EP0136005B1 - Mécanisme de commande ou d'amortissement d'un servo-actionneur - Google Patents

Mécanisme de commande ou d'amortissement d'un servo-actionneur Download PDF

Info

Publication number
EP0136005B1
EP0136005B1 EP84305122A EP84305122A EP0136005B1 EP 0136005 B1 EP0136005 B1 EP 0136005B1 EP 84305122 A EP84305122 A EP 84305122A EP 84305122 A EP84305122 A EP 84305122A EP 0136005 B1 EP0136005 B1 EP 0136005B1
Authority
EP
European Patent Office
Prior art keywords
fluid
pressure
ram
servo
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84305122A
Other languages
German (de)
English (en)
Other versions
EP0136005A1 (fr
Inventor
James S. Mason
David Foerster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pneumo Abex Corp
Original Assignee
Pneumo Abex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pneumo Abex Corp filed Critical Pneumo Abex Corp
Publication of EP0136005A1 publication Critical patent/EP0136005A1/fr
Application granted granted Critical
Publication of EP0136005B1 publication Critical patent/EP0136005B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B18/00Parallel arrangements of independent servomotor systems

Definitions

  • This invention relates to a servo mechanism for use in a fluid servo system and, more particularly, to aircraft flight control servo systems. More specifically, the invention relates to a servo actuator control/damping mechanism which utilizes and combines the functions of an electromechanically driven servo valve to achieve fluid flow and actuator (ram) load control even after loss of fluid power.
  • Fluid servo systems are used for many purposes, one being to position the flight control surfaces of high performance aircraft.
  • the servo system desirably should provide for control and damping of flight control surface displacements or flutter after loss of fluid power. Otherwise, aircraft damage or loss of control may result.
  • a servo mechanism for use in a fluid servo system for controlling a fluid powered ram actuator having opposed pressure surfaces, comprising a servo valve including a valve member selectively positionable therein to provide variable fluid pressure and return flow orifices for metering fluid flow from a pressure port and pressure passage to either pressure surface of the ram and return flow from the other pressure surface of the ram to a return passage and return port through actuator passages between the servo valve and ram, a compensator between the return passage and return port, and additional passages between the return passage and actuator passages containing check valves, characterized by an electro-mechanical mechanism operative independently of fluid pressure to controllably position the valve member to effect controlled metering of high pressure fluid received from the pressure port through the variable fluid pressure orifices to either pressure surface of the ram for controlled actuation thereof and, in the even of a loss of such high pressure fluid, to effect regulated metering of bypass flow through the variable return flow orifices and across the
  • a dual hydraulic servo system is designated generally by reference numeral 10 and includes two similar hydraulic servo actuators 12 and 14.
  • the actuators 12 and 14 are connected to a common output device such as a dual tandem cylinder actuator or ram 16 which in turn may be connected to a control member such as a flight control element of an aircraft.
  • a common output device such as a dual tandem cylinder actuator or ram 16 which in turn may be connected to a control member such as a flight control element of an aircraft.
  • the two servo actuators 12, 14 normally are operated simultaneously to effect position control of the actuator or ram 16 and hence the flight control element.
  • each servo actuator 12, 14 preferably is capable of properly effecting such position control independently of the other so that the control is maintained even when one of the servo actuators 12, 14 fails or is shut down. Accordingly, the two servo actuators 12, 14 in the overall system provide a redundancy feature that increases safe operation of the aircraft.
  • the servo actuators 12 and 14 are similar and for ease in description, like reference numerals will be used to identify corresponding like elements of the two servo actuators.
  • Each servo actuator 12, 14 has an inlet port 20 for connection with a source of high pressure hydraulic fluid and a return port 22 for connection with a hydraulic reservoir.
  • the respective inlet and return ports 20, 22 of the servo actuators 12, 14 are connected to separate and independent hydraulic systems in the aircraft, so that in the event one of the hydraulic systems fails or shuts down, the servo actuator coupled to the other still functioning hydraulic system may be operated to effect the position control function.
  • the hydraulic systems associated with the servo actuators 12 and 14 will respectively be referred to as the forward and aft hydraulic systems.
  • an inlet passage 24 connects the inlet port 20 to a common main control servo valve designated generally by reference numeral 26.
  • Each inlet passage 24 may be provided with a suitable filter 27 and a check valve 28 which blocks reverse flow through the inlet passage 24 from the servo valve to the inlet port.
  • Each servo actuator 12, 14 also is provided with a return passage 30 which connects the return port 22 to the servo valve 26 via a damping mode accumulator or compensator 32 which serves to maintain pressure in the servo actuator sufficient to prevent cavitation across damping restrictions during damping mode operation as described hereinafter.
  • the main control servo valve 26 includes a plunger or spool 34 longitudinally shiftable in a cylindrical bore 36 which may be formed by a sleeve (not shown) in an overall system housing.
  • the plunger 34 has two fluidically isolated valving sections indicated generally at 38 and 40, which valving sections 38,40 are associated respectively with the actuators 12 and 14 and the passages 24 and 30 thereof.
  • the plunger 34 may be selectively shifted from its illustrated neutral or centered position for selective connection of the passages 24 and 30 of each servo actuator 12, 14 to passages 42 and 44 in the same servo actuator.
  • the passages 42 and 44 of both servo actuators 12 and 14 are connected to the ram 16 which includes a pair of cylinders 46 having respective pistons 48 connected to ram output rod 50 for common movement therewith. More specifically, the passages 42 and 44 of each servo actuator 12, 14 are connected to a corresponding one of the cylinders 46 of opposite sides of the piston 48. The passages 42 and 44 also are connected by respective branch passages 52 and 54 to a common passage 56 which in turn is connected to the corresponding return passage 30. As shown, the branch passages 52 and 54 are respectively provided with anti cavitation check valves 58 and 60 which block fluid flow from the passages 42 and 44 to the common passage 56 but permit free flow from common passage 56 to passages 42 and 44.
  • each valving section 38, 40 of the plunger 34 has a pair of longitudinally (axially) spaced apart lands 60 and 62 which are locatable, as when the plunger 34 is in its neutral position, to block flow through respective metering ports 64 and 66 that respectively connect the passages 42 and 44 to the interior of the plunger bore 36.
  • the lands 60 and 62 define therebetween a supply groove 68 which is in communication with the inlet passage 24 and outwardly thereof respective return grooves 70 and 72 which are inter-connected by passage 74 and in common communication with return passage 30.
  • Controlled selective movement of the valve plunger 34 is desirably effected by an electric force motor 78 which may be located closely adjacent one end of the plunger.
  • the force motor 78 may be of linear or rotary type and operative connection of the force motor 78 to the valve plunger 34 may be obtained by a link member 80.
  • the force motor 78 is responsive to command signals received from an electronic control or command system indicated at 82 which may be located, for example, in the aircraft cockpit, whereby the force motor 78 serves as a control input to the valve plunger 34. Also, the force motor 78 preferably has redundant multiple parallel coils so that if one coil or its associated electronics should fail, its counterpart channel or channels will maintain control. Moreover, suitable failure monitoring circuitry is preferably provided to detect when and which channel has failed, and to uncouple or render passive the failed channel.
  • Feed-back information to the command system 82 is obtained by position transducers or sensors 84 and 86 which are desirably operatively connected to an monitor the positions of the valve plunger 34 and ram output rod 50, respectively.
  • electronic load sensors 88 or equivalent device are desirably operatively connected to respective cylinders 46 of the ram 16 for monitoring ram load and providing load feedback information to the command system 82 controlling the force motor 78.
  • each load sensor 88 may be in the form of a differential pressure sensor including a position transducer 92 connected to a longitudinally shiftable spring centered piston 94.
  • Opposite sides or pressure surfaces of the piston 94 are respectively connected by passages 96 and 98 to respective opposite sides or pressure surfaces of the piston 48 in the corresponding cylinder 46 of the ram whereby the position of the piston 94 and corresponding output of the transducer will be indicative of the direction and magnitude of differential pressure forces acting on the piston 48.
  • each electronic load sensor 88 may be used during normal operation to provide dynamic load feed-back information to the command system 82 for implementation of damping and over-pressure relief functions in conventional manner. Further, each electronic load sensor 88 may be used during normal operation to provide surface hinge moment control and hinge moment limiting. This would allow the servo to become a torque or force servo rather than a positional servo.
  • the command system 82 automatically implements damping mode operation.
  • the check valves 28 and compensators 32 serve to maintain positive pressure in the system 10 after such loss of hydraulic power by checking fluid loss through the inlet and return ports 20 and 22.
  • the compensators' fluid storage volume can be selected such that damping may be met for a specified minimum period of time.
  • active or regulated damping control of the ram 16 is effected by modulating the valve plunger 34 to provide variable orifices which direct and meter bypass flow across each ram piston 48.
  • the electromechanically driven servo valve 26 is not dependent on hydraulic power for valve plunger positioning whereby the valve plunger 34 will continue to respond to system commands as long as at least one channel of the motor 78 and associated electronics survives and remains operative.
  • the valve plunger 34 is modulated in response to ram load feed-back information from the load sensors 88 which monitor the direction and amplitude of differential pressure across the pistons 48.
  • each ram piston 48 may be bypassed across the ram 16 to the retract (right) side of each piston 48 by moving the valve plunger 34 to the right of its neutral position to provide a metering orifice connecting passage 42 to return passage 30.
  • This establishes correspondingly metered bypass flow across each piston 48, such flow passing through passage 42 and the provided orifice to return passage 30 which directs the flow to the retract side of the piston via bypass passage 56 and branch passage 54.
  • moving the valve plunger 34 to the left of its neutral position will establish and meter bypass flow in the opposite direction across each piston 48.
  • the provided orifices may be controllably varied in size to provide desired damped bypass flow by selective positioning of the valve plunger in response to command signals dictated by sensed ram conditions, i.e., ram position monitored by position sensors 86 and ram load monitored by load sensors 88.
  • Such active or regulated damping control in response to ram load feed-back further may have associated therewith an overload relief function in the damping mode.
  • an appropriate command signal may be provided to position the valve plunger 34 at a location providing a desired orifice size sufficient to effect rapid relief of such overload condition in order to prevent damage to the actuator and the controlled element connected thereto.
  • bypass flow across the ram 16 may be controlled by utilizing the existing flow metering pattern of the main control servo valve 26 and modulating the valve plunger 34 thereof to provide variable orifices for active damping and overload relief control. It also is noted that such active control is even more desirable in redundant systems as shown. If the ram 16 continues to be operated by high pressure fluid supplied to only one of the servo systems, the other servo system operates to effect by pass of the inactive portion of the ram 16. Therefore, the need in such instance for a separate bypass valve is eliminated by such implementation because the main control valve 26 is operated to permitfluid transfer across the respective piston 48 as in normal operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Servomotors (AREA)

Claims (7)

1. Servo-mécanisme (10) pour utilisation dans un servo-système à fluide destiné à commander un actionneur (16) mû par fluide ayant des surfaces de pression opposées, comprenant une servo valve (26) comportant un élément de valve (34) déplaçable sélectivement à l'intérieur pour fournir une pression variable de fluide et des orifices d'écoulement de retour (62, 64) pour réguler l'écoulement de fluide d'un orifice de pression (20) et d'un conduit de pression (24) vers chaque surface de pression d'une pompe (16) et l'écoulement de retour de l'autre surface de pression de la pompe (16) à un conduit de retour (30) et à un orifice de retour (22) à travers des conduits d'actionneur (42, 44) entre la servo-valve (26) et la pompe (16), un compensateur (32) entre le conduit de retour (30) et l'orifice de retour (20), et des conduits additionnels (52, 54) entre le conduit de retour (30) et les conduits d'actionneurs (42, 44) contenant des valves de contrôle (58, 60), caractérisé par un mécanisme électro-mécanique (78) opérationnel indépendamment de la pression de fluide pour localiser de façon commandable l'élément de valve (34) afin d'effectuer une régulation commandée du fluide à haute pression reçue de l'orifice de pression (20) par les orifices variables (64, 66) de pression de fluide vers chaque surface de pression de la pompe (16) en vue de son fonctionnement commandé et, dans le cas d'une perte de ce fluide à haute pression, d'assurer un contrôle régulé de l'écoulement en dérivation par les orifices variables d'écoulement en retour (64, 66) et dans la pompe (16) en vue de sa commande active d'amortissement, et par un capteur (88) pour réguler la charge d'actionneur et fournir une information en retour de charge de l'actionneur au mécanisme (78) afin d'exécuter la modulation commandée de l'élément de valve (34) en réponse à ladite information pendant à la fois le fonctionnement normal et lorsqu'il y a une perte de cette haute pression de fluide de manière à permettre l'amortissement dynamique en retour de la charge et des fonctions de relâchement de la surpression.
2. Servo-mécanisme selon la revendication 1, caractérisé en ce que ledit mécanisme électro-mécanique (78) comprend un moteur électrique (78) relié mécaniquement directement audit élément de valve (34).
3. Servo-mécanisme selon la revendication 2, caractérisé par un système de commande électronique (82) pour la réception d'une telle information de retour et la commande du moteur (78).
4. Servo-mécanisme selon l'une des revendications précédentes, caractérisé par un capteur de position (84) relié audit élément de valve (34) pour la délivrance d'une information en retour de la position de la valve audit mécanisme électro-mécanique (78) pendant à la fois le fonctionnement normal et lorsqu'il existe une perte d'une telle haute pression de fluide.
5. Servo-mécanisme selon l'une des revendications précédentes, caractérisé par un capteur de position (86) qui peut être relié à ladite pompe (16) pour la fourniture d'une information en retour de la position de pompe audit mécanisme électro-mécanique (78) pendant à la fois le fonctionnement normal et lorsqu'il y a une perte d'une telle haute pression de fluide.
6. Servo-mécanisme selon l'une des revendications précédentes, caractérisé en ce que ledit actionneur de pompe (16) comprend une paire de cylindres (46) et des pistons respectifs (48) reliés entre eux par un mouvement commun, une source séparée de fluide à haute pression pour chacun desdits cylindres (46), et en ce que ledit élément de valve (34) comporte une paire de sections de valve (38, 40) associées respectivement auxdits pistons (48) pour un fonctionnement redondant, chaque section de valve (38, 40) comprenant une pression de fluide variable et des orifices d'écoulement en retour permettant un écoulement de fluide régulé vers et des faces opposées des pistons respectifs (48) en réponse au positionnement sélectif de l'élément de valve
(34) sous les conditions de fonctionnement normal, et en cas de perte d'une source de fluide à haute pression sur l'un desdits cylindres (46), ledit mécanisme électro-mécanique (78) étant opérationnel indépendamment de l'autre source de fluide à haute pression afin de positionner sélectivement ledit élément de valve (34) pour une exécution commandée de ladite pompe (16), laquelle utilise une telle autre source de fluide à haute pression sur l'un desdits pistons (48), et pour une régulation commandée du fluide de dérivation sur l'autre piston (48) associé à la source perdue de fluide à haute pression à travers les orifices variables d'écoulement en retour (64, 66) dans la section de valve respective (38, 40), ceci afin d'assurer un amortissement actif commandé dudit autre piston (48).
EP84305122A 1983-09-02 1984-07-27 Mécanisme de commande ou d'amortissement d'un servo-actionneur Expired EP0136005B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52911583A 1983-09-02 1983-09-02
US529115 1995-09-15

Publications (2)

Publication Number Publication Date
EP0136005A1 EP0136005A1 (fr) 1985-04-03
EP0136005B1 true EP0136005B1 (fr) 1988-01-20

Family

ID=24108588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84305122A Expired EP0136005B1 (fr) 1983-09-02 1984-07-27 Mécanisme de commande ou d'amortissement d'un servo-actionneur

Country Status (4)

Country Link
EP (1) EP0136005B1 (fr)
JP (1) JPS6073102A (fr)
CA (1) CA1210306A (fr)
IL (1) IL72551A (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453879B2 (en) 2006-03-06 2013-06-04 The Coca-Cola Company Beverage dispensing system
US8739840B2 (en) 2010-04-26 2014-06-03 The Coca-Cola Company Method for managing orders and dispensing beverages
US8757222B2 (en) 2010-04-26 2014-06-24 The Coca-Cola Company Vessel activated beverage dispenser

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441498A (en) * 1987-08-07 1989-02-13 Teijin Seiki Co Ltd Controller for rudder surface
US10631558B2 (en) 2006-03-06 2020-04-28 The Coca-Cola Company Methods and apparatuses for making compositions comprising an acid and an acid degradable component and/or compositions comprising a plurality of selectable components
US9415992B2 (en) 2006-03-06 2016-08-16 The Coca-Cola Company Dispenser for beverages having a rotary micro-ingredient combination chamber
US10280060B2 (en) 2006-03-06 2019-05-07 The Coca-Cola Company Dispenser for beverages having an ingredient mixing module
US7913879B2 (en) 2006-03-06 2011-03-29 The Coca-Cola Company Beverage dispensing system
US9821992B2 (en) 2006-03-06 2017-11-21 The Coca-Cola Company Juice dispensing system
US8960500B2 (en) 2006-03-06 2015-02-24 The Coca-Cola Company Dispenser for beverages including juices
US8251258B2 (en) 2007-09-06 2012-08-28 The Coca-Cola Company Systems and methods of selecting and dispensing products
US8162176B2 (en) 2007-09-06 2012-04-24 The Coca-Cola Company Method and apparatuses for providing a selectable beverage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2826896A (en) * 1954-12-17 1958-03-18 Hobson Ltd H M Manually controlled electro-hydraulic system for aircraft
US4351357A (en) * 1981-03-27 1982-09-28 The Bendix Corporation Fail safe compensator used in a hydraulic servo control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453879B2 (en) 2006-03-06 2013-06-04 The Coca-Cola Company Beverage dispensing system
US8807393B2 (en) 2006-03-06 2014-08-19 The Coca-Cola Company Beverage dispensing system
US8739840B2 (en) 2010-04-26 2014-06-03 The Coca-Cola Company Method for managing orders and dispensing beverages
US8757222B2 (en) 2010-04-26 2014-06-24 The Coca-Cola Company Vessel activated beverage dispenser

Also Published As

Publication number Publication date
IL72551A (en) 1989-02-28
JPS6073102A (ja) 1985-04-25
IL72551A0 (en) 1984-11-30
CA1210306A (fr) 1986-08-26
EP0136005A1 (fr) 1985-04-03

Similar Documents

Publication Publication Date Title
US7200993B2 (en) Electro-hydraulic steering control system
EP0136005B1 (fr) Mécanisme de commande ou d'amortissement d'un servo-actionneur
EP1504195B1 (fr) Soupape integree a trois fonctions
EP0066151B1 (fr) Système hydraulique de commande avec clapet anti-retour piloté
EP0469641A2 (fr) Procédé de commande d'un vérin actionné par fluide
US4724673A (en) Power transmission
EP0066717A2 (fr) Système de commande hydraulique avec régulateur de débit sur alimentation
US4555974A (en) Servo actuator control/damping mechanism and method
US4611528A (en) Power transmission
EP0224478B1 (fr) Circuit de detection de charge dans une soupape de commande de direction sensible a la charge
EP0110501B1 (fr) Système d'actionnement à commande redondante d'une valve concentrique entraînée directement
US4437388A (en) Dual input pressure compensated fluid control valve
EP1295778A1 (fr) Système de direction capable d'arrêter la rotation du volant de direction
US4521060A (en) Hydraulic asymmetry detector
US3789736A (en) Multiple hydraulic actuator
US5020322A (en) Accumulator blow-back hydraulic circuit
US4534273A (en) Control actuation system including staged direct drive valve with fault control
EP0276221A4 (fr) Soupape de regulation compensee servant a reguler l'ecoulement d'un fluide.
EP0080135B1 (fr) Système de commande hydraulique pour un opérateur hydraulique
US6446432B1 (en) Hydraulic logic cross-coupling between physically-separate redundant servoactuators
US4688470A (en) Compensated fluid flow control valve
EP0276222B1 (fr) Soupape de regulation compensee servant a reguler l'ecoulement d'un fluide
JPS58174702A (ja) 動力伝達装置
CA1203145A (fr) Systeme d'asservissement d'une commande de manouevre par tiroir distributeur d'intervention directe garni d'un dispositif assurant le fonctionnement malgre defaillance
RU2483977C2 (ru) Двухрежимный электрогидравлический привод с дополнительными режимами кольцевания и демпфирования выходного звена

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB SE

17P Request for examination filed

Effective date: 19850924

17Q First examination report despatched

Effective date: 19861103

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PNEUMO ABEX CORPORATION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880131

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890727

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19900330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST