EP0135882B1 - Process for operating a nuclear reactor - Google Patents

Process for operating a nuclear reactor Download PDF

Info

Publication number
EP0135882B1
EP0135882B1 EP84110777A EP84110777A EP0135882B1 EP 0135882 B1 EP0135882 B1 EP 0135882B1 EP 84110777 A EP84110777 A EP 84110777A EP 84110777 A EP84110777 A EP 84110777A EP 0135882 B1 EP0135882 B1 EP 0135882B1
Authority
EP
European Patent Office
Prior art keywords
gas
moisture adsorber
operating
pressure
adsorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84110777A
Other languages
German (de)
French (fr)
Other versions
EP0135882A1 (en
Inventor
Horst Dipl.-Ing. Queiser
Bernd Dipl.-Ing. Eckardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kraftwerk Union AG
Original Assignee
Kraftwerk Union AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftwerk Union AG filed Critical Kraftwerk Union AG
Publication of EP0135882A1 publication Critical patent/EP0135882A1/en
Application granted granted Critical
Publication of EP0135882B1 publication Critical patent/EP0135882B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Definitions

  • the invention relates to a method for operating a nuclear reactor with an exhaust gas source, in particular a coolant cleaning system, and an exhaust system connected to this exhaust gas source, which comprises at least one compressor, a gas cooler, a reducing valve, a moisture adsorber, a delay line and a chimney connection.
  • an exhaust gas source in particular a coolant cleaning system
  • an exhaust system connected to this exhaust gas source which comprises at least one compressor, a gas cooler, a reducing valve, a moisture adsorber, a delay line and a chimney connection.
  • a pressurized water reactor which comprises a cooling water cleaning system with a degassing device.
  • the gases separated from the cooling water are first freed of hydrogen by combustion. You will then be taken to a drying plant where water is precipitated. Afterwards, they are fractionated in a gas separation plant by fractional liquefaction so that the noble gases, in particular krypton and xenon, can be stored in a small store, while the remaining gases are returned to the system if they are not discharged via a chimney connection.
  • the gases are passed over a delay line so that their activity can decay.
  • the delay line is either traversed in a circle or upstream of the chimney, as explained in the book "VGB Nuclear Power Plant Seminar 1970" on pages 43, 44 and 45.
  • the invention is based on the task of reducing the outlay caused by the exhaust gas treatment. Surprisingly, this is achieved in that the moisture adsorber and the delay line are operated in parallel in normal operation, the delay line being connected to the chimney connection, while the moisture adsorber is operated in a gas circuit to the compressor, and in the event of increased exhaust gas accumulation, in particular when the coolant is displaced during start-up. and shutdown of the reactor, the moisture adsorber and the delay line are connected in series and connected via a reducing valve to the chimney connection, which is set to a pressure which is at least twice as high as in normal operation.
  • the new process results in a significant reduction in the components required for exhaust gas treatment and a simpler system design without additional equipment.
  • the advantages of the retention behavior, which is more favorable in the case of excess pressure, for the short-term operation of large gas accumulations are combined with the predominantly operating phases with less gas accumulation, in which the options of flash drying are used to reduce the effort of the previously usual drying facilities by reducing the operating pressure.
  • the method according to the invention can advantageously be developed further in that the gas path from the gas cooler to the moisture adsorber, including thermally insulated and / or cooled or heated.
  • FIG. 1 shows the exhaust system of a pressurized water reactor with two operating states represented by different arrows (solid and dashed) in a highly simplified manner.
  • FIG. 2 shows a graph of the characteristic amount of exhaust gas in Nm 3 / h over time, an operating cycle with an operating time of at least 10 months being designated as 100%.
  • the exhaust gas sources are containers 1 and 2 with a liquid with a variable liquid level 4 or 5 and a gas atmosphere 6 or 7 above the liquid level, as well as degassing device 8.
  • the gas atmosphere 6 or 7 and the degassing device 8 contain cracked gases. Therefore, the tops of the containers 1, 2 and the degassing device 8 are connected to an exhaust line 10. It leads through a recombiner 11 H 2/0. 2 Behind this two compressors 12 and 13 are arranged redundantly. Its pressure side leads to a gas cooler 15 with a liquid outlet 16, which can be regulated by a condensate drain 17.
  • the gas cooler 15 is followed by a reducing valve 20, the actuator 21 of which can be actuated via lines 22.
  • the low-pressure side leads via a line 23 to a changeover valve 24.
  • a first line 26 leads to a further reducing valve 27, which is provided for gas recirculation.
  • Its low pressure outlet is connected via a line 28 to the gas atmospheres 6, 7 of the exhaust gas containers 1, 2.
