EP0136433B1 - Austenitic manganese steel of the hadfield type, and process for the manufacture thereof - Google Patents

Austenitic manganese steel of the hadfield type, and process for the manufacture thereof Download PDF

Info

Publication number
EP0136433B1
EP0136433B1 EP84108536A EP84108536A EP0136433B1 EP 0136433 B1 EP0136433 B1 EP 0136433B1 EP 84108536 A EP84108536 A EP 84108536A EP 84108536 A EP84108536 A EP 84108536A EP 0136433 B1 EP0136433 B1 EP 0136433B1
Authority
EP
European Patent Office
Prior art keywords
weight
content
vanadium
casting
deoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84108536A
Other languages
German (de)
French (fr)
Other versions
EP0136433A1 (en
Inventor
Klaus D. Do Morumbi Ed. Alamo 10 C Normann
Original Assignee
Kos Bernd Dipl-Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kos Bernd Dipl-Ing filed Critical Kos Bernd Dipl-Ing
Publication of EP0136433A1 publication Critical patent/EP0136433A1/en
Application granted granted Critical
Publication of EP0136433B1 publication Critical patent/EP0136433B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • Such high manganese steel is characterized by a very high hardness and above all by its strengthening ability during cold forming; it can harden after use due to impact, impact, abrasive or pressure loads.
  • the stress results in a martensitic structural transformation in a surface layer, the hardness in this layer increasing from 200 HB to over 500 HB.
  • the hard surface layer is removed by abrasive stress, but at the same time it is constantly re-formed by the same stress.
  • the material below the surface layer has very good toughness and deformability. Austenitic manganese steels can therefore withstand large impact loads.
  • the area of application is therefore tools for mining, the processing of minerals, bulletproof armor plates or steel helmets etc.
  • the invention is based on an austenitic manganese steel, e.g. in the DIN with the material no. 1. 3401 is described.
  • the alloy contents in% by weight are: C approx. 1.25, Mn 11 to 14, Cr to 2.5 Ni to 2 to stabilize the austenite, Mo to 2.5 to prevent coarse carbide deposits.
  • the ratio of carbon to manganese must be between 1: 8 and 1:14; i.e., the manganese must be sufficient for an austenitic structure, depending on the carbon content, and must not stabilize the austenite to such an extent that the hardening capacity suffers from cold working,
  • the object of the invention is to provide an austenitic manganese steel which can be hardened by cold working and which is fine-grained and deformable as uniformly as possible over the entire cross section without the disadvantages of the known measures.
  • the elongation at break should be at least 20% and the other mechanical properties should not deteriorate.
  • the vanadium and boron content are essential to the invention, the latter surprisingly not causing any deterioration in the mechanical properties.
  • the carbide-forming microalloying element such as Ti is only used selectively and has no influence on grain refinement. Titan binds any nitrogen present and prevents formation unwanted AI nitrides.
  • the boron has a grain-refining effect and slows down the precipitation of grain boundary carbides, which has a favorable effect on the mechanical properties and - due to the shorter diffusion paths - reduces the time required for heat treatments.
  • the aluminum content of the steel mentioned is expedient in order to ensure the necessary complete deoxidation before the addition of boron.
  • the microalloy additives being added after the insert has melted in the electric furnace or in the ladle and the casting is subjected to a heat treatment after removal from the mold
  • the vanadium is preferably introduced into the melt in the electric furnace at the end of the refining period and feeding the boron to the melt in the ladle after deoxidation; but it is also possible to add both the boron and the vanadium only in the ladle;
  • the heat treatment preferably comprises annealing at a temperature of 1050 to 1150 ° C and rapid cooling.
  • the melt Before the deoxidation and the setting of the desired tapping temperature in the range between 1450 and 1620 ° C, the melt is covered with a calcareous slag in order to be able to maintain a casting temperature between 1420 and 1520 ° C in the ladle.
  • the heat treatment of the block castings or molded castings mentioned is expedient for balancing the mechanical properties over the entire cross section of the casting.
  • a water bath and / or cooling by flowing air may be used for the aforementioned cooling of the castings, possibly after a first slower cooling step.
  • Pan A received an alloy addition of 2 kg of an alloy containing zircon and vanadium in a ratio of 1: 1 (zirconium and vanadium content each 0.1% by weight),
  • Pan B an addition of this alloy in the amount of 4 kg (zirconium and vanadium content each 0.2 wt .-%) and
  • Pan B added 100 g of vanadium (in the form of ferrovanadium) and 100 g of boron (in the form of ferroboron). (Vanadium and boron content each 0.01% by weight)
  • Crushing jaws with a wall thickness of 120 mm were cast from the metal of pans A to C, which also had a casting temperature of 1480 ° C, as is required for crushers to process ores.
  • the cooled castings were removed from the mold and annealed at a temperature of 1110 ° C. for two hours. After removal from the oven, the crushing jaws were quickly cooled in the water bath.
  • Test pieces were taken from the castings of pans A to C at the edge and in the middle and their tensile strength and elongation at break were determined. The following values were obtained:
  • Test pieces were taken from the inside and from the edge zone, which had an almost uniformly small grain, regardless of the location of the sampling.
  • the elongation at break and the tensile strength of the test material were determined, which were 53 ⁇ 1% and 810 ⁇ 10 N / mm 2 in all cases.
  • Manganese steel was produced in the same way as in Example 2, but without the content of vanadium and boron, and an identical casting was cast in the same way in the form of a crushing cone. After the same cooling and heat treatment process as in Example 2, the casting obtained was tested. It showed cracks that had to be closed by repair welding. The metallographic examination revealed a very uniform distribution of grain size and shape over the cross-section. A very thin, fine-crystalline outer layer was followed by a very wide zone of very coarse, stem-shaped crystallites and a rather coarse, globular-crystalline inner zone. The elongation at break in the zone of stem-shaped crystallites was - depending on the direction of the tensile stress - between 12 and 19%. The tensile strength in this zone was between 578 and 653 N / mm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

