EP0135115B1 - Gas discharge display device with a post-acceleration space - Google Patents

Gas discharge display device with a post-acceleration space Download PDF

Info

Publication number
EP0135115B1
EP0135115B1 EP84109448A EP84109448A EP0135115B1 EP 0135115 B1 EP0135115 B1 EP 0135115B1 EP 84109448 A EP84109448 A EP 84109448A EP 84109448 A EP84109448 A EP 84109448A EP 0135115 B1 EP0135115 B1 EP 0135115B1
Authority
EP
European Patent Office
Prior art keywords
post
acceleration
gas discharge
cathode
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84109448A
Other languages
German (de)
French (fr)
Other versions
EP0135115A1 (en
Inventor
Bernhard Dr. Dipl.-Phys. Hillenbrand
Wilhelm Huber
Burkhard Dipl.-Phys. Littwin
Karl Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT84109448T priority Critical patent/ATE26767T1/en
Publication of EP0135115A1 publication Critical patent/EP0135115A1/en
Application granted granted Critical
Publication of EP0135115B1 publication Critical patent/EP0135115B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current
    • H01J17/498Display panels, e.g. with crossed electrodes, e.g. making use of direct current with a gas discharge space and a post acceleration space for electrons

Definitions

  • the invention relates to a display device according to the preamble of claim 1.
  • a plasma panel belongs to the subject of the publication "Electronic”, 14 (1982), 79-82.
  • DE-A 2929270 therefore also discusses filling the display with H 2 , using an Al cathode and constantly keeping the cathode surface under a thin oxide layer during gas discharge. Practice has shown, however, that these measures are not yet sufficient, especially in cases where the display is in continuous operation for a long time. The ratios do not get much better if one goes to other gases or cover layers, such as a Ne-Ar mixture and a MgO / Al 2 O 3 Ta / Mo skin (IBM Techn. Discl. Bull. 25 (1982 ) 658).
  • the invention is based on the object of further developing a plasma panel of the type mentioned at the outset in such a way that the operating voltage remains constant, in particular even under continuous loads. According to the invention, this object is achieved by a display device having the features of patent claim 1.
  • the indication "high-melting” means that the (average) melting temperature is above 1730 ° C.
  • the proposed solution is based on the observation that the main cause of the rise in interference voltage is a gradual decrease in the gas pressure. Ions are generated in the post-acceleration space, which collide with the post-acceleration cathode and some of them are captured there. This implantation effect, which depends on the nature of the gas and the electrode and is particularly pronounced when using helium and aluminum, can lead to gas consumption of up to 40%.
  • the protective layer provided according to the invention consists of materials which have a relatively high degree of reflection for ions of the types and energies in question here.
  • the ions striking the protective layer give off most of their kinetic energy, but are scattered back in most cases. Endurance tests have shown that this way you can easily slow down the rise in the operating voltage by a factor greater than 3 and stabilize the voltage even at a significantly lower level.
  • the protective layer provided according to the invention is normally between 10 -3 ⁇ m and 10 -1 ⁇ m, preferably between 5 ⁇ 10 -3 ⁇ m and 4x 10 -2 ⁇ m, thick.
  • the layer metal is best an element from subgroup A of the fourth to seventh group and sixth period of the periodic table.
  • the protective layer does not need to consist entirely of the metal; perfect results are also obtained if the layer surface is hardened by a chemical process, for example by oxidation.
  • the panel shown which is intended for a data display device, contains a vacuum envelope with a front plate 1, a rear plate 2 and a control unit 3. All three parts extend in mutually parallel planes.
  • the control unit divides the interior of the envelope into a gas discharge space 4 and a post-acceleration space 5.
  • the back plate 2 is provided on its front side with a plurality of mutually parallel conductor strips (plasma cathodes 6).
  • the front plate 1 has on its back a cathodoluminescent layer 7 (phosphor layer) and a continuous layer electrode (post-acceleration anode 8).
  • the control unit 3 comprises two carrier plates 9, 10, which are coated on both sides with electrodes.
  • the rear plate 9 carries row conductors (plasma anode) 11 on its rear side and column conductors 12 on its front side. The conductors of both groups of conductors are perpendicular to one another, can be controlled individually and together form the actual control matrix.
  • the front plate 10 is provided on the rear with tetrode conductors 13 parallel to the line conductors and on the front with a Ni pentode (post-acceleration cathode 14) applied over the entire area and approximately 2 pm thick.
  • the entire control unit has a continuous opening 15 in the area of each matrix element and is spaced apart from the rear and front plates by a spacing frame 16 and 17, respectively. All parts are connected to each other in a vacuum-tight manner via glass solder seams 18, 19, 20, 21 and 23.
  • the post-acceleration cathode 14 is covered with a further metal layer (implantation protection layer 22).
  • This layer - it has a thickness between 10 -2 ⁇ m and 2x10 -2 ⁇ m and consists of W - is applied in a conventional vacuum technique.
  • the internal voltage U b measured in V, was recorded as a function of the operating time t, measured in hours, with a 2 ⁇ m thick Ni post-acceleration cathode that was once unprotected (Fig. 2) and once wore a 4x 10 -2 ⁇ m thick Ta layer (Fig. 3). In both cases, the display was controlled dynamically. A comparison of the two curves shows that the protective layer delays the voltage rise considerably, limits it to lower values and also lowers the switch-on voltage.
  • a wedge-shaped gas discharge burns between one of the plasma cathodes and one of the row conductors (plasma anode).
  • This plasma is advanced on a line-by-line basis, and all column conductors receive the associated line information during the scanning time of a line conductor. According to this information, the electrons are passed through the control openings, then enter the post-acceleration space as point-like electron beams and are accelerated to 4kV and brought to the phosphor layer.
  • the invention is not limited to the embodiment shown. So it is irrelevant how the gas discharge is generated and what form it takes; A static transverse plasma is therefore also an option.
  • the implantation protection layer could also be realized as an alloy on the basis of one of the stressed materials and, if necessary, its surface could be tempered in another way - for example by conversion into a carbide, boride or silicide.
  • the protective layer does not need to adhere particularly firmly to its base.
  • With a relatively loose adhesion the ions, which have only penetrated to a small extent anyway, can diffuse back into the gas space through a relatively porous interface and diffuse towards the base metallization. In this respect, a multi-layer protective layer could also be recommended.
  • the person skilled in the art is free to also coat other surfaces at risk of implantation with the protective layer proposed here.

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Abstract

Gas discharge display device having a vacuum-tight envelope with a front and back plate. A control unit divides the interior of the envelope filled with gas into a back and front space. The back space has at least one plasma cathode and at least one plasma anode. The front plate carries a cathodoluminescent layer and a layer electrode. The control unit contains at least one electrode plane extending parallel to the wall plates, with at least one conductor. In operation a gas discharge burns between the plasma electrodes. The distance between the post-acceleration anode and cathode is small such that no gas discharge is ignited in the post-acceleration space. The post-acceleration cathode is coated with an implantation protection layer of a high-melting metal to maintain the operating voltage constant under continuous load.

Description

Die Erfindung bezieht sich auf eine Anzeigevorrichtung gemäss dem Oberbegriff des Anspruchs 1. Ein solches Plasmapanel gehört zum Gegenstand der Druckschrift «Electronic», 14 (1982), 79-82.The invention relates to a display device according to the preamble of claim 1. Such a plasma panel belongs to the subject of the publication "Electronic", 14 (1982), 79-82.

Bei dem Flachbildschirm der zitierten Anmeldung werden Elektronen einer Gasentladung durch selektiv geöffnete Löcher einer Steuereinheit in einen plasmafreien Raum geschickt, in dem sie Energien von einigen kV aufnehmen und schliesslich auf einem Leuchtschirm Lichtpunkte erzeugen.In the flat screen of the cited application, electrons from a gas discharge are sent through selectively opened holes in a control unit into a plasma-free space, in which they absorb energies of a few kV and finally generate light spots on a fluorescent screen.