  • the actuator 30 of the reducing valve 27 can be actuated via control lines 31.
  • the other outlet of the changeover valve 24 is connected via a line 33 to a branch 34, which leads to a moisture adsorber 35 on the one hand and a delay line 36 on the other hand.
  • the moisture adsorber 35 is a container with an adsorbent 37, e.g. Gel or activated carbon, filled. Its outlet 38 leads to the line 26 and thus to the reducing valve 27.
  • the delay line 36 is designed as an activated carbon container which is flowed through from bottom to top.
  • a chimney 42 is connected to the outlet 40 via a reducing valve 41.
  • the actuator 43 of the reducing valve 41 can be actuated via control lines 44.
  • Fig. 1 it is also emphasized that the lines between the gas cooler 15 and the changeover valve 24 as well as its line branch 26 and the line 38 from the outlet of the adsorber 35 are provided with an insulation 46 which also encloses a cooling possibility, for example with cooling water .
  • the adsorber 35 can carry a cooling jacket 47, for example in the form of Peltier elements, the circuit of which has the connection terminals 48. It is also convenient if a pipe area heater 49 is connected upstream of the moisture adsorber 35 to improve regeneration. It captures the tube area between the top of the moisture adsorber 35 and the branch 34.
  • the amount of exhaust gas in the pressurized water reactor is very different, as shown in FIG. 2. Over more than 95% of the operating time, there is only a slight drop of less than 0.5 Nm 3 / h on average, as indicated in FIG. 1 in the areas 50, 51, 52, 53 and 54. In the periods indicated at 55, 56, 57 and 58, the amount of exhaust gas is practically zero. Only in the remaining 5% of the operating time does an increased emission of exhaust gas occur, which, however, is then for example 100 times for several hours. In FIG. 2, this is indicated by the area 60 for the case of start-up and the associated expansion of the cooling water during heating, which reduce the gas atmosphere volumes 6, 7 in the exhaust gas sources 1 and 2.
  • the area 63 comprises the lowering of the fill level in the reactor pressure vessel with a conceivable flushing at the end of the operating cycle, ie before the reactor pressure vessel is opened.
  • the gas which has cooled slightly due to expansion and gas cooling, is then warmed to room temperature by appropriately guiding the pipeline through the ambient air or other auxiliary devices.
  • the exhaust gas in the branch 34 is divided into two gas flows. Only the excess exhaust gas (for example ⁇ 0.5 Nm 3 / h) is passed over the delay line 36, the rest is returned via the moisture adsorber 35 to the compressor suction side for the purpose of regeneration.
  • the gas adsorption occurring in the delay line 36 at a reduced operating pressure brings the required delay time, despite the lower adsorption effect, due to the low amount of exhaust gas, for example in the first quarter of the adsorber, so that the remaining part is available for other operating cases.
  • the delay section 36 is operated under increased operating pressure.
  • the amount of exhaust gas now exceeds the aforementioned continuous amount of exhaust gas for several hours, e.g. 100 times.
  • the increase in operating pressure significantly improves the effective retention capacity of the delay line 36, in addition to the additional gas storage due to the pressure increase, due to the gas compression.
  • the exhaust gas dehumidification is carried out here by means of the moisture adsorber 35 connected upstream in this operating case of the delay line by switching over the valve 24.
  • That part of the delay line 36 which was previously practically not effective for reducing activity is now used under optimal conditions.
  • the amount of exhaust gas produced drops again to values, for example ⁇ 0.5 Nm 3 / h.
  • Conservative then follows e.g. 40 h the slow lowering of the operating pressure by increasing the amount of exhaust gas to a fixed value to the design value, so that due to the low amount of exhaust gas, e.g. results in a corresponding reduction in operating pressure over approx. 10 h.
  • the changeover of the moisture adsorber 35 previously operating as a gas dryer for the purpose of regeneration takes place as soon as the reduced operating pressure is reached.
  • the heater 49 can then be switched on and the cooling of the insulation 46 in the area of the line 38 can be set.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Drying Of Gases (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Kernreaktors mit einer Abgasquelle, insbesondere einer Kühlmittelreinigung, und einem an diese Abgasquelle angeschlossenen Abgassystem, das mindestens einen Kompressor, einen Gaskühler, ein Reduzierventil, einen Feuchteadsorber, eine Verzögerungsstrecke und einen Kaminanschluss umfasst.The invention relates to a method for operating a nuclear reactor with an exhaust gas source, in particular a coolant cleaning system, and an exhaust system connected to this exhaust gas source, which comprises at least one compressor, a gas cooler, a reducing valve, a moisture adsorber, a delay line and a chimney connection.