1. Austenitic manganese hard steel having the following alloy constituents in percent by weight : 0,8 to 1,8 C 6,0 to 18,0 Mn 0 to 3,0 Cr 0 to 2,0 Ni 0 to 2,5 Mo 0 to 1,0 Si wherein the ratio of the carbon content to the manganese content is from 1 to 8 to 1 to 14 and the balance consists of iron, impurities, deoxidation elements and micro-alloying elements, characterised by the following contents of micro-alloying elements in percent by weight : 0,005 to 0,05, preferably to 0,03 V, 0,008 to 0,02 B and 0 to 0,05 Ti, wherein the specified upper limit of the vanadium content also applies in respect of the sum of V and B and wherein there is preferably an aluminium content of from 0,02 to 0,09% by weight.

Description

Die Erfindung betrifft einen austenitischen Manganhartstahl mit folgenden Legierungsgehalten in Gew.-% :

  • 0,8 bis 1,8 C
  • 6,0 bis 18,0 Mn
  • 0 bis 3,0 Cr
  • 0 bis 2,0 Ni
  • 0 bis 2,5 Mo
  • 0 bis 1,0 Si,

wobei das Verhältnis des Kohlenstoffgehaltes zum Mangangehalt 1 zu 8 bis 1 zu 14 beträgt und der Rest aus Eisen, Verunreinigungen, Desoxidationszusätzen und Mikrolegierungszusätzen, z. B. Bor, besteht.The invention relates to an austenitic manganese steel with the following alloy contents in% by weight:
  • 0.8 to 1.8 C.
  • 6.0 to 18.0 Mn
  • 0 to 3.0 cr
  • 0 to 2.0 Ni
  • 0 to 2.5 months
  • 0 to 1.0 Si,

the ratio of the carbon content to the manganese content is 1 to 8 to 1 to 14 and the rest of iron, impurities, deoxidation additives and microalloying additives, e.g. B. boron.

Ein solcher Manganhartstahl zeichnet sich durch eine sehr große Härte und vor allem durch seine Verfestigungsfähigkeit bei der Kaltverformung aus; er kann im Einsatz infolge schlagender, stoßender, abrasiver oder Druckbeanspruchung nachhärten. Die Beanspruchung hat eine martensitische Gefügeumwandlung in einer Oberflächenschicht zur Folge, wobei die Härte in dieser Schicht von 200 HB auf über 500 HB ansteigt. Die harte Oberflächenschicht wird zwar durch abrasive Beanspruchung abgetragen, gleichzeitig aber durch dieselbe Beanspruchung ständig neu gebildet. Dabei hat der unterhalb der Oberflächenschicht befindliche Werkstoff eine sehr gute Zähigkeit und Verformungsfähigkeit. Austenitische Manganhartstähle können daher großsen Schlagbeanspruchungen standhalten. Das Einsatzgebiet sind demnach Werkzeuge für den Bergbau, die Aufbereitung von Mineralien, beschußssichere Panzerplatten oder Stahlhelme usw.Such high manganese steel is characterized by a very high hardness and above all by its strengthening ability during cold forming; it can harden after use due to impact, impact, abrasive or pressure loads. The stress results in a martensitic structural transformation in a surface layer, the hardness in this layer increasing from 200 HB to over 500 HB. The hard surface layer is removed by abrasive stress, but at the same time it is constantly re-formed by the same stress. The material below the surface layer has very good toughness and deformability. Austenitic manganese steels can therefore withstand large impact loads. The area of application is therefore tools for mining, the processing of minerals, bulletproof armor plates or steel helmets etc.

