EP0139638B1 - Isolierungsanalysierungsvorrichtung und verfahren - Google Patents

Isolierungsanalysierungsvorrichtung und verfahren Download PDF

Info

Publication number
EP0139638B1
EP0139638B1 EP83901473A EP83901473A EP0139638B1 EP 0139638 B1 EP0139638 B1 EP 0139638B1 EP 83901473 A EP83901473 A EP 83901473A EP 83901473 A EP83901473 A EP 83901473A EP 0139638 B1 EP0139638 B1 EP 0139638B1
Authority
EP
European Patent Office
Prior art keywords
signal
insulation
current
time
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83901473A
Other languages
English (en)
French (fr)
Other versions
EP0139638A1 (de
EP0139638A4 (de
Inventor
Steven A. Leszczynski
Peter H. Reynolds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT83901473T priority Critical patent/ATE40218T1/de
Publication of EP0139638A1 publication Critical patent/EP0139638A1/de
Publication of EP0139638A4 publication Critical patent/EP0139638A4/de
Application granted granted Critical
Publication of EP0139638B1 publication Critical patent/EP0139638B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the present invention relates to measurement of insulation resistance, and other related properties of a specimen.
  • the apparatus and method claimed (claims 1 and 3) is a refinement and improvement of apparatus and method disclosed in U.S. Patent Cooperation Treaty patent application Serial No. 81/01647, filed December 14,1981, the invention of Peter H. Reynolds. Using such improvements, it is able to achieve high accuracy over a wider range of measured parameters (see also Internationale Electronische Rundschau, Vol. 26, No 8, August 1972, pages 184 ⁇ 188; F. Wolf:" Digital and analog an accordendes Tera-Ohmmeter mit Kontinuierlich ein combiner Mesnaps").
  • E. B Curdts described a method of calculating i c from I TOT .
  • the derived equation is where i 1 , i 3 . 16 and i 10 are three different values of I TOT measured at different times, based on a constant unit of time multiplied by their subscripts, i.e., 1, 3.16 and 10 minutes.
  • the equation assumed that the unit time chosen was long enough such that ig, the geometric capacitance charging current, has become negligible. In application of this equation, however, some limitations may be encountered to which the following two case examples are illustrative.
  • the total current in a capacitive sample is made up of three components such that as represented in the schematic circuit diagram of Fig. 1.
  • Fig. 1 has been discussed above and in the parent United States Patent Cooperation Treaty application.
  • the microprocessor 13 is the central element of the instrument. Its functions include sequencing of the test, switching signal paths, controlling the elapsed timer clock, gathering data, performing all necessary mathematical manipulations, making decisions relative to the data obtained, converting the data gathered to readable English format and controlling both an output device (printer) and input device (keyboard).
  • the memory 15 serves to store the list of actions and sequence of operations necessary to perform the test. Collectively this set of instructions is referred to herein as the instrument program.
  • Another section of memory 15 acts as a storage area where the microprocessor 13 stores data during the test sequence for future use.
  • the basic test circuit is comprised of d.c. supply 1, a sense resistor (Rs) 2, and the Specimen 5 under test connected to the instrument via connections 4 and 6.
  • the d.c. supply 1 is programmed by the microprocessor to the desired test voltage.
  • the d.c. supply can also be switched in or out of the test circuit by the microprocessor.
  • I TOT ' a voltage sense and level shift amplifier 3 is attached across the sense resistor.
  • This amplifier has a high impedance input so that the effect of loading upon the sense resistor 2 is negligable with regard to circuit operation.
  • the voltage sensor portion of device 3 measures this voltage and amplifies it with a gain which is set by the microprocessor 13 to provide the widest dynamic range and best resolution possible for the specimen being tested. Since neither side of the sense resistor 2 is at ground potential, the resultant amplified signal generated by the voltage sense portion of 3 is also not ground referenced. In fact, the signal may be at a potential of several thousands volts removed from ground.
  • a level shift is incorporated to move the differentially generated I TOT signal to a ground referenced I ToT which is the second function of the voltage sense and level shift amplifier 3.
  • the algorithm based on the foregoing mathematical analysis and employed in the embodiment requires that the solution to the equations is based upon the value of I TOT ' (the derivative of I TOT ). For this reason the signal path exiting amplifier 3 is split in two.
  • One path of the I TOT signal is fed into an analog to digital converter (A/D) 7 which is under microprocessor 13 control and can convert the magnitude of I TOT to a digital form (numerical value) for use within the microprocessor.
  • the other path of the I ToT signal is fed to a differentiator (d/dt) 8 which produces the desired differentiated signal I TOT '.
  • the gain of the differentiator 8 described in the algorithm as the quantity K is controlled by the microprocessor 13 to ensure that the differentiator 8 has ample dynamic range and resolution'to ensure high accuracy results.
  • the I ToT ' signal path feeds both the sample/hold memory 9 and one side of the comparator 11.
  • the algorithm describes the need to measure the elapsed time it takes the I ToT ' signal magnitude to drop in magnitude by half.
  • the sample/hold memory 9 is used to store, by analog means, the initial value of I TOT '.
  • the state of the sample/hold memory 9 is controlled by the microprocessor 13. When in the sample mode, the output of the sample/hold memory simply follows or tracks the input magnitude.
  • the output value is held constant so that it no longer tracks the input signal. This is accomplished by trapping voltage on a capacitor by using a very high impedance buffer and a switch.
  • the output of the sample/hold memory 9 retains or stores the magnitude of what the I TOT ' signal was at the instant in time when the sample/hold memory 9 was instructed to hold.
  • the precision voltage divider 10 establishes an output of 0.5 times the input value and places this signal into the second side of comparator 11 for comparison with the instanteous value of I TOT ' (stored).
  • the time it takes for the ' TOT ' signal to drop in magnitude by 50% as described in the algorithm is measured by an elapsed time counter 12.
  • the microprocessor 13 gathers such elapsed time data from the elapsed time counter 12 via signal path 16.
  • the microprocessor 13, and the associated memory 15 are programmed to compute and from this This value may then be displayed on the display of display and controls 14, either as an analog or digital display or directly printed by a printer or any other convenient method of indicating the result.
  • Display and controls 14 also incorporates controls to permit the operator to control the ranges and other settings of the apparatus. Since the value of i c and E s are both known, the microprocessor 13 can be programmed to calculate the true insulation resistance value. This value can be displayed on display 14 in place of or in addition to the value of i c .
  • the apparatus can measure and store values of I ToT , it is also possible to measure the value of apparent insulation resistance, which is the "insulation resistance” measured by conventional megohmmeters such as the "Megger"° range of insulation testers made by the James G. Biddle Co. of Blue Bell, PA.
  • insulation resistance measured by conventional megohmmeters such as the "Megger"° range of insulation testers made by the James G. Biddle Co. of Blue Bell, PA.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Formation Of Insulating Films (AREA)

Claims (3)

1. Gerät zur Berechnung des Kriechstromes ic als ein Mass des Isolationswiderstandes für eine Isolationsprobe (5) mit:
Mitteln (3) zum Ablesen von Spannung an einer Leseimpedanz (2) in einer Schaltung mit einer Spannungsversorgung (1) und einer Isolationsprobe (5) zum Erzeugen eines den Isolationsgesamtstrom ITOT darstellenden Signals,
Mitteln (7) zum Umwandeln des Isolationsstromgesamtsignals in digitale Form,
den Isolationsgesamtstrom zeitlich differenzierende Mittel (3) zum Erzeugen eines ersten abgeleiteten Signals,
Abtastmittel (9, 10) zum Auswählen und Halten eines festen Momentanwertes des besagten ersten abgeleiteten Signals und zum Erhalten eines vorbestimmten Anteiles R des besagten ersten festen abgeleiteten Signals, -
Vergleichermittel (11) zum Aufnehmen und Vergleichen besagten vorbestimmten Anteiles R des besagten ersten festen Ableitungssignals mit dem ersten abgeleiteten Signal,
einem Zeitablaufrechner (12), der von dem Vergleicher (11) ein Ausgangssignal erhält, womit von der Zeit Z der Probennahme bis zur Zeit, zu der die verglichenen Signale einander gleich sind, eine Messung durchgeführt werden kann,
Mittel (13) zum Aufnehmen der Zeitablaufinformation zum Berechnen einer Konstante n entsprechend der folgenden Formel
Figure imgb0023
und zum Anlegen der Konstante an die digitale Darstellung des Isolationsgesamtstromes und zur Berechnung des Kriechstromes unter Verwendung der folgenden Formel
Figure imgb0024
wobei X und Y vorbestimmte Zeiten sind.
2. Gerät nach Anspruch 1, dadurch gekennzeichnet, dass mindestens die Mittel (13) zur Berechnung der Konstanten n und zur Berechnung des Kriechstromes durch einen Mikroprozessor bereitgestellt werden.
3. Verfahren zur Berechnung des Kriechstromes ic als einem Mass des Isolationswiderstandes in einer Isolationsprobe mit:
Lesen der Stromhöhe in der Isolationsprobe mit Analyse zur Erzeugung eines den Isolationsgesamtstrom ITOT darstellenden Signals,
Umwandeln dieses Isolationsgesamtstromsignals in Digitalform und Einspeisen desselben in Rechnermittel,
zeitlichem Differenzieren des Isolationsgesamtstromsignals,
Abtasten eines Festteils des differenzierten Signals zu einer Zeit, zu der ein konstantes Signal mit Festwert sicher erhalten werden kann,
Entnahme eines vorbestimmten Anteils R des abgetasteten konstanten Signals mit Festwert,
Vergleichen des vorbestimmten Anteiles des konstanten Festwertes mit dem differenzierten Signal über eine Zeitperiode,
Messen der abgelaufenen Zeit Z, die von dem Differenzialsignal dafür benötigt wird, denselben Wert wie der vorbestimmte Anteil des konstanten Signals mit Festwert zu erreichen,
Berechnen einer Gleichungskonstanten n aus der besagten abgelaufenen Zeit nach der Formel:
Figure imgb0025
und
Berechnen des Kriechstromes (ic) in der Isolationsprobe mit Verwendung des abgeleiteten n in der folgenden Formel:
Figure imgb0026
wobei X und Y vorbestimmte Zeiten sind.
EP83901473A 1983-03-14 1983-03-14 Isolierungsanalysierungsvorrichtung und verfahren Expired EP0139638B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83901473T ATE40218T1 (de) 1983-03-14 1983-03-14 Isolierungsanalysierungsvorrichtung und verfahren.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1983/000374 WO1984003772A1 (en) 1983-03-14 1983-03-14 Insulation analyzer and method

Publications (3)

Publication Number Publication Date
EP0139638A1 EP0139638A1 (de) 1985-05-08
EP0139638A4 EP0139638A4 (de) 1986-02-10
EP0139638B1 true EP0139638B1 (de) 1989-01-18

Family

ID=22174897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83901473A Expired EP0139638B1 (de) 1983-03-14 1983-03-14 Isolierungsanalysierungsvorrichtung und verfahren

Country Status (5)

Country Link
EP (1) EP0139638B1 (de)
JP (1) JPS60500881A (de)
AT (1) ATE40218T1 (de)
DE (1) DE3378996D1 (de)
WO (1) WO1984003772A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ217223A (en) * 1986-08-15 1990-04-26 Fisher & Paykel Measuring sensor resistance as a function of rc charge/ discharge time
FR2634899B1 (fr) * 1988-07-28 1990-11-30 Merlin Gerin Circuit d'entree, du type tout ou rien, d'un automate programmable

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2916697A (en) * 1955-07-05 1959-12-08 Bourns Inc Insulation resistance measuring circuit
US3437925A (en) * 1965-10-23 1969-04-08 Dana Lab Inc Circuit for converting resistance values of unknown resistor to electrical potential signal for measurement purposes
US4217543A (en) * 1977-05-23 1980-08-12 John Fluke Mfg. Co., Inc. Digital conductance meter

Also Published As

Publication number Publication date
EP0139638A1 (de) 1985-05-08
DE3378996D1 (en) 1989-02-23
JPS60500881A (ja) 1985-06-06
JPH0546505B2 (de) 1993-07-14
WO1984003772A1 (en) 1984-09-27
EP0139638A4 (de) 1986-02-10
ATE40218T1 (de) 1989-02-15

Similar Documents

Publication Publication Date Title
US4189367A (en) Method for testing ion selective electrodes in continuous measuring systems
EP0609334B1 (de) Ph-sensor mit selbstdiagnose-funktion
EP0096033B1 (de) Isolierungsanalysiergerät und verfahren zur verwendung
US4335349A (en) Simulated ohms generation method and apparatus for calibrating resistance type measuring instruments
US3453535A (en) Capacitance test instrument using partial discharge time internal measurement
US4011746A (en) Liquid density measurement system
US3876933A (en) Resistance measuring instrument with linearized digital readout
EP0139638B1 (de) Isolierungsanalysierungsvorrichtung und verfahren
US3302451A (en) Viscosity index measuring apparatus
Malmstadt et al. Systems for automatic direct readout of rate data
GB2064124A (en) Corrosion monitoring system
EP1498741B1 (de) Wattstundenzähler mit integriertem Selbsttest
US2886776A (en) Multiple testing meter
CN109270429B (zh) 一种多通道高低温接口电路板噪声测量方法
Reynolds et al. DC insulation analysis: A new and better method
US4156181A (en) Ratio circuit
US3167377A (en) Digital read-out apparatus
US3512394A (en) Temperature and composition dependent property measuring
GB1558928A (en) Process and circuit arrangement for the determination of the parameters of particles suspended in a liquid
JPS6314784B2 (de)
RU2714954C1 (ru) Способ определения параметров многоэлементных двухполюсников
SU1167487A1 (ru) Устройство дл измерени параметров электротермической нелинейности резисторов
Hall Analog tests: The microprocessor scores
US3739269A (en) Precision self-contained d.c. substitution bridge for r.f. measurements
US3038662A (en) Integrator readout device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI LU NL SE

Designated state(s): AT BE CH DE FR GB LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19860210

17Q First examination report despatched

Effective date: 19880513

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890112

Year of fee payment: 7

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI LU NL SE

REF Corresponds to:

Ref document number: 40218

Country of ref document: AT

Date of ref document: 19890215

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890209

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890223

Year of fee payment: 7

REF Corresponds to:

Ref document number: 3378996

Country of ref document: DE

Date of ref document: 19890223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890307

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890331

Year of fee payment: 7

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890426

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890517

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900314

Ref country code: AT

Effective date: 19900314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900331

Ref country code: CH

Effective date: 19900331

Ref country code: BE

Effective date: 19900331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900918

Year of fee payment: 8

BERE Be: lapsed

Owner name: JAMES G. BIDDLE CY

Effective date: 19900331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901001

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19901201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83901473.5

Effective date: 19910110