Aus der DE-PS 2 302 905 ist ein Druckwasserreaktor bekannt, der ein Kühlwasserreinigungssystem mit einer Entgasungseinrichtung umfasst. Die aus dem Kühlwasser abgeschiedenen Gase werden zunächst durch eine Verbrennung von Wasserstoff befreit. Sie gelangen dann in eine Trocknungsanlage, in der Wasser ausgefällt wird. Danach werden sie in einer Gaszerlegungsanlage durch fraktionierte Verflüssigung zerlegt, damit die Edelgase, insbesondere Krypton und Xenon, in einem kleinen Speicher gelagert werden können, während die verbleibenden Gase in das System zurückgeführt werden, wenn sie nicht über einen Kaminanschluss abgelassen werden.From DE-PS 2 302 905 a pressurized water reactor is known which comprises a cooling water cleaning system with a degassing device. The gases separated from the cooling water are first freed of hydrogen by combustion. You will then be taken to a drying plant where water is precipitated. Afterwards, they are fractionated in a gas separation plant by fractional liquefaction so that the noble gases, in particular krypton and xenon, can be stored in a small store, while the remaining gases are returned to the system if they are not discharged via a chimney connection.

Bei anderen bekannten Kernreaktoren werden die Gase über eine Verzögerungsstrecke geführt, so dass sie in ihrer Aktivität abklingen können. Die Verzögerungsstrecke wird entweder in einem Kreis durchfahren oder sie ist dem Kamin vorgeschaltet, wie in dem Buch «VGB-Kernkraftwerks-Seminar 1970» auf den Seiten 43, 44 und 45 ausgeführt ist.In other known nuclear reactors, the gases are passed over a delay line so that their activity can decay. The delay line is either traversed in a circle or upstream of the chimney, as explained in the book "VGB Nuclear Power Plant Seminar 1970" on pages 43, 44 and 45.

Die Erfindung geht von der Aufgabe aus, den durch di Abgasbehandlung bedingten Aufwand zu verringern. Dies gelingt erstaunlicherweise dadurch, dass der Feuchteadsorber und die Verzögerungsstrecke im Normalbetrieb parallel betrieben werden, wobei die Verzögerungsstrecke mit dem Kaminanschluss in Verbindung steht, während der Feuchteadsorber in einem Gaskreis zum Kompressor betrieben wird, und dass bei erhöhtem Abgasanfall, insbesondere bei Kühlmittelverlagerung beim An- und Abfahren des Reaktors, der Feuchteadsorber und die Verzögerungsstrecke in Reihe geschaltet und über ein Reduzierventil mit dem Kaminanschluss verbunden sind, das auf einen mindestens doppelt so hohen Druck wie im Normalbetrieb eingestellt ist.The invention is based on the task of reducing the outlay caused by the exhaust gas treatment. Surprisingly, this is achieved in that the moisture adsorber and the delay line are operated in parallel in normal operation, the delay line being connected to the chimney connection, while the moisture adsorber is operated in a gas circuit to the compressor, and in the event of increased exhaust gas accumulation, in particular when the coolant is displaced during start-up. and shutdown of the reactor, the moisture adsorber and the delay line are connected in series and connected via a reducing valve to the chimney connection, which is set to a pressure which is at least twice as high as in normal operation.

Mit dem neuen Verfahren ergibt sich ohne apparativen Mehraufwand eine erhebliche Verkleinerung der für die Abgasbehandlung erforderlichen Komponenten und eine einfachere Systemgestaltung. Dabei werden die Vorteile des bei Überdruck günstigeren Retentionsverhaltens für den kurzzeitig vorliegenden Betrieb grossen Gasanfalls mit den zeitlich überwiegenden Betriebsphasen mit geringerem Gasanfall kombiniert, in denen durch Betriebsdruckreduzierung die Möglichkeiten der Entspannungstrocknung zur Aufwandsminimierung der bisher üblichen Trocknungseinrichtungen genutzt werden.The new process results in a significant reduction in the components required for exhaust gas treatment and a simpler system design without additional equipment. The advantages of the retention behavior, which is more favorable in the case of excess pressure, for the short-term operation of large gas accumulations are combined with the predominantly operating phases with less gas accumulation, in which the options of flash drying are used to reduce the effort of the previously usual drying facilities by reducing the operating pressure.

Das Verfahren nach der Erfindung kann vorteilhaft dadurch weitergebildet werden, dass die Gasstrekke vom Gaskühler bis zum Feuchteadsorber einschliesslich thermisch isoliert und/oder gekühlt bzw. geheizt wird.The method according to the invention can advantageously be developed further in that the gas path from the gas cooler to the moisture adsorber, including thermally insulated and / or cooled or heated.

Für den Übergang von dem einen Betrieb (erhöhter Abgasanfall) auf den anderen (Normalbetrieb) hat es sich als vorteilhaft herausgestellt, dass die Verringerung des Druckes nach einem erhöhten Anfall von Abgasen über einen Zeitraum von mehreren Stunden vorgenommen wird. Dabei sollte zweckmässigerweise die Umschaltung des Feuchteadsorbers in den Gaskreis zum Kompressor nach Erreichen des niedrigen Betriebsdruckes vorgenommen werden.For the transition from one operation (increased exhaust gas generation) to the other (normal operation), it has proven to be advantageous that the pressure is reduced over a period of several hours after an increased generation of exhaust gases. It is advisable to switch the moisture adsorber into the gas circuit to the compressor after the low operating pressure has been reached.

Zur näheren Erläuterung der Erfindung wird anhand der beiliegenden Zeichnung ein Ausführungsbeispiel beschrieben. Dabei zeigt die Fig. 1 stark vereinfacht die Abgasanlage eines Druckwasserreaktors mit zwei durch unterschiedliche Pfeile (durchgezogen und gestrichelt) dargestellten Betriebszuständen. Die Fig. 2 zeigt in einem Schaubild den charakteristischen Abgasanfall in Nm3/h über der Zeit, wobei ein Betriebszyklus mit einer Betriebszeit von mindestens 10 Monaten mit 100% bezeichnet ist.To explain the invention in more detail, an exemplary embodiment is described with reference to the accompanying drawing. 1 shows the exhaust system of a pressurized water reactor with two operating states represented by different arrows (solid and dashed) in a highly simplified manner. FIG. 2 shows a graph of the characteristic amount of exhaust gas in Nm 3 / h over time, an operating cycle with an operating time of at least 10 months being designated as 100%.

Die Abgasquellen sind Behälter 1 und 2 mit einer Flüssigkeit mit einem veränderlichen Flüssigkeitsspiegel 4 bzw. 5 und einer Gasatmosphäre 6 bzw. 7 über dem Flüssigkeitsspiegel, sowie Entgasungseinrichtung 8. In der Gasatmosphäre 6 bzw. 7 und der Entgasungseinrichtung 8 sind Spaltgase enthalten. Deshalb sind die Oberseiten der Behälter 1, 2 und die Entgasungseinrichtung 8 an einer Abzugsleitung 10 angeschlossen. Sie führt über einen Rekombinator 11 für H2/02. Hinter diesem sind zwei Kompressoren 12 und 13 redundant angeordnet. Ihre Druckseite führt zu einem Gaskühler 15 mit einem Flüssigkeitsauslass 16, der durch einen Kondensatableiter 17 geregelt werden kann.The exhaust gas sources are containers 1 and 2 with a liquid with a variable liquid level 4 or 5 and a gas atmosphere 6 or 7 above the liquid level, as well as degassing device 8. The gas atmosphere 6 or 7 and the degassing device 8 contain cracked gases. Therefore, the tops of the containers 1, 2 and the degassing device 8 are connected to an exhaust line 10. It leads through a recombiner 11 H 2/0. 2 Behind this two compressors 12 and 13 are arranged redundantly. Its pressure side leads to a gas cooler 15 with a liquid outlet 16, which can be regulated by a condensate drain 17.

Dem Gaskühler 15 ist ein Reduzierventil 20 nachgeschaltet, dessen Stellglied 21 über Leitungen 22 betätigt werden kann. Die Niederdruckseite führt über eine Leitung 23 zu einem Umschaltventil 24. Von dem Umschaltventil 24 führt eine erste Leitung 26 zu einem weiteren Reduzierventil 27, das für die Gasrückführung vorgesehen ist. Sein Niederdruckausgang ist über eine Leitung 28 mit den Gasatmosphären 6, 7 der Abgasbehälter 1, 2 verbunden. Das Stellglied 30 des Reduzierventils 27 kann über Steuerleitungen 31 betätigt werden.The gas cooler 15 is followed by a reducing valve 20, the actuator 21 of which can be actuated via lines 22. The low-pressure side leads via a line 23 to a changeover valve 24. From the changeover valve 24, a first line 26 leads to a further reducing valve 27, which is provided for gas recirculation. Its low pressure outlet is connected via a line 28 to the gas atmospheres 6, 7 of the exhaust gas containers 1, 2. The actuator 30 of the reducing valve 27 can be actuated via control lines 31.

Der andere Auslass des Umschaltventils 24 ist über eine Leitung 33 mit einer Verzweigung 34 verbunden, die zu einem Feuchteadsorber 35 einerseits und einer Verzögerungsstrecke 36 andererseits führt. Der Feuchteadsorber 35 ist als Behälter mit einem Adsorptionsmittel 37, wie z.B. Gel oder Aktivkohle, gefüllt. Sein Auslass 38 führt zu der Leitung 26 und damit zum Reduzierventil 27.The other outlet of the changeover valve 24 is connected via a line 33 to a branch 34, which leads to a moisture adsorber 35 on the one hand and a delay line 36 on the other hand. The moisture adsorber 35 is a container with an adsorbent 37, e.g. Gel or activated carbon, filled. Its outlet 38 leads to the line 26 and thus to the reducing valve 27.

Die Verzögerungsstrecke 36 ist als Aktivkohlebehälter ausgeführt, der von unten nach oben durchströmt wird. An den Auslass 40 ist über ein Reduzierventil 41 ein Kamin 42 angeschlossen. Das Stellglied 43 des Reduzierventils 41 kann über Steuerleitungen 44 betätigt werden.The delay line 36 is designed as an activated carbon container which is flowed through from bottom to top. A chimney 42 is connected to the outlet 40 via a reducing valve 41. The actuator 43 of the reducing valve 41 can be actuated via control lines 44.