Notwendig für die günstigen mechanischen Eigenschafsen, insbesondere für die Verformungsfähigkeit des unter der harten Oberflächenschicht befindlichen Werkstoffes, ist jedoch eine hohe Feinkörnigkeit. Besonders im Inneren größerer Gußstücke ist diese Feinkörnigkeit nur schwer zu erreichem. Solche Gußstücke haben im Querschnitt sehr verschiedene Korngrößen; an eine feinkörnige Randzone schließt eine sehr grobkörnige stengelkristalline Schicht an, auf welche eine grobe globularkristalline Innenzone folgt. Selbst durch Schmieden des Gußsstückes können die Kornunterschiede nicht völlig ausgeglichen werden; bei Formgußsstücken ist der Ausgleich besonders schwierig. Die Dehnung und Kerbschlagzähigkeit ist auch bei genauer Einhaltung der Legierungszusammensetzung nicht in allen Fällen ausreichend.However, a high degree of fine grain is necessary for the favorable mechanical properties, in particular for the deformability of the material located under the hard surface layer. This fine grain is difficult to achieve, especially inside larger castings. Such castings have very different grain sizes in cross section; a fine-grained edge zone is followed by a very coarse-grained columnar crystalline layer, followed by a coarse globular-crystalline inner zone. Even by forging the casting, the grain differences cannot be completely compensated; compensation is particularly difficult with castings. The elongation and notched impact strength are not sufficient in all cases, even if the alloy composition is strictly observed.

Es ist bekannt, das Blockguß- oder Formgußstück zur Kornfeinung einer Wärmebehandlung zu unterwerfen, die aus einem ersten vielstündigen Glühen bei 500 bis 600°C zur Umwandlung von Austenit in Perlit, sowie aus einem zweiten Glühvorgang zur Rückumwandlung in Austenit bei 970 bis 1110° C besteht. Die Wirkung ist trotz der Aufwendigkeit des Verfahrens unsicher.It is known to subject the block casting or shaped casting for grain refinement to a heat treatment which consists of a first, long-lasting annealing at 500 to 600 ° C for the conversion of austenite to pearlite, and from a second annealing process for the conversion back to austenite at 970 to 1110 ° C consists. Despite the complexity of the procedure, the effect is uncertain.

Es ist ferner bekannt, die Schmelze bei einer sehr niedrigen, nahe am Schmelzpunkt befindlichen Gießtemperatur abzugießen. Durch die niedrige Gießtemperatur werden eine hohe Keimzahl und ein feineres Korn erreicht. Diese Arbeitsweise verursacht große Schwierigkeiten in der Gießpraxis und es sind nur einfache Formen möglich, weil die Schmelze entlegene Stellen oder Kanten der Gießform in flüssigem Zustand nicht völlig ausfüllt..It is also known to pour off the melt at a very low casting temperature close to the melting point. Due to the low casting temperature, a high bacterial count and a finer grain are achieved. This method of working causes great difficulties in casting practice and only simple shapes are possible because the melt does not completely fill remote areas or edges of the casting mold in the liquid state.

Es ist schließlich bekaknnt, Stahl zur Kornfeinung karbid- oder nitridbildende Eiemente wie Ti, Zr, Nb, V, B und/oder N zuzustzen, wobei als Mengen jeweils mindestens zwischen 0,1 und 0,2 Gew.-% gewählt wurden. Diese Mikrolegierungszusätze haben zwar eine Kornfeinung bewirkt, führten aber zu einem Abfall der Bruchdehnung und der Kerbschlagzähigkeit.Finally, it is known to add steel for grain refinement to carbide- or nitride-forming elements such as Ti, Zr, Nb, V, B and / or N, the amounts chosen in each case being at least between 0.1 and 0.2% by weight. These microalloy additives have caused grain refinement, but have led to a decrease in elongation at break and notched impact strength.

Die Erfindung geht aus von einem austenitischen Manganhartstahl, wie er z.B. in der DIN mit der Werkstoff-Nr. 1. 3401 beschrieben ist. Gemäß diser Norm betragen die Legierungsgehalten in Gew.-%: C ca. 1,25, Mn 11 bis 14, Cr bis 2,5 Ni bis 2 zur Stabilisierung des Austenits, Mo bis 2,5 zum Verhindern grober Karbidausscheidungen. Das Verhältnis des Kohlenstoffgehaltes zum Mangangehalt muß dabei zwischen 1:8 und 1:14 liegen; d.h., das Mangan muß - abgestimmit auf den Kohlenstoffgehalteinerseits für ein austenitisches Gefüge ausreichen und darf andererseits den Austenit nicht so stark stabilisieren, daß die Verfestigungsfähigkeit durch Kaltverformung leidet,The invention is based on an austenitic manganese steel, e.g. in the DIN with the material no. 1. 3401 is described. According to this standard, the alloy contents in% by weight are: C approx. 1.25, Mn 11 to 14, Cr to 2.5 Ni to 2 to stabilize the austenite, Mo to 2.5 to prevent coarse carbide deposits. The ratio of carbon to manganese must be between 1: 8 and 1:14; i.e., the manganese must be sufficient for an austenitic structure, depending on the carbon content, and must not stabilize the austenite to such an extent that the hardening capacity suffers from cold working,

Der Erfindung liegt die Aufgabe zugrunde, einen durch Kaltverformung verfestigungsfähigen austenitischen Manganhartstahl bereitzustellen, der ohne die Nachteile der bekannten Maßnahmen über den gesamten Querschnitt möglichst gleichmäßig feinkörnig und verformungsfähig ist. Die Bruchdehnung soll mindestena 20 % betragen und die übrigen mechanischen Eigenschaften sollen sich nicht verschlechtern.The object of the invention is to provide an austenitic manganese steel which can be hardened by cold working and which is fine-grained and deformable as uniformly as possible over the entire cross section without the disadvantages of the known measures. The elongation at break should be at least 20% and the other mechanical properties should not deteriorate.

Diese Aufgabe wird bei einem Stahl der eingangs genannten Art gelöst durch folgende Gehalte an Mikrolegierungselementen in Gew.-%

  • 0,005 bis 0,05, vorzugsweise bis 0,03 V
  • 0,008 bis 0,02 B,
  • 0 bis 0,05 Ti,

wobei die angeführte Obergrenze des Vanadiumgehaltes auch für die Summe von V und B gilt und wobei vorzugsweise ein Aluminiumgehalt von 0,02 bis 0,09 Gew.-% (als nach der Desoxidation im Stahl verbleibender Gehalt) vorgesehen ist.This object is achieved in the case of a steel of the type mentioned at the outset by the following contents of microalloying elements in% by weight
  • 0.005 to 0.05, preferably up to 0.03 V
  • 0.008 to 0.02 B,
  • 0 to 0.05 Ti,

the upper limit of the vanadium content also applies to the sum of V and B, and preferably an aluminum content of 0.02 to 0.09% by weight (as the content remaining in the steel after deoxidation) is provided.

Erfindungswesentlich sind der Vanadium- und der Borgehalt, wobei letzterer überraschenderweise keine Verschlechterung der mechanischen Eigenschaften bewirkt.The vanadium and boron content are essential to the invention, the latter surprisingly not causing any deterioration in the mechanical properties.

Das karbidbildende Mikrolegierungselement wie Ti findet nur wahlweise Anwendung und hat auf die Kornfeinung keinen Einfluß. Titan bindet eventuell vorhandenen Stickstoff und verhindert die Bildung unerwünschter AI-Nitride.The carbide-forming microalloying element such as Ti is only used selectively and has no influence on grain refinement. Titan binds any nitrogen present and prevents formation unwanted AI nitrides.

Das Bor wirkt kornfeinend und bremst die Ausscheidung von Korngrenzenkarbiden, wodurch die mechanischen Eigenschaften günstig beeinflußst und - wegen der kürzeren Diffusionswege - die bei Wärmebehandlungen erforderlichen Zeiten verringert werden.The boron has a grain-refining effect and slows down the precipitation of grain boundary carbides, which has a favorable effect on the mechanical properties and - due to the shorter diffusion paths - reduces the time required for heat treatments.

Der erwähnte Aluminiumgehalt des Stahls ist zweckmäßsig, um die vor der Borzugabe nötige Sicherheit einer vollständigen Desoxidation zu gewährleisten.The aluminum content of the steel mentioned is expedient in order to ensure the necessary complete deoxidation before the addition of boron.

Bei der Herstellung des erfindungsgemäßen austenitischen Manganhartstahls, wobei die Mikrolegierungszusätze nach dem Erschmelzen des Einsatzes im Elektroofen bzw. in der Gießpfanne zugegeben werden und das Gußstück nach dem Entformen einer Wärmebehandlung unterworfen wird, wird vorzugsweise das Vanadium in die im Elektroofen befindliche Schmelze am Ende der Feinungsperiode und das Bor der in der Gießspfanne befindlichen Schmelze nach der Desoxidation zugeführt; es ist aber auch möglich, sowohl das Bor als auch das Vanadium erst in der Gießspfanne zuzugeben; die Wärmebehandlung umfaßst vorzugsweise ein Glühen bei einer Temperatur von 1050 bis 1150°C und eine rasche Abkühlung.In the production of the austenitic high manganese steel according to the invention, the microalloy additives being added after the insert has melted in the electric furnace or in the ladle and the casting is subjected to a heat treatment after removal from the mold, the vanadium is preferably introduced into the melt in the electric furnace at the end of the refining period and feeding the boron to the melt in the ladle after deoxidation; but it is also possible to add both the boron and the vanadium only in the ladle; the heat treatment preferably comprises annealing at a temperature of 1050 to 1150 ° C and rapid cooling.