Mit dem Konzept der getrennten Elektronenerzeugung und -beschleunigung kann man bereits farbige Videobilder in durchaus akzeptabler Qualität darstellen. Es ist allerdings noch nicht gelungen, alle wichtigen Betriebsparameter auch über längere Betriebszeiten hinweg stabil zu halten. So steigt vor allem die Brennspannung des Plasmas regelmässig an und kann, wenn der Bildschirm ständig hellgeschaltet ist, schon nach wenigen hundert Betriebsstunden den zweifachen Wert annehmen. Eine derartige Spannungsdrift stellt enorme Anforderungen an die Ansteuerschaltung und die Kathode und sollte unbedingt vermieden werden.With the concept of separate electron generation and acceleration, color video images can already be displayed in acceptable quality. However, it has not yet been possible to keep all important operating parameters stable even over longer operating times. Above all, the burning voltage of the plasma rises regularly and, if the screen is constantly on, can take on twice the value after just a few hundred hours of operation. Such a voltage drift places enormous demands on the control circuit and the cathode and should be avoided at all costs.

In der DE-A 2929270 wird deshalb auch schon diskutiert, das Display mit H2 zu füllen, eine Al-Kathode zu verwenden und die Kathodenoberfläche während der Gasentladung ständig unter einer dünnen Oxidschicht zu halten. Die Praxis hat jedoch gezeigt, dass diese Massnahmen vor allem in Fällen, in denen das Display längere Zeit durchgehend in Funktion ist, noch nicht ausreichen. Die Verhältnisse werden auch nicht wesentlich besser, wenn man zu anderen Gasen oder Deckschichten übergeht, etwa zu einer Ne-Ar-Mischung und einer MgO/AI203-Ta/Mo-Haut (IBM Techn. Discl. Bull. 25 (1982) 658).DE-A 2929270 therefore also discusses filling the display with H 2 , using an Al cathode and constantly keeping the cathode surface under a thin oxide layer during gas discharge. Practice has shown, however, that these measures are not yet sufficient, especially in cases where the display is in continuous operation for a long time. The ratios do not get much better if one goes to other gases or cover layers, such as a Ne-Ar mixture and a MgO / Al 2 O 3 Ta / Mo skin (IBM Techn. Discl. Bull. 25 (1982 ) 658).

Der Erfindung liegt die Aufgabe zugrunde, ein Plasmapanel der eingangs genannten Art so weiterzuentwickeln, dass die Brennspannung konstant bleibt, und zwar insbesondere auch unter Dauerbelastungen. Diese Aufgabe wird erfindungsgemäss durch eine Anzeigevorrichtung mit den Merkmalen des Patentanspruchs 1 gelöst. Dabei bedeutet die Angabe «hochschmeizend», dass die (mittlere) Schmelztemperatur über 1730 °C liegt.The invention is based on the object of further developing a plasma panel of the type mentioned at the outset in such a way that the operating voltage remains constant, in particular even under continuous loads. According to the invention, this object is achieved by a display device having the features of patent claim 1. Here, the indication "high-melting" means that the (average) melting temperature is above 1730 ° C.

Der Lösungsvorschlag geht von der Beobachtung-aus, dass die Hauptursache für den Störspannungsanstieg ein allmähliches Absinken des Gasdrucks ist. Im Nachbeschleunigungsraum werden Ionen erzeugt, die auf die Nachbeschleunigungskathode aufprallen und dort zu einem Teil eingefangen werden. Dieser lmplantationseffekt, der von der Beschaffenheit des Gases und der Elektrode abhängt und bei Verwendung von Helium und Aluminium besonders ausgeprägt ist, kann zu einer Gasaufzehrung bis 40% führen.The proposed solution is based on the observation that the main cause of the rise in interference voltage is a gradual decrease in the gas pressure. Ions are generated in the post-acceleration space, which collide with the post-acceleration cathode and some of them are captured there. This implantation effect, which depends on the nature of the gas and the electrode and is particularly pronounced when using helium and aluminum, can lead to gas consumption of up to 40%.

Die erfindungsgemäss vorgesehene Schutzschicht besteht aus Materialien, die für Ionen der hier in Betracht kommenden Arten und Energien einen relativ hohen Reflexionsgrad haben. Die auf die Schutzschicht treffenden Ionen geben zwar den grössten Teil ihrer kinetischen Energie ab, werden aber in den meisten Fällen wieder zurückgestreut. Dauerversuche haben gezeigt, dass man auf diesem Weg den Anstieg der Brennspannung ohne weiteres um einen Faktor grösser als 3 verlangsamen und die Spannung selbst auf einem deutlich niedrigeren Niveau stabilisieren kann.The protective layer provided according to the invention consists of materials which have a relatively high degree of reflection for ions of the types and energies in question here. The ions striking the protective layer give off most of their kinetic energy, but are scattered back in most cases. Endurance tests have shown that this way you can easily slow down the rise in the operating voltage by a factor greater than 3 and stabilize the voltage even at a significantly lower level.

Die Tatsache, dass Metalle mit hoher Kernladungszahl leichte Ionen stark reflektieren, ist an sich bekannt; vergleiche hierzu Nucl. Instr. and Meth. 132 (1976) 647. Diese Arbeit liegt allerdings auf einem fremden Gebiet und hat eine andere Zielsetzung; es geht dort - im Rahmen einer kontrollierten Kernfusion - vornehmlich darum, Aufschlüsse über die Energie- und Dichteverteilung der reflektierten Ionen zu erhalten.The fact that metals with a high atomic number strongly reflect light ions is known per se; compare Nucl. Instr. and Meth. 132 (1976) 647. However, this work lies in a foreign area and has a different purpose; In the context of a controlled nuclear fusion, the main aim is to obtain information about the energy and density distribution of the reflected ions.

Die erfindungsgemäss vorgesehene Schutzschicht ist normalerweise zwischen 10-3µm und 10-1µm, vorzugsweise zwischen 5×10-3µm und 4x 10-2µm, dick. Das Schichtmetall ist am besten ein Element aus der Untergruppe A der vierten bis siebten Gruppe und sechsten Periode des Periodensystems. Die Schutzschicht braucht übrigens, wie sich ergeben hat, durchaus nicht vollständig aus dem Metall zu bestehen; man kommt auch dann zu einwandfreien Ergebnissen, wenn die Schichtoberfläche durch einen chemischen Prozess, etwa durch eine Oxidation, gehärtet ist.The protective layer provided according to the invention is normally between 10 -3 μm and 10 -1 μm, preferably between 5 × 10 -3 μm and 4x 10 -2 μm, thick. The layer metal is best an element from subgroup A of the fourth to seventh group and sixth period of the periodic table. Incidentally, the protective layer does not need to consist entirely of the metal; perfect results are also obtained if the layer surface is hardened by a chemical process, for example by oxidation.

Weitere vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindungen sind Gegenstand zusätzlicher Ansprüche.Further advantageous refinements and developments of the inventions are the subject of additional claims.

Der Lösungsvorschlag soll nun anhand eines Ausführungsbeispiels, in Verbindung mit der beigefügten Zeichnung, näher erläuter werden. In der Zeichnung zeigen

  • Fig. das Ausführungsbeispiel in einem schematischen Seitenschnitt;
  • Fig.2 die Brennspannung in Abhängigkeit von der Betriebszeit, und zwar bei Verwendung einer ungeschützten Nachbeschleunigungskathode; und
  • Fig. 3 den gleichen Parameter, mit einer Implantationsschutzschicht auf der Nachbeschleunigungskathode.
The proposed solution will now be explained in more detail using an exemplary embodiment in conjunction with the accompanying drawing. Show in the drawing
  • Fig. The embodiment in a schematic side section;
  • 2 shows the operating voltage as a function of the operating time, specifically when using an unprotected post-acceleration cathode; and
  • 3 shows the same parameter, with an implantation protection layer on the post-acceleration cathode.

Das dargestellte Panel, das für ein Datensichtgerät gedacht ist, enthält eine Vakuumhülle mit einer Frontplatte 1, einer Rückplatte 2 und einer Steuereinheit 3. Alle drei Teile erstrecken sich in zueinander parallelen Ebenen. Die Steuereinheit teilt dabei das Hülleninnere in einen Gasentladungsraum 4 und einen Nachbeschleunigungsraum 5.The panel shown, which is intended for a data display device, contains a vacuum envelope with a front plate 1, a rear plate 2 and a control unit 3. All three parts extend in mutually parallel planes. The control unit divides the interior of the envelope into a gas discharge space 4 and a post-acceleration space 5.

Die Rückplatte 2 ist auf ihrer Vorderseite mit mehreren, zueinander parallelen Leiterstreifen (Plasmakathoden 6) versehen. Die Frontplatte 1 trägt auf ihrer Rückseite eine kathodolumineszente Schicht 7 (Phosphorschicht) und eine durchgehende Schichtelektrode (Nachbeschleunigungsanode 8). Die Steuereinheit 3 umfasst zwei Trägerplatten 9,10, die beidseitig jeweils mit Elektroden beschichtet sind. Die hintere Platte 9 trägt auf ihrer Rückseite Zeilenleiter (Plasmanode) 11 und auf ihrer Vorderseite Spaltenleiter 12. Die Leiter beider Leiterscharen stehen senkrecht zueinander, sind einzeln ansteuerbar und bilden zusammen die eigentliche Steuermatrix. Die vordere Platte 10 ist rückseitig mit zeilenleiterparallelen Tetrodenleitern 13 und frontseitig mit einer ganzflächig aufgebrachten, ca. 2pm starken Ni-Pentode (Nachbeschleunigungskathode 14) versehen. Die gesamte Steuereinheit hat im Bereich jedes Matrixelements eine durchgehende Öffnung 15 und ist gegen die Rück- und Frontplatte jeweils durch einen Abstandsrahmen 16 bzw. 17 distanziert. Alle Teile sind über Glaslotnähte 18, 19, 20, 21 und 23 vakuumdicht miteinander verbunden.The back plate 2 is provided on its front side with a plurality of mutually parallel conductor strips (plasma cathodes 6). The front plate 1 has on its back a cathodoluminescent layer 7 (phosphor layer) and a continuous layer electrode (post-acceleration anode 8). The control unit 3 comprises two carrier plates 9, 10, which are coated on both sides with electrodes. The rear plate 9 carries row conductors (plasma anode) 11 on its rear side and column conductors 12 on its front side. The conductors of both groups of conductors are perpendicular to one another, can be controlled individually and together form the actual control matrix. The front plate 10 is provided on the rear with tetrode conductors 13 parallel to the line conductors and on the front with a Ni pentode (post-acceleration cathode 14) applied over the entire area and approximately 2 pm thick. The entire control unit has a continuous opening 15 in the area of each matrix element and is spaced apart from the rear and front plates by a spacing frame 16 and 17, respectively. All parts are connected to each other in a vacuum-tight manner via glass solder seams 18, 19, 20, 21 and 23.

Die Nachbeschleunigungskathode 14 ist, wie der Figur 1 zu entnehmen, mit einer weiteren Metallschicht (Implantationsschutzschicht 22) bedeckt. Diese Schicht - sie hat eine Dicke zwischen 10-2µm und 2x10-2µm und besteht aus W - ist in einer üblichen Vakuumtechnik aufgetragen.As can be seen in FIG. 1, the post-acceleration cathode 14 is covered with a further metal layer (implantation protection layer 22). This layer - it has a thickness between 10 -2 µm and 2x10 -2 µm and consists of W - is applied in a conventional vacuum technique.

Um den Stabilisierungseffekt der Implantationsschutzschicht zu demonstrieren, wurde die Brennspannung Ub, gemessen in V, als Funktion der Betriebsdauer t, gemessen in Stunden, aufgenommen, und zwar mit einer 2µm dicken Ni-Nachbeschleunigungskathode, die einmal ungeschützt war (Fig.2) und einmal eine 4x 10-2µm dicke Ta-Schicht trug (Fig.3). In beiden Fällen wurde das Display dynamisch angesteuert. Ein Vergleich der beiden Kurven zeigt, dass die Schutzschicht den Spannungsanstieg erheblich verzögert, auf geringere Werte begrenzt und darüber hinaus sogar auch noch die Einschaltspannung absenkt.In order to demonstrate the stabilizing effect of the implantation protection layer, the internal voltage U b , measured in V, was recorded as a function of the operating time t, measured in hours, with a 2 µm thick Ni post-acceleration cathode that was once unprotected (Fig. 2) and once wore a 4x 10 -2 µm thick Ta layer (Fig. 3). In both cases, the display was controlled dynamically. A comparison of the two curves shows that the protective layer delays the voltage rise considerably, limits it to lower values and also lowers the switch-on voltage.

Im Betrieb des Displays brennt jeweils zwischen einer der Plasmakathoden und einem der Zeilenleiter (Plasmanode) eine keilförmige Gasentladung. Dieses Plasma wird zeilenleiterweise fortgeschaltet, und während der Tastzeit eines Zeilenleiters erhalten sämtliche Spaltenleiter die zugehörige Zeileninformation. Die Elektronen werden entsprechend dieser Information durch die Steueröffnungen geschleust, treten dann als punktförmige Elektronenstrahlen in den Nachbeschleunigungsraum und werden dort - beschleunigt auf 4kV - auf die Phosphorschicht gebracht. Weitere Betriebs- und Konstruktionseinzelheiten gehen aus der eingangs zitierten Offenlegungsschrift oder aus dem in «Elektronik» 14 (1982) 79 erschienenen Artikel hervor.During operation of the display, a wedge-shaped gas discharge burns between one of the plasma cathodes and one of the row conductors (plasma anode). This plasma is advanced on a line-by-line basis, and all column conductors receive the associated line information during the scanning time of a line conductor. According to this information, the electrons are passed through the control openings, then enter the post-acceleration space as point-like electron beams and are accelerated to 4kV and brought to the phosphor layer. Further operational and design details emerge from the initially cited published specification or from the article published in “Electronics” 14 (1982) 79.

Die Erfindung beschränkt sich nicht nur auf die dargestellte Ausführungsform. So ist es ohne Belang, wie die Gasentladung erzeugt wird und welche Form sie erhält; in Frage kommt deshalb beispielsweise auch ein statisches Querplasma. Davon abgesehen könnte man auch die Implantationsschutzschicht als eine Legierung auf der Basis eines der beanspruchten Werkstoffe realisieren und ggf. ihre Oberfläche auf andere Weise - etwa durch Umwandlung in ein Carbid, Borid oder Silicid - vergüten. Die Schutzschicht braucht im übrigen auf ihrer Unterlage nicht sonderlich fest zu haften. Im Gegenteil: Bei einer relativ lockeren Haftung können die-ohnehin nur zu einem geringen Teil - in die Schicht eingedrungenen und zur Grundmetallisierung hin diffundierenden Ionen durch eine relativ poröse Grenzfläche wieder in den Gasraum zurückkehren. Insofern könnte sich auch eine mehrlagige Schutzschicht empfehlen. Schliesslich bleibt es dem Fachmann unbenommen, auch andere implantationsgefährdete Oberflächen mit der hier vorgeschlagenen Schutzschicht zu überziehen.The invention is not limited to the embodiment shown. So it is irrelevant how the gas discharge is generated and what form it takes; A static transverse plasma is therefore also an option. Apart from that, the implantation protection layer could also be realized as an alloy on the basis of one of the stressed materials and, if necessary, its surface could be tempered in another way - for example by conversion into a carbide, boride or silicide. The protective layer does not need to adhere particularly firmly to its base. On the contrary: With a relatively loose adhesion, the ions, which have only penetrated to a small extent anyway, can diffuse back into the gas space through a relatively porous interface and diffuse towards the base metallization. In this respect, a multi-layer protective layer could also be recommended. Finally, the person skilled in the art is free to also coat other surfaces at risk of implantation with the protective layer proposed here.

Claims (7)

1. A gas discharge display device comprising
a) a vacuum-tight casing which is filled with a gas and which has a front plate (1) and a rear plate (2) extending parallel to said front plate and
b) a uniformly perforated control unit (3) which is arranged inside the casing and which divides the inside of the casing into a gas discharge space (4) and a post-acceleration space (5);
c) at least one plasma cathode (6) and at least one plasma anode (11) in the gas discharge space, between which a gas discharge burns in the operating state;
d) a cathode-luminescent layer (7) which is arranged on the rear side of the front plate (1) and which is covered by a post-acceleration anode (8);
e) a post-acceleration cathode (14) extending parallel to the front plate on the control unit in the post-acceleration space and the distance of which from the post-acceleration anode (8) is so small that a gas discharge is not ignited in the post-acceleration space (5) in the operating state;

characterised in that the post-acceleration cathode (14) is coated with an implantation protective layer (22) made of a high-melting metal which comes from the sub-groups A of the fourth to eighth groups and from the fifth to sixth periods ot the periodic system of the elements.
2. A device as claimed in Claim 1, characterised in that the layer metal comes from the sub-groups A of the fourth to seventh groups and the sixth period.
3. A device as claimed in Claim 1, characterised in that the layer metal is Zr, Nb, Mo, Ta, W or Re.
4. A device as claimed in one of Claims 1 to 3, characterised in that the implantation protective layer (22) is oxidized or carbonized at its surface.
5. A device as claimed in one of Claims 1 to 4, characterised in that the implantation protective layer (22) has a thickness of between 10-3µm and 10-1µm, particularly but not exclusively 5.10-3µm and 4.10-2µm.
6. A device as claimed in one of Claims 1 to 5, characterised in that the post-acceleration cathode (14) consists of nickel or aluminium and has a thickness of between 0.5[1m and 10[1m.
7. A device as claimed in one of Claims 1 to 6, characterised in that the gas filling consists at least in part of He.
EP84109448A 1983-08-11 1984-08-08 Gas discharge display device with a post-acceleration space Expired EP0135115B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84109448T ATE26767T1 (en) 1983-08-11 1984-08-08 GAS DISCHARGE INDICATOR WITH A POST-ACCELERATION SECTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3329106 1983-08-11
DE19833329106 DE3329106A1 (en) 1983-08-11 1983-08-11 GAS DISCHARGE DISPLAY DEVICE WITH A RE-ACCELERATION RANGE

Publications (2)

Publication Number Publication Date
EP0135115A1 EP0135115A1 (en) 1985-03-27
EP0135115B1 true EP0135115B1 (en) 1987-04-22

Family

ID=6206364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84109448A Expired EP0135115B1 (en) 1983-08-11 1984-08-08 Gas discharge display device with a post-acceleration space

Country Status (5)

Country Link
US (1) US4634935A (en)
EP (1) EP0135115B1 (en)
JP (1) JPS6056336A (en)
AT (1) ATE26767T1 (en)
DE (2) DE3329106A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730744A1 (en) * 1987-09-12 1989-03-23 Graetz Nokia Gmbh FLAT IMAGE DISPLAY DEVICE
JP2596651B2 (en) * 1991-05-27 1997-04-02 株式会社クボタ Axial flow threshing device handling cylinder structure
US5302881A (en) * 1992-06-08 1994-04-12 The United States Of America As Represented By The Secretary Of The Air Force High energy cathode device with elongated operating cycle time
WO2007033247A2 (en) * 2005-09-14 2007-03-22 Littelfuse, Inc. Gas-filled surge arrester, activating compound, ignition stripes and method therefore

