wird jedoch die galvanische Abscheidung zunächst vom Träger entfernt und dann durch Laugebehandlung aktiviert.The alloy layer is activated in the usual way by lye treatment, which is carried out before the multilayer deposition is detached from the support or simultaneously with it. In particular, however, the galvanic deposition is first removed from the carrier and then activated by lye treatment.

Gemäß der Erfindung werden selbstragende aktivierte Elektroden mit einer Stärke von weniger als 1 mm erhalten, insbesondere durch ein Schnellverfahren, bei dem die Schichten mit einer Stromstärke von etwa 10 - 20 A/dm2 abgeschieden werden.According to the invention, self-supporting activated electrodes with a thickness of less than 1 mm are obtained, in particular by a rapid process in which the layers are deposited with a current strength of approximately 10-20 A / dm 2 .

Vorzugsweise liegt die Dicke der Kernschicht bei etwa 0,1 - 0,5 mm insbesondere zwischen 0,1 und 0,3 mm und diejenige der aktivierbaren Legierung bei etwa 10 - 100 pm.The thickness of the core layer is preferably about 0.1-0.5 mm, in particular between 0.1 and 0.3 mm, and that of the activatable alloy is about 10-100 μm.

Die Kernschicht (sowie die Aktivierungsschichten) werden in gewünschter Form, wie z.B. durchgehend oder als Lochblech oder dergleichen erzeugt, was durch Molettieren oder durch Anwendung von Phototlack nach Art der Erzeugung gedruckter Schaltungen ohne weiteres möglich ist.The core layer (as well as the activation layers) are made in the desired form, e.g. produced continuously or as a perforated plate or the like, which is easily possible by metting or by using photoresist in the manner in which printed circuits are produced.

Man kann die zu aktivierenden Schichten der Elektroden auch mit einem von der Kernschicht unterschiedlichen "Lochmuster" versehen, sodaß die fertige Elektrode metallisch blanke Bereiche aufweist, über die dann eine Druckkontaktierung der Elektroden möglich ist. So kann beispielsweise die erste auf der entfernbaren Unterlage gebildete ak-tivierbare Schicht mit einem den späteren Auflagepunkten der Elektrode auf einer Unterlage wie z.B. einem Warzenblech entsprechenden Lochmuster gebildet werden, wonach die Kernschicht unter Einschluß dieser Bereiche aufgetragen wird. Eine solche Lochmusterbildung nur in der Aktivierungsschicht kann nach bekannter Technik mit Hilfe von zweilagigen Photomasken oder zwei einlagigen Masken erreicht werden. An solchen metallisch blanken Stellen der aktivierten Elek_trode ist der übergangswiderstand bei einem lose federnden Kontakt der Elektroden mit einer metallisch leitenden "Unterlage" praktisch vernachlässigbar.The layers of the electrodes to be activated can also be provided with a "hole pattern" different from the core layer, so that the finished electrode has bright metallic areas which then makes pressure contacting of the electrodes possible. For example, the first activatable layer formed on the removable base can be formed with a hole pattern corresponding to the later points of contact of the electrode on a base such as a checker plate, after which the core layer is applied including these areas. Such hole pattern formation only in the activation layer can be achieved according to known technology with the help of two-layer photomasks or two single-layer masks. At such bare metal areas of the activated electrode, the contact resistance is practically negligible when the electrodes are loosely springy in contact with a metallic conductive "base".

Das Herstellungsverfahren wird nachfolgend anhand von Beispielen näher erläutert:The production process is explained in more detail below using examples:

Beispiel 1example 1

Auf eine kathodisch polarisierte Unterlage aus poliertemverchromten Stahl wurde zunächst eine 50 µm dicke Schicht aus Ni/Zn-Legierung (Ni/Zn-Gewichtsverhältnis 60:40) galvanisch abgeschieden. Der Elektrolyt enthielt NiCl2, ZnCl2 und H3B03. Elektrolysiert wurde bei 60°C und kathodischer Stromdichte von 5 A/dm2. Danach wurde eine 150 µm dicke Schicht von reinem Nickel abgeschieden. Elektrolysiert wurde mit einer Stromdichte von 5 A/dm2 und Badtemperatur von 50°C in einem Elektrolyten, der NiS04, NaCl und H3B03 enthielt. Anschließend wurde eine dritte 50 µm dicke Ni/Zn-Schicht gleicher Zusammensetzung wie die erste galvanisch hergestellt.A 50 µm thick layer of Ni / Zn alloy (Ni / Zn weight ratio 60:40) was first electroplated onto a cathodically polarized base made of polished chrome-plated steel. The electrolyte contained NiCl 2 , ZnCl 2 and H 3 B0 3 . Electrolysis was carried out at 60 ° C. and a cathodic current density of 5 A / dm 2 . A 150 μm thick layer of pure nickel was then deposited. Electrolysis was carried out with a current density of 5 A / dm 2 and bath temperature of 50 ° C. in an electrolyte which contained N iS0 4 , N aCl and H 3B 0 3 . A third 50 µm thick Ni / Zn layer of the same composition as the first was then galvanically produced.

Das so entstandene Blech aus drei Schichten wurde von der Edelstahlelektrode mechanisch abgezogen (Fig.1) und anschließend mit heißer KOH behandelt, so daß sich Zn auflöste und eine poröse Nickelschicht hinterließ. Auf diese Weise wurde eine auf beiden Seiten mit Raneynickel katalytisch beschichtete Elektrode erhalten, die als Anode und Kathode für eine alkalische Wasserelektrolyse verwendet wurde: In 10 M KOH wurden bei 100°C und einer Stromdichte von 200 mA/cm2 folgende Potentialwerte gegen eine HgO-Bezugselektrode gemessen:

  • Kathodisch: - 1005 mV
  • Anodisch: + 490 mV
The resulting sheet of three layers was mechanically removed from the stainless steel electrode (Fig. 1) and then treated with hot KOH, so that Zn dissolved and a porous nickel layer was left behind. In this way, one Obtained catalytically coated electrode on both sides with Raney nickel, which was used as an anode and cathode for an alkaline water electrolysis: The following potential values were measured against an HgO reference electrode in 10 M KOH at 100 ° C. and a current density of 200 mA / cm 2 :
  • Cathodic: - 1005 mV
  • Anodic: + 490 mV

Die Summe beider Potentiale ergibt 1495 mV. Eine Wasserelektrolyse mit diesen Elektroden und einem NiO-Diaphragma arbeitete bei einer Zellspannung von 1,53 V. Beides sind außerordentlich gute Kenndaten.The sum of both potentials is 1495 mV. Water electrolysis with these electrodes and a NiO diaphragm worked at a cell voltage of 1.53 V. Both are extremely good characteristics.

Beispiel 2Example 2

verchromten Auf einer polierten / Stahlunterlage wurde nach der bei gedruckten Schaltungen üblichen Technik fotographisch eine Lackmaske erzeugt, deren Muster die galvanische Abscheidung eines Lochblechs (Lochdurchmesser 4 mm, freie Oberfläche 41%) ermöglichte. Wie in Beispiel 1 wurden wiederum drei Schichten galvanisch abgeschieden (erste Ni/Zn, zweite Ni, dritte Ni/Zn), das so entstandene Lochblech von der Edelstahlunterlage mechanisch abgezogen und mit KOH aktiviert.chrome-plated On a polished / steel base, a paint mask was created photographically using the technique common to printed circuits, the pattern of which enabled the galvanic deposition of a perforated plate (hole diameter 4 mm, free surface 41%). As in Example 1, three layers were again electrodeposited (first Ni / Zn, second Ni, third Ni / Zn), the perforated plate formed in this way was mechanically removed from the stainless steel base and activated with KOH.

Die erhaltenen aktiven Elektroden wurden gemeinsam mit einem NiO-Diaphragma in eine Elektrolysezelle für die alkalische Wasserelektrolyse eingebaut und die Elektrolyse durchgeführt. In KOH-Lösung wurde bei 1000c und 200 mA/cm2 eine Zellspannung von 1,52 V gemessen. Die gesamte Strom-Spannungskurve ist in Figur 2 dargestellt.The obtained active electrodes were fitted together with a N i O -Diaphragma in an electrolysis cell for alkaline water electrolysis, and performing the electrolysis. A cell voltage of 1.52 V was measured in K OH solution at 100 ° C. and 200 mA / cm 2 . The entire current-voltage curve is shown in FIG. 2.

Die vorstehenden beiden Beispiele zeigen deutlich, daß man gemäß der Erfindung sehr einfach aktive Elektroden für alkalische Elektrolysen erhalten kann. Die Beschichtungs- und Elektrodenformen lassen sich ähnlich wie bei den gedruckten Schaltungen leicht vorgeben und variieren.The above two examples clearly show that active electrodes for alkaline electrolysis can be obtained very easily according to the invention. The coating and electrode shapes can be easily specified and varied similarly to the printed circuits.

Die gemäß der Erfindung hergestellten Elektroden zeichnen sich nicht nur durch hohe Effektivität sondern auch durch leichte Herstellbarkeit und geringeren Materialverbrauch aus, und sie sind daher sehr preiswert. Sehr dünne, großflächige, aktive Elektroden sind im übrigen galvanisch nur so einwandfrei herstellbar: Ausgehend von einem vorgegebenen dünnen Nickelblech von beispielsweise 150 um könnten größere Elektroden wegen der oben erwähnten Kontaktschwierigkeiten galvanisch durch Ni/Zn-Abscheidung und anschließende Laugebehandlung nicht einheitlich und kontrolliert aktiviert werden.The electrodes produced according to the invention are not only characterized by high effectiveness, but also by easy manufacture and lower material consumption, and are therefore very inexpensive. Very thin, large-area, active electrodes can only be produced galvanically in this way: Starting from a given thin nickel sheet of 150 µm, for example, larger electrodes could not be activated in a uniform and controlled manner by Ni / Zn deposition and subsequent alkali treatment because of the contact difficulties mentioned above .

Beispiel 3Example 3

Die Verfahrensweise von Beipiel 1 wurde wiederholt, jedoch wurde die Nickelschicht aus einem Elektrolyten mit darin aufgewirbeltem Carbonylnickelpulver abgeschieden, so daß zusammen mit der sich bildenden Nickelschicht Pulverpartikeln galvanisch fixiert wurden. Auf diese Weise konnte in die Ni-Zwischenschicht eine Aufrauhung eingebaut werden, die für manche Zwecke nützlich ist, wie z.B. zur Verminderung von Potentialdifferenzen durch Vergrößerung der geometrischen Oberfläche. Diese Elektrode zeigte ebenfalls nach dem Aktivieren die gleichen ausgezeichneten Eigenschaften bei der Wasserelektrolyse wie die Elektrode gemäß Beispiel 1.The procedure of Example 1 was repeated, but the nickel layer was deposited from an electrolyte with carbonyl nickel powder whirled up therein, so that powder particles were galvanically fixed together with the nickel layer which formed. In this way, a roughening could be built into the Ni intermediate layer, which is useful for some purposes, e.g. to reduce potential differences by increasing the geometric surface. This electrode also showed the same excellent properties in water electrolysis after activation as the electrode according to Example 1.

Man kann selbstverständlich auch Elektroden herstellen, die nur auf zwei Schichten basieren (einer Ni-Schicht und einer aktivierbaren Ni-Zn-Legierungsschicht). Bei der Abscheidung der Legierung kann ferner durch Variation der Stromdichte für ein sich änderndes Ni:Zn Verhältnis gesorgt werden, und auf diese Weise nicht nur drei diskrete Schichten sondern ein mehrschichtiges Material erzeugt werden. Letztere Verfahrensweise ist für gewisse Spezialzwecke von Nutzen. M an can of course also produce electrodes that are based on only two layers (a Ni layer and an activatable Ni-Zn alloy layer). During the deposition of the alloy, a changing Ni: Zn ratio can also be provided by varying the current density, and in this way not only three discrete layers but also a multi-layer material can be produced. The latter procedure is useful for certain special purposes.

Claims (8)

1. Verfahren zur Herstellung von aktivierten Elektroden aus Grundmetall auf der Basis von Eisen, Kobalt, Nickel mit aktiver Beschichtung durch galvanische Abscheidung und Aktivierung, dadurch gekennzeichnet , daß man auf einem entfernbaren elektrisch leitenden Träger sowohl die zur Bildung der aktiven Schicht(en) erforderliche aktivierbare Legierung aus dem Grundmetall und durch Laugebehandlung herauslösbarem Metall, insbesondere Zink, als auch das Grundmetall in der für die herzustellende Elektrode erforderlichen Reihenfolge nacheinander abscheidet und die aktivierbare Legierung vor, während oder insbesondere nach Entfernung des Trägers durch Laugebehandlung aktiviert.1. A process for the production of activated electrodes made of base metal on the basis of iron, cobalt, nickel with active coating by electrodeposition and activation, characterized in that both the formation of the active layer (s) required on a removable electrically conductive carrier as well as the G around metal in the time required for the produced electrode order successively deposited before and activatable alloy, during, or especially after removal of the carrier activated activatable alloy of the base metal and by alkali treatment leachable metal, in particular zinc by alkali treatment. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß der entfernbare, elektrisch leitendurch Molettieren oder de Träger vor der Galvanisierung durch molettieren oder photolacktechnisch mit einem zur gewünschten Elektrodenstruktur korrespondierenden Isolierlackmuster versehen wird.2. The method according to claim 1, characterized in that the removable, electrically conductive by metting or d e carrier prior to the galvanization by metting or photoresist is provided with an insulating lacquer pattern corresponding to the desired electrode structure. 3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch eine zweimalige Abscheidung von aktivierbarer Legierung mit dazwischen abgeschiedener Grundmetallschicht.3. The method according to claim 1 or 2, characterized by a double deposition of activatable alloy with a base metal layer deposited in between. 4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet , daß zusammen mit der Grundmetallabscheidung laugebeständiges Metallpulver, insbesondere Nickelpulver, galvanisch fixiert wird.4. The method according to any one of the preceding claims, characterized in that together with the base metal separation alkali-resistant metal powder, in particular nickel powder, is fixed galvanically. 5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet , daß zumindest eine der aktivierbaren Schichten mit einem für die spätere Druckkontaktierung der Elektrode an freiliegendem Grundmetall erforderlichen Lochmuster erzeugt wird. 5 . Method according to one of the preceding claims, characterized in that at least one of the activatable layers is produced with a hole pattern required for the subsequent pressure contacting of the electrode on exposed base metal. 6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet , daß die aktivierbare Legierung in einer Dicke von 10 bis 100 pm und das Grundmetall selbst in einer Dicke von o,1 bis 0,5 mm insbesondere 0,1 bis 0,3 mm abgeschieden wird.6. The method according to any one of the preceding claims, characterized in that the activatable alloy is deposited in a thickness of 10 to 100 pm and the base metal itself in a thickness of 0.1 to 0.5 mm, in particular 0.1 to 0.3 mm becomes. 7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet , daß die Abscheidung mit einer Stromdichte von 10 bis 20 A/dm2 erfolgt.7. The method according to any one of the preceding claims, characterized in that the deposition takes place with a current density of 10 to 20 A / dm 2 . 8. Aktivierte Elektroden einer Stärke von <1mm erhältlich nach einem der vorangehenden Ansprüche.8. Activated electrodes with a thickness of <1 mm obtainable according to one of the preceding claims.
EP84110050A 1983-08-27 1984-08-23 Electrodes based on nickel, cobalt, iron, with active coating, and process for their manufacture Expired EP0142638B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84110050T ATE37908T1 (en) 1983-08-27 1984-08-23 ACTIVATED ELECTRODES BASED ON NI, CO, FE WITH ACTIVE COATING AND METHOD OF MAKING THE SAME.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3330961A DE3330961C2 (en) 1983-08-27 1983-08-27 Activated electrodes based on Ni, Co, Fe with an active coating and process for the production of the same
DE3330961 1983-08-27

Publications (2)

Publication Number Publication Date
EP0142638A1 true EP0142638A1 (en) 1985-05-29
EP0142638B1 EP0142638B1 (en) 1988-10-12

Family

ID=6207611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84110050A Expired EP0142638B1 (en) 1983-08-27 1984-08-23 Electrodes based on nickel, cobalt, iron, with active coating, and process for their manufacture

Country Status (9)

Country Link
US (1) US4584065A (en)
EP (1) EP0142638B1 (en)
JP (1) JPS6067688A (en)
AT (1) ATE37908T1 (en)
BR (1) BR8404256A (en)
CA (1) CA1271157A (en)
DE (2) DE3330961C2 (en)
NO (1) NO162388B (en)
ZA (1) ZA846599B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743354A1 (en) * 1987-12-21 1989-06-29 Kernforschungsanlage Juelich METHOD FOR PRODUCING POROUS ELECTRODES
DE19530193A1 (en) * 1995-08-17 1997-02-20 Bosch Gmbh Robert Nozzle plate, in particular for fuel injection valves, and method for producing a nozzle plate
GB2321646B (en) * 1997-02-04 2001-10-17 Christopher Robert Eccles Improvements in or relating to electrodes
DE19963443A1 (en) * 1999-12-28 2001-07-05 Basf Ag Thin film catalysts based on Raney alloys and process for their production
JP6208992B2 (en) * 2013-06-27 2017-10-04 日立造船株式会社 Alloy electrode for oxygen generation and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1709801A (en) * 1924-03-04 1929-04-16 Karl Mey Manufacture of thin metallic foils
US4250004A (en) * 1980-02-25 1981-02-10 Olin Corporation Process for the preparation of low overvoltage electrodes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3097149A (en) * 1963-07-09 Methods of manufacturing microporous metallic membranes
US1071036A (en) * 1912-04-12 1913-08-26 Electrolytic Products Co Method of process of producing hollow tapes, ribbons, or bands of metal.
GB989003A (en) * 1960-10-07
DE1294943B (en) * 1964-11-19 1969-05-14 Pintsch Bamag Ag Electrode for water electrolysis
US3594292A (en) * 1968-12-30 1971-07-20 Gen Electric Process for producing articles with apertures or recesses of small crosssection and articles produced thereby
DE2613285C3 (en) * 1976-03-29 1978-09-21 Battelle-Institut E.V., 6000 Frankfurt Method and device for the production of superconductive! material
US4104133A (en) * 1977-07-27 1978-08-01 Diamond Shamrock Corporation Method of in situ plating of an active coating on cathodes of alkali halide electrolysis cells
DE2914094C2 (en) * 1979-04-07 1983-02-10 Kernforschungsanlage Jülich GmbH, 5170 Jülich Porous nickel electrode for alkaline electrolysis, process for producing the same and its use
US4221643A (en) * 1979-08-02 1980-09-09 Olin Corporation Process for the preparation of low hydrogen overvoltage cathodes
US4331517A (en) * 1981-04-02 1982-05-25 Ppg Industries, Inc. Method of preparing a cathode by high and low temperature electroplating of catalytic and sacrificial metals, and electrode prepared thereby
US4432839A (en) * 1981-06-18 1984-02-21 Diamond Shamrock Corporation Method for making metallided foils

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1709801A (en) * 1924-03-04 1929-04-16 Karl Mey Manufacture of thin metallic foils
US4250004A (en) * 1980-02-25 1981-02-10 Olin Corporation Process for the preparation of low overvoltage electrodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN, Band 25, Nr. 3A, August 1982, Seiten 922-923, New York, USA; M.L. BLOCK et al.: "Metal foil preparative method" *

Also Published As

Publication number Publication date
DE3330961C2 (en) 1986-04-17
NO843393L (en) 1985-02-28
DE3474572D1 (en) 1988-11-17
US4584065A (en) 1986-04-22
NO162388B (en) 1989-09-11
EP0142638B1 (en) 1988-10-12
ZA846599B (en) 1985-04-24
ATE37908T1 (en) 1988-10-15
CA1271157A (en) 1990-07-03
DE3330961A1 (en) 1985-03-07
JPS6067688A (en) 1985-04-18
BR8404256A (en) 1985-07-23

Similar Documents

Publication Publication Date Title
DE10007448B4 (en) Activated cathode and process for its preparation
DE2708043A1 (en) CLAD METALLIC CATHOD
DE3108992A1 (en) CATALYTICALLY EFFECTIVE ELECTRODE, PRODUCTION PROCESS AND APPLICATION OF THE ELECTRODE
DD243718A5 (en) ELECTRODE FOR ELECTROCHEMICAL PROCESSES, METHOD FOR THE PRODUCTION THEREOF
DE2907179A1 (en) METHOD OF MANUFACTURING AN ELECTRODE
DE3116032A1 (en) CATHODE FOR ELECTROCHEMICAL REACTIONS AND METHOD FOR THEIR PRODUCTION
DE3001946A1 (en) NICKEL MOLYBDAEN CATHODE
DE2929787C2 (en) Method for producing a porous electrode surface on a metal substrate
DE3047636A1 (en) CATHODE, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AND ELECTROLYSIS CELL
DE2010169A1 (en) Electrochemical process for introducing trace amounts of a material into the surface layer of a carrier
DE1471790A1 (en) Process for the production of coatings from metal alloys on electrodes for fuel cells
DE2652152A1 (en) Electrodes for electrolytic devices - comprising conductive substrate, electrolyte-resistant coating with occlusions to improve electrode activity
DE3003819A1 (en) Electrode, esp. cathode for electrolysis of brine - has active coating of iron with specified nickel and/or cobalt content to reduce hydrogen overvoltage
DE3004262A1 (en) EFFECTIVE ELECTRODE FOR ELECTROCHEMICAL CELLS WITH REDOX SYSTEMS AND METHOD FOR PRODUCING THE ELECTRODE
WO1999050855A1 (en) Medicinal, radioactive ruthenium radiation sources with high dosage rate and method for producing the same
EP0142638B1 (en) Electrodes based on nickel, cobalt, iron, with active coating, and process for their manufacture
EP3159433B1 (en) Electrode for the alkaline electrolysis of water
DE2527386A1 (en) CATHODE SURFACES WITH LOW HYDROGEN OVERVOLTAGE
WO2001027355B1 (en) Method for producing an electrolytically coated cold rolled strip, preferably for use in the production of battery sheaths, and battery sheath produced according to said method
EP0988656B1 (en) Production of electrolyte units by electrolytic deposition of a catalyst
DE3022751A1 (en) LOW OVERVOLTAGE ELECTRODE AND METHOD FOR PRODUCING THE SAME
DE2852136A1 (en) METHOD OF MANUFACTURING AN INSOLUBLE ELECTRODE
DE2449603A1 (en) Electrodes for electrochemical processes - using porous outer layer of filings bonded to the core by electroplating
DE1256504B (en) Process for the galvanic production of insoluble anodes for electrochemical processes
WO1989004556A1 (en) Electrochemical process for manufacturing a pore-free membrane based on palladium and supported by a porous metallic element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19851028

17Q First examination report despatched

Effective date: 19860918

D17Q First examination report despatched (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 37908

Country of ref document: AT

Date of ref document: 19881015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3474572

Country of ref document: DE

Date of ref document: 19881117

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920813

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920817

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920824

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920825

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920827

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920831

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930823

Ref country code: GB

Effective date: 19930823

Ref country code: AT

Effective date: 19930823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84110050.6

Effective date: 19940310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960723

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960822

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960823

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: METALLGESELLSHAFT A.G.

Effective date: 19970831

Owner name: KERNFORSCHUNGSANLAGE JULICH G.M.B.H.

Effective date: 19970831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501