Vor der Desoxidation und der Einstellung der gewünschten Abstichtemperatur im Bereich zwischen 1450 und 1620°C wird die Schmelze mit einer kalkhältigen Schlacke abgedeckt, um in der Gießspfanne eine Gießstemperatur zwischen 1420 und 1520°C halten zu können. Die erwähnte Wärmebehandlung der Blockguß-oder Formgußstücke ist für den Ausgleich der mechanischen Eigenschaften über den gesamten Querschnitt des Gußstückes zweckmäßig. Für die erwähnte Kühlung der Gußsstücke kommt ein Wasserbad und/oder die Kühlung durch strömende Luft, gegebenenfalls nach einem ersten langsameren Abkühlungsschritt in Frage.Before the deoxidation and the setting of the desired tapping temperature in the range between 1450 and 1620 ° C, the melt is covered with a calcareous slag in order to be able to maintain a casting temperature between 1420 and 1520 ° C in the ladle. The heat treatment of the block castings or molded castings mentioned is expedient for balancing the mechanical properties over the entire cross section of the casting. A water bath and / or cooling by flowing air may be used for the aforementioned cooling of the castings, possibly after a first slower cooling step.

Die Erfindung wird an Hand von Ausfürungsbeispielen und Vergleichsbeispielen näher erläutert:The invention is explained in more detail on the basis of exemplary embodiments and comparative examples:

Beispiel 1:Example 1:

In einem Lichtbogenofen wurden 3000 kg Maäganhartstahl mit folgender Zusammensetzung erschmolzen:

  • 1,25 Gew.-% Kohlenstoff, 13 Gew.-% Mangan, 0,5 Gew.-% Chrom, 0,4 Gew.-% Nickel, 0,4 Gew.-% Molybdän. Die Schmelze wurde mit einer Schlacke aus Kalkstein mit einem Zusatz von Kalziumfluorid abgedeckt und nach Einstellung einer Abstichtemperatur von 1580°C eine Desoxidation mit Aluminium vorgenommen. Die Schmelzenmenge wurde beim Abstich zu gleichen Teilen auf drei gleichartige Gießspfannen aufgeteilt. In den drei Gießspfannen, wo identische Verhältnisse herrschten, wurden verschiedene Mikrolegierungszusätze zugegeben.
In an electric arc furnace, 3000 kg of Maägan high carbon steel with the following composition were melted:
  • 1.25% by weight carbon, 13% by weight manganese, 0.5% by weight chromium, 0.4% by weight nickel, 0.4% by weight molybdenum. The melt was covered with a limestone slag with the addition of calcium fluoride and, after setting a tapping temperature of 1580 ° C., deoxidation with aluminum was carried out. When tapping, the amount of melt was divided equally into three identical ladles. In the three ladles, where conditions were identical, different micro-alloy additives were added.

Pfanne A erhielt einen Legierungszusatz von 2 kg einer Zirkon und Vanadium im Verhältnis 1:1 enthaltenden Legierung (Zirkon- und Vanadiumgehalt je 0,1 Gew.-%),Pan A received an alloy addition of 2 kg of an alloy containing zircon and vanadium in a ratio of 1: 1 (zirconium and vanadium content each 0.1% by weight),

Pfanne B einen Zusatz dieser Legierung in der Menge von 4 kg (Zirkon- und Vanadiumgehalt je 0,2 Gew.-%) undPan B an addition of this alloy in the amount of 4 kg (zirconium and vanadium content each 0.2 wt .-%) and

Pfanne B einen Zusatz von 100 g Vanadium (in Form von Ferrovanadium) und von 100 g Bor (in Form von Ferrobor). (Vanadium- und Borgehalt je 0,01 Gew.-%)Pan B added 100 g of vanadium (in the form of ferrovanadium) and 100 g of boron (in the form of ferroboron). (Vanadium and boron content each 0.01% by weight)

Aus dem Metall der Pfannen A bis C, in denen gleichermaßen eine Gießstemperatur von 1480° C herrschte, wurden Brechbacken mit einer Wanddicke von 120 mm gegossen, wie sie für Brecher zur Aufbereitung von Erzen benötigt werden. Die abgekühlten Gußsstücke wurden entformt und zwei Stunden bei einer Temperatur von 1110°C geglüht. Nach der Entnahme aus dem Ofen wurden die Brechbacken im Wassarbad rasch abgekühlt.Crushing jaws with a wall thickness of 120 mm were cast from the metal of pans A to C, which also had a casting temperature of 1480 ° C, as is required for crushers to process ores. The cooled castings were removed from the mold and annealed at a temperature of 1110 ° C. for two hours. After removal from the oven, the crushing jaws were quickly cooled in the water bath.

Aus den Gußstücken der Pfannen A bis C wurden am Rand und in der Mitte Probestücke genommen und deren Zugfestigkeit und Bruchdehnung bestimmt. Dabei wurden folgende Werte erhalten:

Figure imgb0001
Test pieces were taken from the castings of pans A to C at the edge and in the middle and their tensile strength and elongation at break were determined. The following values were obtained:
Figure imgb0001

Man sieht die Überlegenheit der Proben aus der Pfanne C mit der erfindungsgemäßsen Zusammensetzung sowohl was die absolut höheren werte der Zugfestigkeit und insbesondere der Bruchdehnung an allen Stellen der Stäbe, besonders jedoch in deren Mitte, als auch die größere Gleichmäßigkeit über den Querschnitt betrifft.One can see the superiority of the samples from the pan C with the composition according to the invention both in terms of the absolutely higher values of tensile strength and in particular the elongation at break at all points of the bars, but especially in the middle thereof, and also the greater uniformity over the cross section.

Beispiel 2:Example 2:

In einem Lichtbogenofen wurden 7 t Manganhartstahl mit folgender Zusammensetzung erschmolzen:

  • 1,18 Gew.-% Kohlenstoff, 13,1 Gew.-% Mangan, 0,25 Gew.-% Chrom, 0,1 % Nickel, 0,05 % Molybdän, 0,52 Gew.-% Silizium, 0,033 Gew.-% Phosphor, 0,008 Gew.-% Vanadium und Spuren erschmelzungsbedingter Verunreinigungen. Der Vanadiumgehalt war durch Zusetzen von Ferrovanadium am Ende der Feinungsperiode eingestellt worden. Nach Abdecken der Schmelze mit einer Schlacke ähnlich Beispiel 1 wurde eine Abstichtemperatur von 1540°C eingestellt und eine -Desoxidation mit Aluminium durchgeführt. Nach dem darauf folgenden Abstich in die Gießspfanne wurde dort durch Zugabe von Ferrobor ein Borgehalt von 0,015 Gew.-% eingestellt. Bei einer Gießstemperatur von 1470° C wurde daraufh in die Schmelze in eine Sandgußform eingegossen. Das Gußstück in Form eines Brechkegels wurde erkalten gelassen, aus dem Sand genommen und geputzt. Hierauf wurde es in einem Glühofen eingebracht, erhitzt und dort 4 Stunden bei einer Temperatur von 1100°C geglüht. Nach dem Glühen folgte eine rasche Abkühlung im Wasser, unterbrochen durch mehrmaliges Herausziehen und kurzes Verweilen in der Umgebumgsluft.
7 tons of high manganese steel with the following composition were melted in an electric arc furnace:
  • 1.18% carbon, 13.1% manganese, 0.25% chromium, 0.1% nickel, 0.05% molybdenum, 0.52% silicon, 0.033% by weight .-% phosphorus, 0.008% by weight vanadium and traces of melting-related impurities. The vanadium content was adjusted by adding ferrovanadium at the end of the refining period. After covering the melt with a slag similar to Example 1, a tapping temperature of 1540 ° C. was set and deoxidation was carried out with aluminum. After the subsequent tapping into the ladle, a boron content of 0.015% by weight was set there by adding ferroboron. At a casting temperature of 1470 ° C, the melt was then poured into a sand mold. The casting in the form of a crushing cone was allowed to cool, removed from the sand and cleaned. It was then placed in an annealing furnace, heated and annealed there at a temperature of 1100 ° C. for 4 hours. After the glow, there was a rapid cooling in the water, interrupted by repeated pulling out and brief lingering in the ambient air.

Nach dem Abkühlen war das Aussehen des Gußstückes einwandfrei. Es wurden Probestücke aus dem Inneren und aus der Randzone entnommen, die ein nahezu gleichmäßig kleines Korn aufwiesen, unabhängig von der Stelle der Probenahme. Es wurden die Bruchdehnung und die Zugfestigkeit des Probermaterials festgestellt, die in allen Fällen bei 53 ± 1 % bzw. bei 810 ± 10 N/mm2 lagen.After cooling, the appearance of the casting was perfect. Test pieces were taken from the inside and from the edge zone, which had an almost uniformly small grain, regardless of the location of the sampling. The elongation at break and the tensile strength of the test material were determined, which were 53 ± 1% and 810 ± 10 N / mm 2 in all cases.

Beispiel 3 (Vergleichsbeispiel):Example 3 (comparative example):

Es wurde gleich wie in Beispiel 2 Manganhartstahl, jedoch ohne den Gehalt an Vanadium und Bor, hergestellt und in derselben Weise ein gleiches Gußstück in Form eines Brechkegels gegossen. Nach gleichem Abkühl- und Wärmebehandlungsvorgang wie in Beispiel 2 wurde das erhaltene Gußsstück geprüft, Es zeigte Risse, die durch Reparaturschweißen geschlossen werden mußten. Die metallographische Untersuchung ergab eine sehr urgleichmäßige Verteilung von Korngröße und Kornform über den Querschnitt. Auf eine sehr dünne feinkristalline Außenschicht folgte eine sehr breite Zone sehr grober, stengelförmiger Kristalliten und eine ziemlich grobe, globularkristalline Innenzone. Die Bruchdehnung in der Zone stengelförmiger Kristalliten lag - je nach der Richtung der Zugbeanspruchung - zwischen 12 und 19 %. Die Zugfestigkeit betrug in dieser Zone zwischen 578 und 653 N/mm2.Manganese steel was produced in the same way as in Example 2, but without the content of vanadium and boron, and an identical casting was cast in the same way in the form of a crushing cone. After the same cooling and heat treatment process as in Example 2, the casting obtained was tested. It showed cracks that had to be closed by repair welding. The metallographic examination revealed a very uniform distribution of grain size and shape over the cross-section. A very thin, fine-crystalline outer layer was followed by a very wide zone of very coarse, stem-shaped crystallites and a rather coarse, globular-crystalline inner zone. The elongation at break in the zone of stem-shaped crystallites was - depending on the direction of the tensile stress - between 12 and 19%. The tensile strength in this zone was between 578 and 653 N / mm 2 .

Claims (2)

1. Austenitic manganese hard steel having the following alloy constituents in percent by weight:
0,8 to 1,8 C
6,0 to 18,0 Mn
0 to 3,0 Cr
0 to 2,0 Ni
0 to 2,5 Mo
0 to 1,0 Si

wherein the ratio of the carbon content to the manganese content is from 1 to 8 to 1 to 14 and the balance consists of iron, impurities, deoxidation elements and micro-alloying elements, characterised by the following contents of micro-alloying elements in percent by weight:
0,005 to 0,05, preferably to 0,03 V,
0,008 to 0,02 B and
0 to 0,05 Ti,

wherein the specified upper limit of the vanadium content also applies in respect of the sum of V and B and wherein there is preferably an aluminium content of from 0,02 to 0,09 % by weight.
2. A process for the production of the austenitic manganese hard steel according to claim 1 wherein the microalloying additives are added after melting of the batch in the electric furnace or in the casting ladle and the cast member is subjected to a heat treatment after removal from the mould characterised in that the vanadium is preferably introduced into the molten material in the electric furnace at the end of the refining period and the boron is added to the molten material in the casting leadle after the deoxidation thereof and the heat treatment includes an annealing operation at a temperature of from 1050 to 1150°C and a rapid cooling operation.
EP84108536A 1983-08-05 1984-07-19 Austenitic manganese steel of the hadfield type, and process for the manufacture thereof Expired EP0136433B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0285083A AT390807B (en) 1983-08-05 1983-08-05 AUSTENITIC MANGANIC STEEL AND METHOD FOR THE PRODUCTION THEREOF
AT2850/83 1983-08-05

Publications (2)

Publication Number Publication Date
EP0136433A1 EP0136433A1 (en) 1985-04-10
EP0136433B1 true EP0136433B1 (en) 1987-10-14

Family

ID=3541288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84108536A Expired EP0136433B1 (en) 1983-08-05 1984-07-19 Austenitic manganese steel of the hadfield type, and process for the manufacture thereof

Country Status (4)

Country Link
EP (1) EP0136433B1 (en)
JP (1) JPS6056056A (en)
AT (2) AT390807B (en)
DE (1) DE3466781D1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5865385A (en) * 1997-02-21 1999-02-02 Arnett; Charles R. Comminuting media comprising martensitic/austenitic steel containing retained work-transformable austenite
US6572713B2 (en) * 2000-10-19 2003-06-03 The Frog Switch And Manufacturing Company Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
ITUD20040228A1 (en) * 2004-12-06 2005-03-06 F A R Fonderie Acciaierie Roia PROCEDURE FOR OBTAINING A STEEL ALLOY IN MANGANESE, AND STEEL LEAGUE IN MANGANESE SO IT HAS OBTAINED
BR112019019598B1 (en) 2018-03-29 2023-02-07 Nippon Steel Corporation WEAR-RESISTANT AUSTENITIC STEEL SHEET
BR112020014123A2 (en) 2018-03-29 2020-12-01 Nippon Steel Corporation wear-resistant austenitic steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1215924A (en) * 1966-12-12 1970-12-16 Hadfields Ltd Process for pre-hardening manganese steel
SU322399A1 (en) * 1970-07-03 1971-11-30
SU522261A1 (en) * 1975-03-25 1976-07-25 Центральный научно-исследовательский институт черной металлургии им.И.П.Бардина Low alloy steel
US4039328A (en) * 1975-08-11 1977-08-02 Jury Donatovich Novomeisky Steel
SU581165A1 (en) * 1976-06-16 1977-11-25 Уральский научно-исследовательский институт черных металлов Wear-resistant steel
AT377287B (en) * 1982-04-13 1985-02-25 Ver Edelstahlwerke Ag COLD-STRENGING AUSTENITIC MANGANIC STEEL AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
ATE30249T1 (en) 1987-10-15
JPS6056056A (en) 1985-04-01
EP0136433A1 (en) 1985-04-10
ATA285083A (en) 1989-12-15
DE3466781D1 (en) 1987-11-19
AT390807B (en) 1990-07-10

Similar Documents

Publication Publication Date Title
EP0091897B1 (en) Strain hardening austenitic manganese steel and process for the manufacture thereof
DE69723204T2 (en) STEEL WITH IMPROVED Toughness IN ZONES THROUGH SWEAT
DE3018537C2 (en)
DE60002745T2 (en) HIGH-RESISTANT STAINLESS AUTOMATIC STEEL
DE60132302T2 (en) TIN AND ZRN EXTRACTIVE STEEL SHEET FOR WELDING STRUCTURES, HERTSELLING PROCESSES THEREFOR AND THOSE USING WELDING INSERTS
DE69911732T2 (en) HIGH-STRENGTH, HIGH-SPEED ROLLED STEEL AND METHOD FOR PRODUCING THE SAME
DE69824419T2 (en) HIGH-RESISTANT, DESIGN-HARDENABLE, STAINLESS STEEL WITH GOOD TOUGHNESS
DE60130362T2 (en) STEEL PLATE WITH TIN AND CUS DECOMMENDATIONS FOR WELDED STRUCTURES, METHOD OF MANUFACTURING THEM AND THUS USE OF WELDING INSERTS
DE60130788T2 (en) TIN AND MNS EXTRACTIVE STEEL PLATE FOR SHELF STRUCTURES, HORIZONTAL PROCESSING THEREFOR, AND THESE USE OF WELDING INSERTS
WO2017085072A1 (en) High-grade structural steel with bainitic structure, forged part produced therefrom and method for producing a forged part
DE60115232T2 (en) STEEL ALLOY, TOOL FOR PLASTIC DIE CASTING AND TOOTH-CURRENT COATING FOR PLASTIC DIE CASTING TOOLS
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
DE1483218C3 (en) Process for producing a heat-resistant, ferritic Cr-Mo-V steel with high creep strength and improved creep elongation
EP0143873B1 (en) Austenitic manganese steel and process for its manufacture
EP3211109B1 (en) Method for producing a thermoforming tool and thermoforming tool made from same
DE1808515A1 (en) Cast iron with spheroidal graphite
EP0141804B1 (en) Hadfield type manganese steel and process for the manufacture thereof
DE102019135830A1 (en) Method of making a hot work steel article
DE2800444A1 (en) ALLOYED STEEL
EP2441853A1 (en) Method for producing tools from steel alloy and tools, in particular for machining metal
DE1298291B (en) Use of a martensite-hardenable nickel-cobalt-molybdenum steel alloy for objects with a minimum tensile strength of 265 kg / mm
EP0136433B1 (en) Austenitic manganese steel of the hadfield type, and process for the manufacture thereof
DE4125648A1 (en) HIGH TOE, UNCOVERED STEEL AND METHOD FOR THEIR PRODUCTION
DE60126646T2 (en) STEEL ALLOY, HOLDER AND BRACKET PARTS FOR PLASTIC TOOLS AND GUARANTEED COVERS FOR HOLDER AND HOLDER PARTS
DE2937908A1 (en) TE-S AUTOMATIC STEEL WITH LOW ANISOTROPY AND METHOD FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19851008

17Q First examination report despatched

Effective date: 19861128

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 30249

Country of ref document: AT

Date of ref document: 19871015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3466781

Country of ref document: DE

Date of ref document: 19871119

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880731

Ref country code: CH

Effective date: 19880731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890720

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890724

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890725

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890731

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890906

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900719

Ref country code: AT

Effective date: 19900719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900731

BERE Be: lapsed

Owner name: KOS BERND

Effective date: 19900731

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84108536.8

Effective date: 19900418