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914635A (en) * 1971-09-30 1975-10-21 Owens Illinois Inc Gaseous discharge display/memory device with improved memory margin
JPS5566819A (en) * 1978-11-15 1980-05-20 Hitachi Ltd Oxide cathode for electron tube
US4297613A (en) * 1979-05-08 1981-10-27 International Business Machines Corporation D.C. Scan panel
DE2929270A1 (en) * 1979-07-19 1981-02-12 Siemens Ag PLASMA IMAGE DISPLAY DEVICE
DE2952528C2 (en) * 1979-12-28 1985-10-10 Siemens AG, 1000 Berlin und 8000 München Gas discharge indicator
US4475060A (en) * 1981-05-05 1984-10-02 International Business Machines Corporation Stabilized plasma display device
DE3207685A1 (en) * 1982-03-03 1983-09-15 Siemens AG, 1000 Berlin und 8000 München GAS DISCHARGE INDICATOR

Also Published As

Publication number Publication date
JPS6056336A (en) 1985-04-01
ATE26767T1 (en) 1987-05-15
US4634935A (en) 1987-01-06
DE3329106A1 (en) 1985-02-21
EP0135115A1 (en) 1985-03-27
DE3463316D1 (en) 1987-05-27

Similar Documents

Publication Publication Date Title
DE60036451T2 (en) Plasma display panel and taillight device with secondary electron reinforcement structure with carbon nanotubes
WO1998026447A1 (en) Cold cathode for discharge lamps, discharge lamp fitted with said cold cathode, and principle of operation of said discharge lamp
DE3103293A1 (en) VACUUM FLUOREZENCE DISPLAY MATRIX AND METHOD FOR THEIR OPERATION
EP0135115B1 (en) Gas discharge display device with a post-acceleration space
EP0061525A1 (en) Flat picture display tube
DE2656621C3 (en) Image display device having a gas discharge path and an electron accelerating path
EP0002000A1 (en) Gas discharge display device using spacing elements and method for making a spacing element structure and such a display device
DE2309530B2 (en) Gas discharge indicator
EP0204198B1 (en) Channel structure of an electron multiplier
DE3319750A1 (en) Display device having a control structure, and a method for producing this structure
DE3150257A1 (en) Image intensifier
EP0162135A2 (en) Display device and method for manufacturing it
DE3419625A1 (en) Gas discharge display device with an after-accelerating chamber
DE2234998A1 (en) SCANNER WORKING WITH A CARGO BEAM
DE3329059A1 (en) Gas-discharge display device having a post-deflection acceleration space, and a method for its production
DE3035988A1 (en) Planar colour TV screen - has cold cathode with cellular emission at crossing point and column control matrix
DE1037610B (en) Electron multiplier with a large number of dynodes arranged between the cathode and the fluorescent screen, in which the carriers of the secondary electron emission layers are grid-like structures
DE661621C (en) Gas or vapor-filled discharge vessel
DE3107631A1 (en) Gas-discharge device of a video display unit
DE2509249A1 (en) CATHODE STORAGE TUBE
DE3321888A1 (en) Flat display device
CH541199A (en) Device for displaying data
CH441513A (en) Glow discharge numerical display tube controllable with low signal voltages
DE2926444A1 (en) Gas discharge indicator with auxiliary anodes - has perforated plates with etched holes, between cathode and anode, reflective on cathode side
EP0142165A2 (en) Planar display screen having a helium filling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19850426

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 26767

Country of ref document: AT

Date of ref document: 19870515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3463316

Country of ref document: DE

Date of ref document: 19870527

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870831

Ref country code: CH

Effective date: 19870831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880503

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890428

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84109448.5

Effective date: 19880711