EP0136594B1 - Electromagnet - Google Patents

Electromagnet Download PDF

Info

Publication number
EP0136594B1
EP0136594B1 EP84110661A EP84110661A EP0136594B1 EP 0136594 B1 EP0136594 B1 EP 0136594B1 EP 84110661 A EP84110661 A EP 84110661A EP 84110661 A EP84110661 A EP 84110661A EP 0136594 B1 EP0136594 B1 EP 0136594B1
Authority
EP
European Patent Office
Prior art keywords
angled
pole
armature
poles
conductive section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84110661A
Other languages
German (de)
French (fr)
Other versions
EP0136594A3 (en
EP0136594A2 (en
Inventor
Hans Dipl.-Ing. Kubach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0136594A2 publication Critical patent/EP0136594A2/en
Publication of EP0136594A3 publication Critical patent/EP0136594A3/xx
Application granted granted Critical
Publication of EP0136594B1 publication Critical patent/EP0136594B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0689Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means and permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • F02M51/0617Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets
    • F02M51/0621Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets acting on one mobile armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/04Means for releasing the attractive force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/206Electromagnets for lifting, handling or transporting of magnetic pieces or material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/206Electromagnets for lifting, handling or transporting of magnetic pieces or material
    • H01F2007/208Electromagnets for lifting, handling or transporting of magnetic pieces or material combined with permanent magnets

Definitions

  • the invention is based on an electromagnet according to the preamble of one of claims 1, 2 or 3.
  • An electromagnet is already known (DE-A-25 01 629), in which the electromagnet flow leads beyond the permanent magnet to the guide sections by means of the pole parts is, with guide sections and pole parts in the area of the permanent magnet having large cross sections. Large cross sections and long paths for the electromagnetic flow not only lead to an undesirable increase in eddy current losses, but also to an undesirably large electromagnet.
  • An electromagnetically actuated valve has also already been proposed, in which the armature assumes a position at a distance from the core in the non-energized state, while the armature is pulled toward the core in the case of electromagnetic excitation.
  • Such a configuration is not desirable in many areas of application, because e.g. when used as an outward opening injection valve in this case, the electromagnet system must be constantly excited to close the valve.
  • the core is formed from a first pole part 1 and a second pole part 2 made of soft iron, each of which rests approximately parallel to another end of a permanent magnet 3.
  • the first pole part 1 has an angled first guide section 4 and the second pole part 2 has an angled second guide section 5.
  • the first guide section 4 and the second guide section 5 run towards one another in such a way that they delimit an air gap 6 between them.
  • a first magnet coil 8 is arranged on the first pole part 1 and a second magnet coil 9 is arranged on the second pole part 2.
  • First guide section 4 and second guide section 5 run between permanent magnet 3 and magnet coils 8 and 9.
  • first pole part 1 ends in a first pole 10 and second pole part 2 ends in a second pole 11.
  • An armature 12 made of soft magnetic material is mounted near the poles 10, 11 so that it can perform an axial movement.
  • the poles 10, 11 are appropriately fed onto the armature 12 in such a way that the field lines can run as cheaply as possible.
  • the poles 10, 11 can be provided with an inclination directed towards one another and have a concave surface 13 on the poles 10 and 14 on the pole 11 which extends over both poles 10, 11 and which faces a convex surface 15 of the armature 12.
  • the armature 12 can be connected to a movable valve part 17 of a fuel injection valve for fuel injection systems of internal combustion engines, which is not otherwise shown, via which fuel can be injected into the intake manifold of internal combustion engines in a known manner.
  • the movable valve part 17 is made of non-magnetic material and has a sealing part 18 which cooperates with a valve seat 19 in a valve seat body 20 made of non-magnetic material.
  • the valve seat body 20 is inserted into a valve housing, not shown. Upstream of the valve seat 19, a flow bore 21 is provided in the valve seat body 20, through which a pin 22 of the armature 12 projects, which is fastened in a fastening bore 23 of the valve part 17.
  • the pin 22 is preferably inserted into the fastening bore 23 up to the end face 24 of the valve part 17 and welded to the valve part 17 at 25.
  • the valve stroke, ie the stroke of the interconnected elements 12, 17 can be determined in the desired manner by suitable axial assignment of armature 12 and valve part 17.
  • a flat stop surface 26 is provided on the armature 12, which comes into contact with the valve seat body 20 when the sealing part 18 is lifted off the valve seat 19.
  • the flow cross-section 30 can be designed to be throttling and thus the metering serve.
  • a narrow cylindrical guide section 31 on the pin 22, which projects into the flow bore 21 with a close fit, can be used for the radial centering of armature 12 and valve part 17.
  • the armature 12 rests with its stop surface 26 on the valve seat body 20, and fuel can enter an annular gap 32 via the open valve seat 19 as a fuel film of the same thickness all round, which is between the with A spherical shape of the surface of the sealing part 18 and a spray opening 33 which adjoins the valve seat 19 in the valve seat body 20 in the direction of flow is formed with an expanding diameter, in which it flows outwards on the surface of the sealing part and mixes with the ambient air which flows after the tearing off of the cone-shaped fuel film upon reaching the sharp-edged end face 24 of the sealing part 18 likewise mixes with the fuel from the inside.
  • the flux 0p of the permanent magnet 3 is split into the components 0 ⁇ p1 and 0p 2 .
  • the flow 0 ⁇ P1 leads over the guide sections 4, 5 and the air gap 6, while the flow 0p 2 leads over the pole parts 1, 2 with the poles 10, 11 and the armature 12.
  • the armature 12 is thus attracted by the flux 0p 2 , for example with the saturation flux 0 2sat , and bears against the poles 10, 11.
  • the guide sections 4, 5 with the air gap 6 are required because the permanent magnet 3 conducts the electromagnetic flux 0 1 only with difficulty.
  • the electromagnetic flux 0 j arises from the application of a current i to each of the magnetic coils 8, 9 and in this case runs via the armature 12 in the opposite direction of the permanent magnetic flux 0p 2 .
  • the armature 12 is acted upon in the direction of the poles 10, 11 when a valve is formed in accordance with FIG.
  • the armature 12 will then lift off the poles 10, 11 when the electromagnetic flux 0 j is approximately equal to the component of the permanent flux 0p 2 .
  • the valve part 17 is lifted off the valve seat 19 and the injection valve shown in FIG. 5 opens.
  • the electromagnetic flux 0 can be limited by saturation in the guide sections 4, 5.
  • the parts that remain the same and have the same effect as in the exemplary embodiment in FIG. 1 are identified by the same reference numerals. 2 differs from the exemplary embodiment according to FIG. 1 in terms of structural design in that the permanent magnet 3 'connects the pole parts 1, 2 between the poles 10, 11 and the magnet coils 8, 9 and the magnet coils 8, 9 to the Pole parts 1, 2 are arranged between the permanent magnet 3 'and the guide sections 4, 5.
  • the guide sections 4, 5 with the air gap 6 are required here so that the permanent magnet 3 'is not short-circuited.
  • a second permanent magnet 35 connecting the pole parts 1, 2 is additionally provided between the magnet coils 8, 9 and the poles 10, 11 in the exemplary embodiment according to FIG.
  • the fluxes of both permanent magnets 3, 35 significantly smaller cross sections of the pole parts 1, 2 are required in the exemplary embodiment according to FIG. 3 than in the exemplary embodiments according to FIGS. 1 and 2.
  • FIGS. 1 and 3 each show the armature 12 in a position in which it has dropped from the poles 10, 11 and thus opens a fuel injection valve designed according to FIG. 5.
  • the area around the air gap 6 at the guide sections 4, 5 can be made of a magnetic material with a large negative temperature coefficient of the saturation induction.
  • a magnet arrangement derives less permanent magnetic flux at high temperatures.
  • such a material, which is operated in the saturation region can be arranged parallel to the air gap 6 in a manner not shown. It is more economical to saturate the saturated temperature-dependent magnetic conductor only in an area adjacent to the unsaturated magnetic conductor, in that at least one of the guide sections 4, 5 has a profile 36 provided on its end face facing the other guide section. The saturated tips 36 conduct as desired at higher temperatures less permanent magnetic flux.
  • the electromagnetic flux 0 Since the saturation characteristic is not pronounced due to the flat saturation range, the electromagnetic flux 0 ; flow relatively easily in the sense of additional saturation.
  • the resistance that the electromagnetic flux 0; of the saturated material is greater at a higher temperature, so that 0 decreases at a high temperature similar to the permanent flow.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Elektromagnet nach der Gattung eines der Ansprüche 1, 2 oder 3. Es ist schon ein Elektromagnet bekannt (DE-A-25 01 629), bei dem der Elektromagnetfluss über den Permanentmagneten hinaus mittels der Polteile zu den Leitabschnitten geführt ist, wobei Leitabschnitte und Polteile im Bereich des Permanentmagneten mit grossen Querschnitten ausgebildet sind. Grosse Querschnitte und lange Wege für den Elektromagnetfluss führen nicht nur zu einer unerwünschten Erhöhung der Wirbelstromverluste, sondern auch zu einem unerwünscht gross bauenden Elektromagneten.The invention is based on an electromagnet according to the preamble of one of claims 1, 2 or 3. An electromagnet is already known (DE-A-25 01 629), in which the electromagnet flow leads beyond the permanent magnet to the guide sections by means of the pole parts is, with guide sections and pole parts in the area of the permanent magnet having large cross sections. Large cross sections and long paths for the electromagnetic flow not only lead to an undesirable increase in eddy current losses, but also to an undesirably large electromagnet.

Es ist auch schon ein elektromagnetisch betätigbares Ventil vorgeschlagen worden, bei dem der Anker in nicht erregtem Zustand eine Stellung mit Abstand zum Kern einnimmt, während bei elektromagnetischer Erregung der Anker zum Kern gezogen wird. Eine derartige Ausgestaltung ist jedoch bei vielen Anwendungsgebieten nicht erwünscht, da z.B. bei der Verwendung als nach aussen öffnendes Einspritzventil in diesem Fall zum Schliessen des Ventiles ständig des Elektromagnetsystem erregt sein muss.An electromagnetically actuated valve has also already been proposed, in which the armature assumes a position at a distance from the core in the non-energized state, while the armature is pulled toward the core in the case of electromagnetic excitation. Such a configuration is not desirable in many areas of application, because e.g. when used as an outward opening injection valve in this case, the electromagnet system must be constantly excited to close the valve.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemässen Elektromagneten mit den kennzeichnenden Merkmalen eines der Ansprüche 1, 2 oder 3 haben demgegenüber den Vorteil einer kleinbauenden Gestaltung des Elektromagneten mit verringerten Wirbelstromverlusten, der bei sehr grosser Ansteuergenauigkeit eine hohe Lebensdauer aufweist und bei dem in nicht erregtem Zustand der Anker am Kern anliegt und bei elektromagnetischer Erregung von diesem abfällt.The electromagnets according to the invention with the characterizing features of one of claims 1, 2 or 3, in contrast, have the advantage of a small-sized design of the electromagnet with reduced eddy current losses, which, with very high control accuracy, has a long service life and in which the armature rests on the core when not excited and falls off in the event of electromagnetic excitation.

Durch die in den Unteransprüchen aufgeführten Massnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Elektromagneten möglich.The measures listed in the subclaims permit advantageous developments and improvements of the electromagnet specified in the main claim.

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert.Embodiments of the invention are shown in simplified form in the drawing and explained in more detail in the following description.

Es zeigen

  • Figur 1 ein erstes Ausführungsbeispiel eines erfindungsgemässen Elektromagneten,
  • Figur 2 ein zweites Ausführungsbeispiel eines erfindungsgemässen Elektromagneten,
  • Figur 3 ein drittes Ausführungsbeispiel eines erfindungsgemässen Elektromagneten,
  • Figur 4 eine Teildarstellung der Ausbildung von Leitabschnitten,
  • Figur 5 eine Teildarstellung eines durch einen Anker betätigten Ventilteiles.
Show it
  • FIG. 1 shows a first exemplary embodiment of an electromagnet according to the invention,
  • FIG. 2 shows a second exemplary embodiment of an electromagnet according to the invention,
  • FIG. 3 shows a third exemplary embodiment of an electromagnet according to the invention,
  • FIG. 4 shows a partial illustration of the formation of guide sections,
  • Figure 5 is a partial representation of a valve part actuated by an armature.

Bei dem in der Figur 1 dargestellten ersten Ausführungsbeispiel eines Elektromagneten wird der Kern aus einem ersten Polteil 1 und einem zweiten Polteil 2 aus Weicheisen gebildet, die annähernd parallel verlaufend je an einem anderen Ende eines Permanentmagneten 3 anliegen. Das erste Polteil 1 weist einen abgewinkelten ersten Leitabschnitt 4 auf und das zweite Polteil 2 einen abgewinkelten zweiten Leitabschnitt 5. Erster Leitabschnitt 4 und zweiter Leitabschnitt 5 verlaufen so aufeinander zugerichtet, dass sie zwischen sich einen Luftspalt 6 begrenzen. Auf dem ersten Polteil 1 ist eine erste Magnetspule 8 und auf dem zweiten Polteil 2 eine zweite Magnetspule 9 angeordnet. Erster Leitabschnitt 4 und zweiter Leitabschnitt 5 verlaufen zwischen dem Permanentmagneten 3 und den Magnetspulen 8 und 9. Dem Permanentmagneten 3 abgewandt endet das erste Polteil 1 in einem ersten Pol 10 und das zweite Polteil 2 in einem zweiten Pol 11. Ein Anker 12 aus weichmagnetischem Material ist in der Nähe der Pole 10, 11 so gelagert, dass er eine axiale Bewegung ausführen kann. Die Pole 10, 11 sind dabei in geeigneter Weise so auf den Anker 12 zugeführt, dass die Feldlinien möglichst günstig verlaufen können. So können die Pole 10, 11 mit einer aufeinander zugerichteten Neigung versehen sein und eine über beide Pole 10, 11 verlaufende konkave Oberfläche 13 am Pol 10 und 14 am Pol 11 aufweisen, der eine konvexe Oberfläche 15 des Ankers 12 zugewandt ist.In the first exemplary embodiment of an electromagnet shown in FIG. 1, the core is formed from a first pole part 1 and a second pole part 2 made of soft iron, each of which rests approximately parallel to another end of a permanent magnet 3. The first pole part 1 has an angled first guide section 4 and the second pole part 2 has an angled second guide section 5. The first guide section 4 and the second guide section 5 run towards one another in such a way that they delimit an air gap 6 between them. A first magnet coil 8 is arranged on the first pole part 1 and a second magnet coil 9 is arranged on the second pole part 2. First guide section 4 and second guide section 5 run between permanent magnet 3 and magnet coils 8 and 9. Averted from permanent magnet 3, first pole part 1 ends in a first pole 10 and second pole part 2 ends in a second pole 11. An armature 12 made of soft magnetic material is mounted near the poles 10, 11 so that it can perform an axial movement. The poles 10, 11 are appropriately fed onto the armature 12 in such a way that the field lines can run as cheaply as possible. For example, the poles 10, 11 can be provided with an inclination directed towards one another and have a concave surface 13 on the poles 10 and 14 on the pole 11 which extends over both poles 10, 11 and which faces a convex surface 15 of the armature 12.

Wie beispielsweise in Figur 5 dargestellt ist, kann der Anker 12 mit einem beweglichen Ventilteil 17 eines sonst nicht weiter dargestellten Kraftstoffeinspritzventiles für Kraftstoffeinspritzanlagen von Brennkraftmaschinen verbunden sein, über das in bekannter Weise Kraftstoff in das Saugrohr von Brennkraftmaschinen gespritzt werden kann. Dabei ist das bewegliche Ventilteil 17 aus nichtmagnetischem Material gefertigt und weist ein Dichtteil 18 auf, welches mit einem Ventilsitz 19 in einem Ventilsitzkörper 20 aus amagnetischem Material zusammenarbeitet. Der Ventilsitzkörper 20 ist in ein nicht näher dargestelltes Ventilgehäuse eingesetzt. Stromaufwärts des Ventilsitzes 19 ist in dem Ventilsitzkörper 20 eine Strömungsbohrung 21 vorgesehen, durch die ein Zapfen 22 des Ankers 12 teilweise ragt, der in einer Befestigungsbohrung 23 des Ventilteiles 17 befestigt ist. Vorzugsweise ist der Zapfen 22 bis zur Endfläche 24 des Ventilteiles 17 in die Befestigungsbohrung 23 eingeschoben und mit dem Ventilteil 17 bei 25 verschweisst. Dabei lässt sich der Ventilhub, d.h. der Hub der miteinander verbundenen Elemente 12, 17 durch geeignete axiale Zuordnung von Anker 12 und Ventilteil 17 in gewünschter Weise festlegen. Der konvexen Oberfläche 15 abgewandt ist am Anker 12 eine plane Anschlagfläche 26 vorgesehen, die bei vom Ventilsitz 19 abgehobenem Dichtteil 18 am Ventilsitzkörper 20 zum Anliegen kommt. Der von einer nicht dargestellten Kraftstoffversorgungsquelle dem Kraftstoffeinspritzventil zugeführte Kraftstoff gelangt von einem Innenraum 27 des Kraftstoffeinspritzventiles in Kraftstoffkanäle 28, die in dem Ventilsitzkörper ausgebildet sind und in die Strömungsbohrung 21 münden, in dem eine kreissymmetrische Verteilung des Kraftstoffes zu einem zwischen der Strömungsbohrung 21 und dem Umfang eines Verbindungsteiles 29 des beweglichen Ventilteiles 17 gebildeten Strömungsquerschnitt 30 erfolgt. Der Strömungsquerschnitt 30 kann drosselnd ausgebildet sein und damit der Zumessung dienen. Zur radialen Zentrierung von Anker 12 und Ventilteil 17 kann ein schmaler zylindrischer Führungsabschnitt 31 am Zapfen 22 dienen, der mit einer engen Passung in die Strömungsbohrung 21 ragt. Hat das nach aussen öffnende Ventilteil 17 vom Ventilsitz 19 abgehoben, so liegt der Anker 12 mit seiner Anschlagfläche 26 an dem Ventilsitzkörper 20 an, und Kraftstoff kann über den geöffneten Ventilsitz 19 als rundum gleich dicker Kraftstoffilm in einen Ringspalt 32 eintreten, welcher zwischen der mit einer sphärischen Form ausgebildeten Oberfläche des Dichtteiles 18 und einer sich in Strömungsrichtung an den Ventilsitz 19 im Ventilsitzkörper 20 anschliessenden Abspritzöffnung 33 mit sich erweiterndem Durchmesser gebildet wird, in dem er an der Oberfläche des Dichtteiles nach aussen strömt und sich mit der Umgebungsluft vermischt, die nach dem Abreissen des kegelförmig ausgebildeten Kraftstofffilmes bei Erreichen der scharfkantigen Endfläche 24 des Dichtteiles 18 sich ebenfalls von innen her mit dem Kraftstoff vermischt.As shown, for example, in FIG. 5, the armature 12 can be connected to a movable valve part 17 of a fuel injection valve for fuel injection systems of internal combustion engines, which is not otherwise shown, via which fuel can be injected into the intake manifold of internal combustion engines in a known manner. The movable valve part 17 is made of non-magnetic material and has a sealing part 18 which cooperates with a valve seat 19 in a valve seat body 20 made of non-magnetic material. The valve seat body 20 is inserted into a valve housing, not shown. Upstream of the valve seat 19, a flow bore 21 is provided in the valve seat body 20, through which a pin 22 of the armature 12 projects, which is fastened in a fastening bore 23 of the valve part 17. The pin 22 is preferably inserted into the fastening bore 23 up to the end face 24 of the valve part 17 and welded to the valve part 17 at 25. The valve stroke, ie the stroke of the interconnected elements 12, 17 can be determined in the desired manner by suitable axial assignment of armature 12 and valve part 17. Averted from the convex surface 15, a flat stop surface 26 is provided on the armature 12, which comes into contact with the valve seat body 20 when the sealing part 18 is lifted off the valve seat 19. The fuel supplied to the fuel injection valve from a fuel supply source, not shown, passes from an interior space 27 of the fuel injection valve into fuel channels 28, which are formed in the valve seat body and open into the flow bore 21, in which a circularly symmetrical distribution of the fuel to one between the flow bore 21 and the circumference a connecting part 29 of the movable valve part 17 formed flow cross section 30. The flow cross-section 30 can be designed to be throttling and thus the metering serve. A narrow cylindrical guide section 31 on the pin 22, which projects into the flow bore 21 with a close fit, can be used for the radial centering of armature 12 and valve part 17. If the outwardly opening valve part 17 has lifted off the valve seat 19, the armature 12 rests with its stop surface 26 on the valve seat body 20, and fuel can enter an annular gap 32 via the open valve seat 19 as a fuel film of the same thickness all round, which is between the with A spherical shape of the surface of the sealing part 18 and a spray opening 33 which adjoins the valve seat 19 in the valve seat body 20 in the direction of flow is formed with an expanding diameter, in which it flows outwards on the surface of the sealing part and mixes with the ambient air which flows after the tearing off of the cone-shaped fuel film upon reaching the sharp-edged end face 24 of the sealing part 18 likewise mixes with the fuel from the inside.

In Figur 1 ist der Fluss 0p des Permanentmagneten 3 in die Komponenten 0̸p1 und 0p2 gespalten. Der Fluss 0̸P1 führt dabei über die Leitabschnitte 4, 5 und den Luftspalt 6, während der Fluss 0p2 über die Polteile 1, 2 mit den Polen 10, 11 und den Anker 12 führt. Bei stromlosen Magnetspulen 8, 9 wird somit der Anker 12 durch den Fluss 0p2, z.B. mit dem Sättigungsfluss 02sat, angezogen und liegt an den Polen 10, 11 an. Die Leitabschnitte 4, 5 mit dem Luftspalt 6 sind erforderlich, da der Permanentmagnet 3 den Elektromagnetfluss 01 nur schwer leitet. Der Elektromagnetfluss 0j entsteht durch das Anlegen eines Stromes i an jede der Magnetspulen 8, 9 und verläuft dabei über den Anker 12 in entgegengesetzter Richtung des Permanentmagnetflusses 0p2. Vereinfachend ist der Elektromagnetfluss 0; nur über den Luftspalt 6 geführt. Vorteilhaft ist es, für die Komponenten des Permanentmagnetflusses 0p das Verhältnis 0pi = 2 0p2 = 2 02sat zu wählen. Bei stromlosen Magnetspulen 8, 9 wird bei einer Ausbildung eines Ventiles entsprechend Figur 5 des Anker 12 in Richtung zu den Polen 10, 11 beaufschlagt, also das Ventilteil 17 in Schliessstellung an dem Ventilsitz 19 gehalten. Wird nun an die Magnetspulen 8, 9 ein Strom i derart gelegt, dass ein Magnettluss 0j über den Anker 12 in entgegengesetztem Sinn wie der Fluss 0p2 fliesst, so wird der Anker 12 dann von den Polen 10, 11 abheben, wenn der Elektromagnetfluss 0j annähernd gleich der Komponente des Permanentflusses 0p2 ist. Bei von den Polen 10, 11 abhebendem Anker wird gleichzeitig das Ventilteil 17 vom Ventilsitz 19 abgehoben und das in Figur 5 dargestellte Einspritzventil öffnet. Eine Begrenzung des Elektromagnetflusses 0 kann durch eine Sättigung in den Leitabschnitten 4, 5 erfolgen.In Figure 1, the flux 0p of the permanent magnet 3 is split into the components 0̸ p1 and 0p 2 . The flow 0̸ P1 leads over the guide sections 4, 5 and the air gap 6, while the flow 0p 2 leads over the pole parts 1, 2 with the poles 10, 11 and the armature 12. In the case of currentless magnet coils 8, 9, the armature 12 is thus attracted by the flux 0p 2 , for example with the saturation flux 0 2sat , and bears against the poles 10, 11. The guide sections 4, 5 with the air gap 6 are required because the permanent magnet 3 conducts the electromagnetic flux 0 1 only with difficulty. The electromagnetic flux 0 j arises from the application of a current i to each of the magnetic coils 8, 9 and in this case runs via the armature 12 in the opposite direction of the permanent magnetic flux 0p 2 . To simplify matters, the electromagnetic flux is 0; only passed over the air gap 6. It is advantageous to choose the ratio 0pi = 2 0p 2 = 2 0 2sat for the components of the permanent magnetic flux 0p. In the case of de-energized solenoid coils 8, 9, the armature 12 is acted upon in the direction of the poles 10, 11 when a valve is formed in accordance with FIG. If a current i is now applied to the magnetic coils 8, 9 such that a magnetic flux 0 j flows across the armature 12 in the opposite sense to the flux 0p 2 , the armature 12 will then lift off the poles 10, 11 when the electromagnetic flux 0 j is approximately equal to the component of the permanent flux 0p 2 . When the armature lifts off the poles 10, 11, the valve part 17 is lifted off the valve seat 19 and the injection valve shown in FIG. 5 opens. The electromagnetic flux 0 can be limited by saturation in the guide sections 4, 5.

Bei dem in der Figur 2 dargestellten zweiten Ausführungsbeispiel eines Elektromagneten sind die gegenüber dem Ausführungsbeispiel in Figur 1 gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Vom konstruktiven Aufbau her unterscheidet sich das Ausführungsbeispiel nach Figur 2 von dem Ausführungsbeispiel nach Figur 1 dadurch, dass der Permanentmagnet 3' die Polteile 1, 2 zwischen den Polen 10, 11 und den Magnetspulen 8, 9 verbindet und die Magnetspulen 8, 9 an den Polteilen 1, 2 zwischen dem Permanentmagneten 3' und den Leitabschnitten 4, 5 angeordnet sind. Die Leitabschnitte 4, 5 mit dem-Luftspalt 6 sind hier erforderlich, damit der Permanentmagnet 3' nicht kurzgeschlossen ist. Wie bei dem Ausführungsbeispiel nach Figur 1 soll auch bei dem Ausführungsbeispiel nach Figur 2 der Elektromagnetfluss 01 durch den Anker 12 in entgegengesetzter Richtung der Komponente des Permanentmagnetflusses 0p2 verlaufen, so dass solange der Elektromagnetfluss 01 geringer als der Permanentmagnetfluss 0p2 ist der Anker an den Polen 10, 11 gehalten wird, während bei 0j = 0p2 keine Magnetkraft mehr auf den Anker 12 ausgeübt wird und dieser sich von den Polen 10, 11 wegbewegen kann.In the second exemplary embodiment of an electromagnet shown in FIG. 2, the parts that remain the same and have the same effect as in the exemplary embodiment in FIG. 1 are identified by the same reference numerals. 2 differs from the exemplary embodiment according to FIG. 1 in terms of structural design in that the permanent magnet 3 'connects the pole parts 1, 2 between the poles 10, 11 and the magnet coils 8, 9 and the magnet coils 8, 9 to the Pole parts 1, 2 are arranged between the permanent magnet 3 'and the guide sections 4, 5. The guide sections 4, 5 with the air gap 6 are required here so that the permanent magnet 3 'is not short-circuited. As the electromagnetic flux 0 1 is intended to extend through the armature 12 in the opposite direction of the component of the permanent magnetic flux 0p 2 in the embodiment of Figure 1 also in the embodiment of Figure 2, so that as long as the electromagnetic flux 0 1 is less than the permanent magnet flux 0p 2 is the anchor is held on the poles 10, 11, while at 0 j = 0p 2 no magnetic force is exerted on the armature 12 and this can move away from the poles 10, 11.