In der Fig. 1 ist noch hervorgehoben, dass die Leitungen zwischen dem Gaskühler 15 und dem Umschaltventil 24 sowie dessen Leitungszweig 26 und die Leitung 38 vom Auslass des Adsorbers 35 mit einer Isolierung 46 versehen ist, die auch eine Kühlmöglichkeit, z.B. mit Kühlwasser, umschliesst. Der Adsorber 35 kann einen Kühlmantel 47 tragen, z.B. in Form von Peltier-Elementen, deren Stromkreis die Anschlussklemmen 48 hat. Ferner ist es günstig, wenn zur Verbesserung der Regeneration dem Feuchteadsorber 35 eine Rohrbereichsheizung 49 vorgeschaltet ist. Sie erfasst den Rohrbereich zwischen der Oberseite des Feuchteadsorbers 35 und der Verzweigung 34.In Fig. 1 it is also emphasized that the lines between the gas cooler 15 and the changeover valve 24 as well as its line branch 26 and the line 38 from the outlet of the adsorber 35 are provided with an insulation 46 which also encloses a cooling possibility, for example with cooling water . The adsorber 35 can carry a cooling jacket 47, for example in the form of Peltier elements, the circuit of which has the connection terminals 48. It is also convenient if a pipe area heater 49 is connected upstream of the moisture adsorber 35 to improve regeneration. It captures the tube area between the top of the moisture adsorber 35 and the branch 34.

Der Abgasanfall im Druckwasserreaktor ist, wie die Fig. 2 zeigt, sehr unterschiedlich. Über mehr als 95% der Betriebszeit liegt nur ein geringer Abfall von durchschnittlich weniger als 0,5 Nm3/h vor, wie in Fig. 1 in den Bereichen 50, 51, 52, 53 und 54 angedeutet ist. In den bei 55,56, 57 und 58 angedeuteten Zeitabschnitten ist der Abgasanfall praktisch Null. Nur in den restlichen 5% der Betriebszeit tritt ein erhöhter Abgasanfall ein, der dann allerdings für mehrere Stunden z.B. das 1 OOfache beträgt. In der Fig. 2 ist dies durch den Bereich 60 für den Fall der Inbetriebsetzung und der damit verbundenen Expansionen des Kühlwassers beim Aufheizen angedeutet, die die Gasatmosphärevolumina 6, 7 in den Abgasquellen 1 und 2 verringern. Bei 61 ist eine Spülung der Abgasquellen z.B. vor einer Behälteröffnung dargestellt. Der Bereich 63 umfasst das Absenken des Füllstandes im Reaktordruckbehälter mit einer denkbaren Spülung am Ende des Betriebszyklus, d.h. vor dem Öffnen des Reaktordruckbehälters.The amount of exhaust gas in the pressurized water reactor is very different, as shown in FIG. 2. Over more than 95% of the operating time, there is only a slight drop of less than 0.5 Nm 3 / h on average, as indicated in FIG. 1 in the areas 50, 51, 52, 53 and 54. In the periods indicated at 55, 56, 57 and 58, the amount of exhaust gas is practically zero. Only in the remaining 5% of the operating time does an increased emission of exhaust gas occur, which, however, is then for example 100 times for several hours. In FIG. 2, this is indicated by the area 60 for the case of start-up and the associated expansion of the cooling water during heating, which reduce the gas atmosphere volumes 6, 7 in the exhaust gas sources 1 and 2. At 61, purging of the exhaust gas sources is shown, for example, in front of a container opening. The area 63 comprises the lowering of the fill level in the reactor pressure vessel with a conceivable flushing at the end of the operating cycle, ie before the reactor pressure vessel is opened.

Bei dem neuen Verfahren lassen sich die folgenden drei Betriebszyklen unterscheiden:

  • 1) Kontinuierlicher Dauerbetrieb ( > 95% der Betriebszeit eines DWR's). Hier liegt ständig ein relativ geringer Abgasanfall von durchschnittlich z. B. < 0,5 Nm3/h vor. Diese Abgasmenge sowie eine Spülgasmenge, die sich aus der Förderleistung des Kompressors 12, 13 ergibt, wird durch die Kompressionseinheit kontinuierlich oder diskontinuierlich komprimiert (z.B.: pe = 8-25 bar). Im nachfolgenden Gaskühler 15, der z.B. mit Kaltwasser gekühlt wird, erfolgt die Kühlung und Reduzierung der absoluten Gasfeuchte. Im sich anschliessenden Reduzierventil 20 erfolgt die Gasentspannung mit entsprechender Reduktion der relativen Gasfeuchte (z.B.: pe = 1-4 bar).
With the new process, the following three operating cycles can be distinguished:
  • 1) Continuous continuous operation (> 95% of the operating time of a DWR). Here there is always a relatively low amount of exhaust gas, on average z. B. <0.5 Nm 3 / h before. This amount of exhaust gas and a purge gas amount, which results from the delivery capacity of the compressor 12, 13, is compressed continuously or discontinuously by the compression unit (for example: p e = 8-25 bar). In the subsequent gas cooler 15, which is cooled, for example, with cold water, the cooling and reduction of the absolute gas moisture takes place. In the subsequent reducing valve 20, the gas is released with a corresponding reduction in the relative gas humidity (for example: p e = 1-4 bar).

Das aufgrund der Expansion sowie Gaskühlung leicht abgekühlte Gas wird dann durch entsprechende Führung der Rohrleitung durch die Raumluft oder andere Hilfseinrichtungen auf Raumtemperatur aufgewärmt.The gas, which has cooled slightly due to expansion and gas cooling, is then warmed to room temperature by appropriately guiding the pipeline through the ambient air or other auxiliary devices.

Nach Passieren des Umschaltventils 24 wird das Abgas in der Verzweigung 34 in zwei Gasströme aufgeteilt. Über die Verzögerungsstrecke 36 wird lediglich das überschüssige Abgas (z.B. < 0,5 Nm3/h) geführt, der Rest wird über den Feuchteadsorber 35 zwecks dessen Regeneration auf die Kompressorsaugseite zurückgeleitet. Die in der Verzögerungsstrecke 36 bei erniedrigtem Betriebsdruck ablaufende Gasadsorption bringt trotz der geringeren Adsorptionswirkung, aufgrund des geringen Abgasanfalles, z.B. im ersten Viertel des Adsorbers, bereits die geforderte Verzögerungszeit, so dass der restliche Teil für andere Betriebsfälle zur Verfügung steht.After passing the switch valve 24, the exhaust gas in the branch 34 is divided into two gas flows. Only the excess exhaust gas (for example <0.5 Nm 3 / h) is passed over the delay line 36, the rest is returned via the moisture adsorber 35 to the compressor suction side for the purpose of regeneration. The gas adsorption occurring in the delay line 36 at a reduced operating pressure brings the required delay time, despite the lower adsorption effect, due to the low amount of exhaust gas, for example in the first quarter of the adsorber, so that the remaining part is available for other operating cases.

2) Der Schiebegasfall tritt z.B. bei DWR-Anlagen praktisch nur während des Anfahrens und Absenkens des Reaktordruckbehälter-Füllstandes sowie evtl. nachfolgender Spülvorgänge des Primärkreises auf.2) The sliding gas case occurs e.g. with DWR systems practically only during start-up and lowering of the reactor pressure tank level and possibly subsequent rinsing processes of the primary circuit.

Während dieses Betriebsfalles erfolgt der Betrieb der Verzögerungsstrecke 36 unter erhöhtem Betriebsdruck. Der Abgasanfall übersteigt nun für mehrere Stunden den vorgenannten kontinuierlichen Abgasanfall um das z.B. 100fache.During this operating case, the delay section 36 is operated under increased operating pressure. The amount of exhaust gas now exceeds the aforementioned continuous amount of exhaust gas for several hours, e.g. 100 times.

Durch die Betriebsdruckerhöhung wird aufgrund der Gaskompression das effektive Retentionsvermögen der Verzögerungsstrecke 36 neben der zusätzlichen Gasspeicherung durch die Druckerhöhung, deutlich verbessert.The increase in operating pressure significantly improves the effective retention capacity of the delay line 36, in addition to the additional gas storage due to the pressure increase, due to the gas compression.

In Abhängigkeit von den exakten Betriebsbedingungen werden z.B. bei pe = 8-25 bar für Xe-Isotope eine ca. 2- bis 3fache und für die in diesem Betriebsfall relevanten (wegen kürzerer Adsorberdurchbruchszeit) Kr-Isotope eine ca. 3- bis 5fache verbesserte Verzögerungswirkung erreicht.Depending on the exact operating conditions, e.g. at p e = 8-25 bar for Xe isotopes, approx. 2 to 3 times and for the Kr isotopes relevant (in this case due to shorter adsorber breakthrough time) approx. 3 to 5 times improved Delay effect achieved.

Die Abgasentfeuchtung wird hierbei mittels des bei diesem Betriebsfall der Verzögerungsstrecke durch Umschalten des Ventils 24 vorgeschalteten Feuchteadsorbers 35 durchgeführt. Für diesen auslegungsbestimmenden Betriebsfall wird der bisher praktisch nicht zur Aktivitätsreduktion wirksame Teil der Verzögerungsstrecke 36 nun unter optimalen Bedingungen genutzt.The exhaust gas dehumidification is carried out here by means of the moisture adsorber 35 connected upstream in this operating case of the delay line by switching over the valve 24. For this design-determining operating case, that part of the delay line 36 which was previously practically not effective for reducing activity is now used under optimal conditions.

3) Betrieb direkt anschliessend an Schiebegasfall.3) Operation directly after sliding gas fall.

Die anfallende Abgasmenge sinkt wieder auf Werte z.B. < 0,5 Nm3/h ab. Für eine kurze Zeit wird der erhöhte Betriebsdruck beibehalten, um auch die sich bereits kurz vor Austritt aus der Verzögerungsstrekke 36 befindlichen Edelgasisotope mit relevanter Aktivität noch ausreichend zu verzögern (z.B. Kr 85 m bei 5-10HWZ = 21,5-43 h).The amount of exhaust gas produced drops again to values, for example <0.5 Nm 3 / h. The increased operating pressure is maintained for a short time in order to sufficiently delay the noble gas isotopes with relevant activity that are already shortly before they leave the delay line 36 (for example Kr 85 m at 5-10HWZ = 21.5-43 h).

Konservativ erfolgt dann nach z.B. 40 h die langsame Betriebsdruckerniedrigung durch Abgasmengenerhöhung auf einen fixierten Wert auf den Auslegungswert, so dass wegen des geringen Abgasanfalles sich z.B. über ca. 10 h eine entsprechende Betriebsdruckreduzierung ergibt.Conservative then follows e.g. 40 h the slow lowering of the operating pressure by increasing the amount of exhaust gas to a fixed value to the design value, so that due to the low amount of exhaust gas, e.g. results in a corresponding reduction in operating pressure over approx. 10 h.

Die Umschaltung des zuvor als Gastrockner arbeitenden Feuchteadsorbers 35 zwecks Regeneration erfolgt ab Erreichen des erniedrigten Betriebsdrukkes. Dann kann die Heizung 49 eingeschaltet und die Kühlung der Isolierung 46 im Bereich der Leitung 38 eingestellt werden.The changeover of the moisture adsorber 35 previously operating as a gas dryer for the purpose of regeneration takes place as soon as the reduced operating pressure is reached. The heater 49 can then be switched on and the cooling of the insulation 46 in the area of the line 38 can be set.

Claims (4)

1. A method of operating a nuclear reactor having a waste gas source (1, 2), particularly but not exclusively, of a coolant purification unit, and a waste gas system which is connected to said waste gas source and which comprises at least one compressor (12, 13), a gas cooler (15), a reducing valve (20), a moisture adsorber (35), a delay path (36) and a chimney connection (42), characterised in that the moisture adsorber and the delay path are operated in parallel during normal operation, the delay path being connected to the chimney connection, whilst the moisture adsorber is operated in a gas circuit to the compressor; and that, in the event of an increased formation of waste gas, particularly but not exclusively with coolant movement when a reactor is brought on or off stream, the moisture adsorber and the delay path are connected in series and are connected to the chimney connection by way of a reducing valve (41) which is set at a pressure which is twice as high as during normal operation.
2. A method as claimed in Claim 1, characterised in that the gas path from the gas cooler to the moisture adsorber inclusive is thermally insulated and/or cooled or heated, as the case may be.
3. A method as claimed in Claim 1 or Claim 2, characterised in that the reduction of the pressure after an increased formation of waste gases is effected over a period of several hours.
4. A method as claimed in Claim 3, characterised in that the switch-over of the moisture adsorber into the gas circuit to the compressor is effected when the low operating pressure has been reached.
EP84110777A 1983-09-24 1984-09-10 Process for operating a nuclear reactor Expired EP0135882B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3334629 1983-09-24
DE19833334629 DE3334629A1 (en) 1983-09-24 1983-09-24 METHOD FOR OPERATING A CORE REACTOR

Publications (2)

Publication Number Publication Date
EP0135882A1 EP0135882A1 (en) 1985-04-03
EP0135882B1 true EP0135882B1 (en) 1987-04-01

Family

ID=6209974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84110777A Expired EP0135882B1 (en) 1983-09-24 1984-09-10 Process for operating a nuclear reactor

Country Status (4)

Country Link
US (1) US4671925A (en)
EP (1) EP0135882B1 (en)
JP (1) JPS6093395A (en)
DE (2) DE3334629A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562087B2 (en) * 1991-05-14 1996-12-11 小熊機械株式会社 Simultaneous opening valve
US5765291A (en) * 1995-12-14 1998-06-16 Wabco Gmbh Compressed-gas system with a gas drier
DE10152359A1 (en) * 2001-10-24 2003-05-08 Linde Ag Adsorber station used in the removal of water and carbon dioxide from feed air in a low-temperature air separation plant comprises adsorbers and ring lines with gas supply and drain valves, and regeneration gas supply and drain valves
CN109166641B (en) * 2018-09-30 2020-09-18 岭东核电有限公司 Low-level radioactive waste gas treatment system in lead bismuth reactor
CN112145966B (en) * 2020-08-28 2022-05-27 岭东核电有限公司 Deaerator starting control method, device and equipment and deaeration system for nuclear power plant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3080307A (en) * 1957-10-21 1963-03-05 Westinghouse Electric Corp Radioactive fluid handling system
US3125760A (en) * 1958-03-31 1964-03-17 Fuel locating and suspending system for neutronic reactor core
DE1185736B (en) * 1958-12-02 1965-01-21 Linde Eismasch Ag Method and device for the protection of gas cleaning systems in nuclear reactor systems
US3404067A (en) * 1965-02-12 1968-10-01 Air Reduction Process for removing radioactive materials from the environment of an atomic reactor
DE2133250C3 (en) * 1971-07-05 1980-11-20 Kraftwerk Union Ag, 4330 Muehlheim Device for the adsorptive delay of radioactive gases in an exhaust gas flow
DE2302905C2 (en) * 1973-01-22 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Process for the preparation of gas mixtures from pressurized water reactors
DE2312228A1 (en) * 1973-03-12 1974-09-26 Siemens Ag PRESSURE WATER REACTOR
DE2316831C3 (en) * 1973-04-04 1982-07-08 Bergwerksverband Gmbh, 4300 Essen Process and system for the treatment of exhaust gases containing radioactive contaminants, in particular krypton and xenon nuclides
DE2338044B2 (en) * 1973-07-26 1975-10-02 Kraftwerk Union Ag, 4330 Muelheim Exhaust gas recirculation system for nuclear reactors
DE2611833C2 (en) * 1976-03-19 1985-12-05 Linde Ag, 6200 Wiesbaden Process for the separation of radioactive krypton and xenon from exhaust gases from nuclear fuel reprocessing plants or nuclear reactors
JPS5368681A (en) * 1976-12-01 1978-06-19 Hitachi Ltd Regenerating method for dehumidification tower by decompression
JPS5465291A (en) * 1977-11-04 1979-05-25 Toshiba Corp Cooling and flotage removing apparatus for atmosphere in reactor container
JPS5827480B2 (en) * 1979-02-14 1983-06-09 株式会社日立製作所 Dehumidification tower regeneration method for rare gas hold-up equipment
US4430293A (en) * 1981-09-10 1984-02-07 Combustion Engineering, Inc. Containment hydrogen removal system for a nuclear power plant

Also Published As

Publication number Publication date
US4671925A (en) 1987-06-09
DE3462963D1 (en) 1987-05-07
EP0135882A1 (en) 1985-04-03
JPS6093395A (en) 1985-05-25
DE3334629A1 (en) 1985-04-04

Similar Documents

Publication Publication Date Title
DE2516223C3 (en) Method and device for regenerating adsorbent
DE2316831B2 (en) Process and system for the treatment of exhaust gases containing radioactive contaminants, in particular krypton and xenon nuclides
EP0011872A1 (en) Process for operating a cyclic pressure-swing adsorption device
DE60015900T2 (en) Apparatus for gas recovery
DE2655936A1 (en) GAS SEPARATION SYSTEM
DE1769272A1 (en) Process and system for reducing the proportion of certain selected impurities contained in a medium to be distilled
DE2309447C3 (en) Method for Separating and Concentrating Krypton 85
EP0146082A2 (en) Process for the separation of water vapour and carbon dioxide from a gas stream by adsorption
EP0135882B1 (en) Process for operating a nuclear reactor
DE2729558C3 (en) Adsorption / desorption process for the production of hydrogen
EP0075663A2 (en) Process and apparatus for producing highly pure nitrogen
DE3214825C2 (en) Method for separating krypton from radioactive waste gas and device for carrying out the method
EP0049782B1 (en) Process for the cyclical desorption of adsorbents cyclically charged with absorbates
DE2548198A1 (en) FACILITY FOR THE PRODUCTION OF OZONE
DE10359579B4 (en) Apparatus and method for removing debris in a fuel cell system
DE2325374C3 (en) Process and device for the adsorptive desulphurization of exhaust gases
EP3721971A1 (en) Method and device for drying and cleaning of gases containing hydrogen
DE3418972C2 (en)
DE455798C (en) Method and device for the recovery of the substances taken up by adsorbents
DE3244304A1 (en) METHOD FOR ADSORPTIVELY CLEANING RAW GASES
DE19534008C2 (en) Method and device for cleaning gases loaded with chemical residues in particular
DE2536874A1 (en) Decontamination of fission gas - from nuclear power plant turbines at start-up comprises liquefication, evapn. and treatment later
EP0203323B1 (en) Process and apparatus for purifying and enriching deposition gases
DE1564051B1 (en) Gas cleaning system
DE3008577A1 (en) Oxygen and nitrogen mfr. from air in cryogenic plant - with inexpensive predrying of air via two absorbers filled with alumina gel and sepd. by cooler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR IT LI

17P Request for examination filed

Effective date: 19850426

17Q First examination report despatched

Effective date: 19860606

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI

REF Corresponds to:

Ref document number: 3462963

Country of ref document: DE

Date of ref document: 19870507

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941216

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950930

Ref country code: CH

Effective date: 19950930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031201

Year of fee payment: 20