Bei dem dritten Ausführungsbeispiel nach Figur 3 sind die gegenüber den bisherigen Ausführungsbeispielen gleichbleibenden und gleichwirkenden Teile durch die gleichen Bezugszeichen gekennzeichnet. Abweichend von dem Ausführungsbeispiel nach Figur 1 ist bei dem Ausführungsbeispiel nach Figur 3 zusätzlich zwischen den Magnetspulen 8, 9 und den Polen 10, 11 ein die Polteile 1, 2 verbindender zweiter Permanentmagnet 35 vorgesehen. Dadurch ergibt sich ein durch die Permanentmagnete 3 und 35 bewirkter Fluss über den Anker 12, der sich aus dem Anteil 0p2 des Permanentmagneten 3 und dem in gleicher Richtung wirkenden Anteil 0p2, des zweiten Permanentmagneten 35 zusammensetzt und dem in entgegengesetzter Richtung der Elektromagnetfluss 01 der Magnetspulen 8, 9 entgegenwirkt. Bei geeigneter Wahl der Flüsse beider Permanentmagnete 3, 35 sind bei dem Ausführungsbeispiel nach Figur 3 wesentlich kleinere Querschnitte der Polteile 1, 2 erforderlich als bei den Ausführungsbeispielen nach den Figuren 1 und 2.In the third exemplary embodiment according to FIG. 3, the parts which remain the same and have the same effect as in the previous exemplary embodiments are identified by the same reference numerals. In a departure from the exemplary embodiment according to FIG. 1, a second permanent magnet 35 connecting the pole parts 1, 2 is additionally provided between the magnet coils 8, 9 and the poles 10, 11 in the exemplary embodiment according to FIG. This results in a flux caused by the permanent magnets 3 and 35 via the armature 12, which is composed of the portion 0p 2 of the permanent magnet 3 and the portion 0p 2 of the second permanent magnet 35 acting in the same direction and the electromagnetic flux 0 in the opposite direction 1 of the magnetic coils 8, 9 counteracts. With a suitable choice of the fluxes of both permanent magnets 3, 35, significantly smaller cross sections of the pole parts 1, 2 are required in the exemplary embodiment according to FIG. 3 than in the exemplary embodiments according to FIGS. 1 and 2.

In den Figuren 1, und 3 ist der Anker 12 jeweils in einer Stellung gezeigt, in der er von den Polen 10, 11 abgefallen ist und damit ein nach Figur 5 ausgebildetes Kraftstoffeinspritzventil öffnet.FIGS. 1 and 3 each show the armature 12 in a position in which it has dropped from the poles 10, 11 and thus opens a fuel injection valve designed according to FIG. 5.

Zur Kompensation von Temperatureinflüssen kann der Bereich um den Luftspalt 6 an den Leitabschnitten 4, 5 aus einem Magnetmaterial mit grossem negativem Temperaturkoeffizienten der Sättigungsinduktion ausgeführt sein. Eine solche Magnetanordnung leitet bei hoher Temperatur weniger Permanentmagnetfluss ab. Beispielsweise kann in nicht dargestellter Weise parallel zum Luftspalt 6 ein solches Material, das im Sättigungsbereich betrieben wird, angeordnet sein. Wirtschaftlicher ist es, den gesättigten temperaturabhängigen Magnetleiter nur in einem an den nicht gesättigten Magnetleiter angrenzenden Bereich zu sättigen, indem mindestens einer der Leitabschnitte 4, 5 an seiner dem anderen Leitabschnitt zugewandten Stirnfläche ein mit Spitzen 36 versehenes Profil aufweist. Die gesättigten Spitzen 36 leiten wie gewünscht bei höherer Temperatur weniger Permanentmagnetfluss ab. Da die Sättigungscharakteristik wegen des flachen Sättigungsbereiches nicht ausgeprägt ist, kann der Elektromagnetfluss 0; im Sinne zusätzlicher Sättigung relativ leicht fliessen. Der Widerstand, den der Elektromagnetfluss 0; an dem gesättigten Material findet, ist bei höherer Temperatur grösser, so dass also 0, bei hoher Temperatur ähnlich wie der Permanentfluss abnimmt.To compensate for temperature influences, the area around the air gap 6 at the guide sections 4, 5 can be made of a magnetic material with a large negative temperature coefficient of the saturation induction. Such a magnet arrangement derives less permanent magnetic flux at high temperatures. For example, such a material, which is operated in the saturation region, can be arranged parallel to the air gap 6 in a manner not shown. It is more economical to saturate the saturated temperature-dependent magnetic conductor only in an area adjacent to the unsaturated magnetic conductor, in that at least one of the guide sections 4, 5 has a profile 36 provided on its end face facing the other guide section. The saturated tips 36 conduct as desired at higher temperatures less permanent magnetic flux. Since the saturation characteristic is not pronounced due to the flat saturation range, the electromagnetic flux 0 ; flow relatively easily in the sense of additional saturation. The resistance that the electromagnetic flux 0; of the saturated material is greater at a higher temperature, so that 0 decreases at a high temperature similar to the permanent flow.

Claims (9)

1. Electromagnet, in particular for controlling a fuel injection valve for fuel injection systems of internal combustion engines, with an armature (12) and a core (1, 2) made of soft magnetic material, the core (1, 2) being formed by a first pole part (1) bearing a first magnet coil (8) arranged on one side of a permanent magnet (3) and by a second pole part (2) bearing a second magnet coil (9) arranged on the other side of the permanent magnet (3), and the first pole part (1) having a first pole (10) facing the armature (12) as well as an angled first conductive section (4) and the second pole part (2) having a second pole (11) facing the armature (12) as well as an angled second conductive section (5), and first conductive section (4) and second conductive section (5) extending towards each other and bordering on a gap (6) between them, characterized in that the angled conductive sections (4, 5) of the pole parts (1, 2) between the magnet coils (8, 9) and the permanent magnet (3) and the magnetic coils (8, 9) on the pole parts (1, 2) are arranged between the poles (10, 11) and the angled conductive sections (4, 5).
2. Electromagnet, in particular for controlling a fuel injection valve for fuel injection systems of internal combustion engines, with an armature (12) and a core (1, 2) made of soft magnetic material, the core (1, 2) being formed by a first pole part (1) bearing a first magnet coil (8) arranged on one side of a permanent magnet (3') and by a second pole part (2) bearing a second magnet coil (9) arranged on the other side of the permanent magnet (3'), and the first pole part (1) having a first pole (10) facing the armature (12) as well as an angled first conductive section (4) and the second pole part (2) having a second pole (11) facing the armature (12) as well as an angled second conductive section (5), and first angled conductive section (4) and second angled conductive section (5) extending towards each other and first angled conductive section (4) and second angled conductive section (5) extending towards each other and bordering on a gap (6) between them, characterized in that the angled conductive sections (4, 5) are arranged on one side of the magnet coils (8, 9) and the permanent magnet (3') and the poles (10, 11) of the pole parts (1, 2) are arranged on the other side of the magnet coils (8, 9).
3. Electromagnet, in particular for controlling a fuel injection valve for fuel injection systems of internal combustion engines, with an armature (12) and a core (1, 2) made of soft magnetic material, the core (1, 2) being formed by a first pole part (1) bearing a first magnet coil (8) arranged on one side of a permanent magnet (3) and by a second pole part (2) bearing a second magnet coil (9) arranged on the other side of the permanent magnet (3), and the first pole part (1) having a first pole (10) facing the armature (12) as well as an angled first conductive section (4) and the second pole part (2) having a second pole (11) facing the armature (12) as well as an angled second conductive section (5), and first angled conductive section (4) and second angled conductive section (5) extending towards each other and bordering on a gap (6) between them, characterized in that the angled conductive sections (4, 5) of the pole parts (1, 2) between the magnet coils (8, 9) and the permanent magnet (3) and the magnetic coils (8, 9) on the pole parts (1, 2) are arranged between the poles (10, 11) and the angled conductive sections (4, 5), and in that a second permanent magnet (35) is arranged between the magnet coils (8, 9) and poles (10, 11) in such a manner that the first pole part (1) abuts it on the one side and the second pole part (2) abuts it on the other side.
4. Electromagnet according to Claim 1, characterized in that at least one of the angled conductive sections (4, 5) has a profile provided with peaks (36) on its end face facing the other angled conductive section (4, 5).
5. Electromagnet according to Claim 1, characterized in that the poles (10,11) extend at an angle towards each other and are provided with a concave surface (13, 14) which extends over both poles (10, 11) and which face the armature (12) provided with a convex surface (15).
6. Electromagnet according to Claim 2, characterized in that at least one of the angled conductive sections (4, 5) has a profile provided with peaks (36) on its end face facing the other angled conductive section (4, 5).
7. Electromagnet according to Claim 2, characterized in that the poles (10, 11) extend at an angle towards each other and are provided with a concave surface (13, 14) which extends over both poles (10, 11) and which face the armature (12) provided with a convex surface (15).
8. Electromagnet according to Claim 3, characterized in that at least one of the angled conductive sections (4, 5) has a profile provided with peaks (36) on its end face facing the other angled conductive section (4, 5).
9. Electromagnet according to Claim 3, characterized in that the poles (10, 11) extend at an angle towards each other and are provided with a concave surface (13, 14) which extends over both poles (10, 11) and which face the armature (12) provided with a convex surface (15).
EP84110661A 1983-10-04 1984-09-07 Electromagnet Expired EP0136594B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833336011 DE3336011A1 (en) 1983-10-04 1983-10-04 ELECTROMAGNET
DE3336011 1983-10-04

Publications (3)

Publication Number Publication Date
EP0136594A2 EP0136594A2 (en) 1985-04-10
EP0136594A3 EP0136594A3 (en) 1985-06-26
EP0136594B1 true EP0136594B1 (en) 1988-12-07

Family

ID=6210920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84110661A Expired EP0136594B1 (en) 1983-10-04 1984-09-07 Electromagnet

Country Status (5)

Country Link
US (1) US4546339A (en)
EP (1) EP0136594B1 (en)
JP (1) JPS6080206A (en)
AU (1) AU571001B2 (en)
DE (2) DE3336011A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990968A (en) * 1982-11-17 1984-05-25 Fuji Electric Co Ltd Light-emitting and receiving unified element
JPS60261111A (en) * 1984-06-08 1985-12-24 Mitsubishi Mining & Cement Co Ltd Electromagnetic actuator
US4559388A (en) * 1984-12-19 1985-12-17 General Electric Company Copolyester-carbonate composition
DE3507441A1 (en) * 1985-03-02 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE AND METHOD FOR THE PRODUCTION THEREOF
DE3507443A1 (en) * 1985-03-02 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE
WO1986007490A1 (en) * 1985-06-04 1986-12-18 Mitsubishi Mining & Cement Co., Ltd. Electromagnetic actuator
DE3520142A1 (en) * 1985-06-05 1986-12-11 Bosch Gmbh Robert ELECTROMAGNET
DE3909893A1 (en) * 1989-03-25 1990-09-27 Bosch Gmbh Robert ELECTROMAGNETICALLY ACTUABLE VALVE
DE3921151A1 (en) * 1989-06-28 1991-01-10 Bosch Gmbh Robert MAGNETIC SYSTEM
US5509509A (en) * 1993-09-07 1996-04-23 Crown Equipment Corporation Proportional control of a permanent magnet brake
US5703550A (en) * 1995-12-26 1997-12-30 General Motors Corporation Magnetic latching relay
KR100549039B1 (en) * 1998-01-27 2006-02-02 가부시키가이샤 게네시스 hybrid-type magnet and stepping motor including same
JP2001307919A (en) * 2000-04-24 2001-11-02 Genesis:Kk Hybrid magnet
JP2002025819A (en) * 2000-05-01 2002-01-25 Genesis:Kk Magnetic force type attraction device using hybrid magnet
JP2002110418A (en) * 2000-09-29 2002-04-12 Genesis:Kk Basic attraction structure
DE10140559A1 (en) * 2001-08-17 2003-02-27 Moeller Gmbh Electromagnet arrangement for a switch
FR2849262B1 (en) * 2002-12-23 2006-12-29 Johnson Controls Tech Co PERMANENT MAGNET ELECTROMAGNETIC VALVE ACTUATOR
JP4064934B2 (en) * 2004-02-27 2008-03-19 三菱重工業株式会社 Solenoid valve device
TWI354079B (en) * 2008-10-03 2011-12-11 Univ Nat Taipei Technology Bi-directional electromechanical valve
DE102010029595A1 (en) * 2010-06-01 2011-12-01 Robert Bosch Gmbh Magnetic assembly and injection valve with a magnetic assembly
WO2015074571A1 (en) * 2013-11-20 2015-05-28 戴珊珊 Ac permanent-magnet switched reluctance electric motor
KR101553168B1 (en) * 2014-06-24 2015-09-14 최태광 Magnetic substance holding device minimalizing residual magnetism
EP3034853B1 (en) * 2014-12-15 2018-05-23 Continental Automotive GmbH Coil assembly and fluid injection valve
JP6658177B2 (en) * 2016-03-23 2020-03-04 株式会社豊田中央研究所 Electromagnetic actuator
USD880705S1 (en) 2018-04-11 2020-04-07 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad
USD879973S1 (en) 2018-04-11 2020-03-31 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad
USD879972S1 (en) 2018-04-11 2020-03-31 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad
USD879974S1 (en) 2018-06-27 2020-03-31 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad
USD887564S1 (en) 2018-06-27 2020-06-16 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad
USD887563S1 (en) 2018-06-27 2020-06-16 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad
USD879975S1 (en) 2018-06-27 2020-03-31 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad
USD913507S1 (en) 2018-12-10 2021-03-16 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad
USD918398S1 (en) 2018-12-10 2021-05-04 Johnson & Johnson Consumer Inc. Adhesive bandage with decorated pad

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143690A (en) * 1962-01-25 1964-08-04 Ampex Electromagnetic pinch roller actuator
JPS5740522B2 (en) * 1974-01-18 1982-08-28
JPS6044809B2 (en) * 1976-11-15 1985-10-05 キヤノン株式会社 electromagnet device
DD153505A3 (en) * 1980-03-07 1982-01-13 Rolf Sobadky MAGNETIC FUEL INJECTION DEVICE

Also Published As

Publication number Publication date
JPH045242B2 (en) 1992-01-30
EP0136594A3 (en) 1985-06-26
EP0136594A2 (en) 1985-04-10
JPS6080206A (en) 1985-05-08
DE3475583D1 (en) 1989-01-12
US4546339A (en) 1985-10-08
DE3336011A1 (en) 1985-04-18
AU571001B2 (en) 1988-03-31
AU3255084A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
EP0136594B1 (en) Electromagnet
EP0886727B1 (en) Electromagnetically controlled valve
EP0469385B1 (en) Magnet system
DE3045639C2 (en)
DE60128021T2 (en) Position measuring device in an electromagnetic lift valve and method for fixing the same
WO1999043948A2 (en) Electromagnetically controlled valve
DE3335169C2 (en) Fuel injector
EP2313896B1 (en) Metallic composite component, in particular for an electromagnetic valve
DE3629646A1 (en) ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE
DE60021657T2 (en) Fuel injection valve for compressed natural gas
EP0204181B1 (en) Electromagnet
WO2007073964A1 (en) Electromagnetically operated valve
EP1165960B1 (en) Fuel injection valve
DE3513106A1 (en) ELECTROMAGNETIC OPERATING DEVICE
DE3618729A1 (en) ELECTROMAGNETIC ACTUATOR
DE19751609A1 (en) Narrow structure electromagnetic actuator e.g. for actuating gas-exchange valves in four-valve engine
DE3328467A1 (en) ELECTROMAGNETICALLY ACTUABLE VALVE
DE3834446A1 (en) ELECTROMAGNETIC INJECTION VALVE IN CARTRIDGE DESIGN
DE4439695C2 (en) Solenoid valve and its use
DE10300136A1 (en) Fuel injector with a stationary and movable core
DE3703615A1 (en) FUEL INJECTION VALVE
DE3641470A1 (en) ELECTROMAGNETICALLY ACTUABLE FUEL INJECTION VALVE
WO1999025595A1 (en) Solenoid valve
DE10014113C5 (en) Solenoid valve driving device
EP1181443B1 (en) Electromagnetic injection valve for controlling a fuel amount to be injected into an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840907

AK Designated contracting states

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT

RTI1 Title (correction)
17Q First examination report despatched

Effective date: 19860430

R17C First examination report despatched (corrected)

Effective date: 19870203

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 3475583

Country of ref document: DE

Date of ref document: 19890112

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990827

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990927

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991124

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000907

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST