EP0131736B1 - Axial turbine for a turbo charger - Google Patents

Axial turbine for a turbo charger Download PDF

Info

Publication number
EP0131736B1
EP0131736B1 EP84106485A EP84106485A EP0131736B1 EP 0131736 B1 EP0131736 B1 EP 0131736B1 EP 84106485 A EP84106485 A EP 84106485A EP 84106485 A EP84106485 A EP 84106485A EP 0131736 B1 EP0131736 B1 EP 0131736B1
Authority
EP
European Patent Office
Prior art keywords
turbine
deflection
duct
exhaust gas
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84106485A
Other languages
German (de)
French (fr)
Other versions
EP0131736A1 (en
Inventor
Hansulrich Dr. Dipl. Ing. Hörler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0131736A1 publication Critical patent/EP0131736A1/en
Application granted granted Critical
Publication of EP0131736B1 publication Critical patent/EP0131736B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/045Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type the wheel comprising two adjacent bladed wheel portions, e.g. with interengaging blades for damping vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to an axial turbine for exhaust gas turbochargers.
  • the inner wall of the gas deflection channel arranged between the turbine guide apparatus and the turbine blades is rigid and immovable.
  • a swirl loss occurs due to the gas friction on this wall. Due to the high peripheral speed of the gas, which increases radially inwards, this inner wall of the gas deflection channel causes relatively high friction losses.
  • the isentropic efficiency of the turbine drops additively by about 2% to 5%.
  • the invention is therefore based on the object of creating an axial turbine in which the swirl loss in the gas deflecting duct is reduced to a minimum, and good efficiency is thereby achieved.
  • Fig. 1 denotes the turbocharger axis.
  • the axial turbine shown with radial gas inflow is connected via the turbine housing 7 to an exhaust line, not shown, of a supercharged diesel engine.
  • the turbocharger shaft 2 is supported in the turbine housing 7 by means of shaft bearings 10 and carries a turbine disk 3 provided with the turbine blades 4.
  • turbine guide blades 5 Upstream of the turbine rotor blades 4 through which gas flows axially, turbine guide blades 5 through which radial flow flows are arranged in the annular deflection channel 7a.
  • a sealing air duct 8 and an air discharge duct 9 are arranged in the turbine housing 7.
  • the inner wall of the rotationally symmetrical exhaust gas deflecting duct 7b is designed as a deflecting collar 6 rotating with the turbocharger shaft 2.
  • This deflecting collar 6 is rigidly connected to the turbocharger shaft 2 by means of screws 12.
  • the outside diameter of the rotating deflection collar 6 is larger than the diameter of the turbine disk 3 and can at most be the same as the outside diameter of the turbine rotor.
  • An element for the contactless sealing of the exhaust gas deflection channel is provided between the rotating deflection collar 6 and the housing 7.
  • This element consists of two labyrinth seals 11, 11 ', which are arranged on a cylindrical, concentric, inwardly open surface of the deflecting collar 6.
  • a sealing air channel 8 arranged in the turbine housing 7 is connected to a radial gap 15 arranged between the labyrinth seal 11 ′ facing the turbine and the labyrinth seal 11 facing away from the turbine.
  • An air discharge duct 9 arranged in the turbine housing 7 is connected to an air space 13.
  • the engine exhaust gas flows through the exhaust duct 7a, through the ring of the guide vanes 5 and the exhaust gas deflecting duct 7b to the turbine rotor blades 4, in which it relaxes with the output of power and is then expelled into the atmosphere through an exhaust line, not shown.
  • the predominantly radially flowing engine exhaust gas is accelerated tangentially on the turbine guide vanes 5. This creates a swirl acting in the direction of rotation of the turbine.
  • the sealing air supply through the sealing air duct 8 serves to cool the turbocharger shaft 2 and the turbine disk 3 and prevents the exhaust gas from flowing out of the exhaust gas deflection duct 7b through the air space 13 to the shaft bearing 10 and to the environment.
  • the element for contactless sealing of the deflection channel 7b consists of a labyrinth seal 11 concentrically arranged in a plane normal to the axis.
  • the labyrinth seal 11 is arranged on the outside diameter of the rotating deflection collar 6.
  • the small amount of exhaust gas flowing inwards from the exhaust gas deflection duct 7b through the labyrinth seal 11 is discharged into the discharge duct 9 with the sealing air coming radially from the inside out.
  • the sealing air consumption in this version is smaller than that in the versions without a rotating deflecting collar 6. This sealing air consumption is mainly determined by the necessary cooling of the deflecting collar.
  • a very small amount of the engine exhaust gas is lost here through the labyrinth seal 11. This loss of volume is also negligible due to the low gas density.
  • a main advantage of this design is that the axial force on the turbocharger shaft is practically eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung bezieht sich auf eine Axialturbine für Abgasturbolader.The invention relates to an axial turbine for exhaust gas turbochargers.

Bei Turboladern für Verbrennungsmotoren ist es strömungstechnisch vorteilhaft, das Motorabgas unter Erteilung eines nötigen Dralls durch eine Eintrittsspirale oder durch Leitschaufeln vorerst über den ganzen Umfang nach innen und danach, nach einer Umlenkung, durch die Axialturbine strömen zu lassen.In the case of turbochargers for internal combustion engines, it is advantageous in terms of flow technology to allow the engine exhaust gas to flow inwards initially over the entire circumference while giving a necessary swirl through an inlet spiral or through guide vanes and then, after a deflection, through the axial turbine.

Eine Axialturbine mit einem radial durchströmten Turbinenleitapparat ist in der nachveröffentlichten EP-A-93 462 (Art. 54.3) gezeigt.An axial turbine with a radially flowed turbine nozzle is shown in the subsequently published EP-A-93 462 (Art. 54.3).

Bei dieser Lösung ist die Innenwand des zwischen dem Turbinenleitapparat und den Turbinenlaufschaufeln angeordneten Gasumlenkkanals starr und unbeweglich. Wegen der Gasreibung an dieser Wand entsteht ein Drallverlust. Durch die hohe Umfangsgeschwindigkeit des Gases, die radial nach innen zunimmt, verursacht diese Innenwand des Gasumlenkkanals relativ hohe Reibungsverluste. Der isentrope Wirkungsgrad der Turbine sinkt dadurch um etwa 2 % bis 5 % additiv ab.In this solution, the inner wall of the gas deflection channel arranged between the turbine guide apparatus and the turbine blades is rigid and immovable. A swirl loss occurs due to the gas friction on this wall. Due to the high peripheral speed of the gas, which increases radially inwards, this inner wall of the gas deflection channel causes relatively high friction losses. As a result, the isentropic efficiency of the turbine drops additively by about 2% to 5%.

Der Erfindung liegt deshalb die Aufgabe zu Grunde, eine Axialturbine zu schaffen, bei welcher der Drallverlust im Gasumlenkkanal auf ein Minimum reduziert und dadurch ein guter Wirkungsgrad erreicht wird.The invention is therefore based on the object of creating an axial turbine in which the swirl loss in the gas deflecting duct is reduced to a minimum, and good efficiency is thereby achieved.

Erfindungsgemäss wird diese Aufgabe mit den Merkmalen des Patentanspruchs 1 gelöst.According to the invention, this object is achieved with the features of patent claim 1.

Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass das an der Eintrittsspirale oder an den Turbinenleitschaufeln mit einer Umfangskomponente beschleunigte Motorabgas durch den Abgasumlenkkanal den Turbinenlaufschaufeln zugeführt wird, wodurch eine Wirkungsgradverbesserung erreicht ist.The advantages achieved by the invention are essentially to be seen in the fact that the engine exhaust gas accelerated at the inlet spiral or on the turbine guide vanes with a peripheral component is fed to the turbine rotor blades through the exhaust gas deflection channel, as a result of which an improvement in efficiency is achieved.

In der Zeichnung sind zwei Ausführungsbeispiele des Erfindungsgegenstandes vereinfacht dargestellt.Two exemplary embodiments of the subject matter of the invention are shown in simplified form in the drawing.

Es zeigen :

  • Figur 1 die Axialturbine eines Abgasturboladers in einem Teillängsschnitt ;
  • Figur 2 eine Abwandlung der Anordnung gemäss Fig. 1.
Show it :
  • Figure 1 shows the axial turbine of an exhaust gas turbocharger in a partial longitudinal section;
  • FIG. 2 shows a modification of the arrangement according to FIG. 1.

Gleiche Teile sind in beiden Figuren mit denselben Bezugszahlen versehen. Die Strömungsrichtungen des Arbeitsmittels sind mit Pfeilen bezeichnet. Erfindungsunwesentliche Teile der Axialturbine, wie beispielsweise Turbinenabgaskanal, Konsolen und Befestigungselemente, sind weggelassen.The same parts are provided with the same reference numbers in both figures. The flow directions of the working fluid are indicated by arrows. Parts of the axial turbine which are not essential to the invention, such as, for example, the turbine exhaust duct, brackets and fastening elements, have been omitted.

In Fig. 1 ist mit 1 die Turboladerachse bezeichnet. Die dargestellte Axialturbine mit radialer Gaszuströmung ist über das Turbinengehäuse 7 an eine nicht dargestellte Auspuffleitung eines aufgeladenen Dieselmotors angeschlossen. Die Turboladerwelle 2 ist im Turbinengehäuse 7 mittels Wellenlager 10 gelagert und trägt eine mit den Turbinenlaufschaufeln 4 versehenen Turbinenscheibe 3.In Fig. 1, 1 denotes the turbocharger axis. The axial turbine shown with radial gas inflow is connected via the turbine housing 7 to an exhaust line, not shown, of a supercharged diesel engine. The turbocharger shaft 2 is supported in the turbine housing 7 by means of shaft bearings 10 and carries a turbine disk 3 provided with the turbine blades 4.

Gasstromaufwärts der axialdurchströmten Turbinenlaufschaufeln 4 sind im ringförmigen Umlenkkanal 7a radialdurchströmte Turbinenleitschaufeln 5 angeordnet. Im Turbinengehäuse 7 sind ausserdem ein Sperrluftkanal 8 und ein Luftableitungskanal 9 angeordnet.Upstream of the turbine rotor blades 4 through which gas flows axially, turbine guide blades 5 through which radial flow flows are arranged in the annular deflection channel 7a. In addition, a sealing air duct 8 and an air discharge duct 9 are arranged in the turbine housing 7.

Gemäss der Erfindung ist die innere Wand des rotationssymmetrischen Abgasumlenkkanals 7b als ein mit der Turboladerwelle 2 rotierender Umlenkkragen 6 ausgeführt. Dieser Umlenkkragen 6 ist mittels Schrauben 12 mit der Turboladerwelle 2 starr verbunden. Der Aussendurchmesser des rotierenden Umlenkkragens 6 ist grösser als der Durchmesser der Turbinenscheibe 3 und kann höchstens dem Aussendurchmesser des Turbinenrotors gleich sein. Zwischen dem rotierenden Umlenkkragen 6 und dem Gehäuse 7 ist ein Element zum berührungslosen Abdichten des Abgasumlenkkanals vorgesehen.According to the invention, the inner wall of the rotationally symmetrical exhaust gas deflecting duct 7b is designed as a deflecting collar 6 rotating with the turbocharger shaft 2. This deflecting collar 6 is rigidly connected to the turbocharger shaft 2 by means of screws 12. The outside diameter of the rotating deflection collar 6 is larger than the diameter of the turbine disk 3 and can at most be the same as the outside diameter of the turbine rotor. An element for the contactless sealing of the exhaust gas deflection channel is provided between the rotating deflection collar 6 and the housing 7.

Dieses Element besteht aus zwei Labyrinthdichtungen 11, 11', die an einer zylindrischen, konzentrischen, nach innen offenen Fläche des Umlenkkragens 6 angeordnet sind. Ein im Turbinengehäuse 7 angeordneter Sperrluftkanal 8 ist mit einem zwischen der der Turbine zugekehrten Labyrinthdichtung 11' und der der Turbine abgekehrten Labyrinthdichtung 11 angeordneten Radialspalt 15 verbunden. Ein im Turbinengehäuse 7 angeordneter Luftableitungskanal 9 ist mit einem Luftraum 13 verbunden.This element consists of two labyrinth seals 11, 11 ', which are arranged on a cylindrical, concentric, inwardly open surface of the deflecting collar 6. A sealing air channel 8 arranged in the turbine housing 7 is connected to a radial gap 15 arranged between the labyrinth seal 11 ′ facing the turbine and the labyrinth seal 11 facing away from the turbine. An air discharge duct 9 arranged in the turbine housing 7 is connected to an air space 13.

Die Wirkungsweise der Axialturbine für Abgasturbolader geht aus folgendem hervor :The operation of the axial turbine for exhaust gas turbochargers can be seen from the following:

Das Motorabgas strömt durch den Abgaskanal 7a, durch den Kranz der Leitschaufeln 5 und den Abgasumlenkkanal 7b zu den Turbinenlaufschaufeln 4, in welchen es sich unter Abgabe von Leistung entspannt und anschliessend durch eine nicht gezeigte Auspuffleitung in die Atmosphäre aus gestossen wird. Auf den Turbinenleitschaufein 5 wird das überwiegend radial zuströmende Motorabgas tangential beschleunigt. Dabei entsteht ein zur Drehrichtung der Turbine wirkender Drall.The engine exhaust gas flows through the exhaust duct 7a, through the ring of the guide vanes 5 and the exhaust gas deflecting duct 7b to the turbine rotor blades 4, in which it relaxes with the output of power and is then expelled into the atmosphere through an exhaust line, not shown. The predominantly radially flowing engine exhaust gas is accelerated tangentially on the turbine guide vanes 5. This creates a swirl acting in the direction of rotation of the turbine.

Da die Innenwand des Abgasumlenkkanals 7b mit der Turboladerwelle 2 rotiert, wird die relative Geschwindigkeit zwischen der tangentialen Gasgeschwindigkeit und der rotierenden Wand in dieser Zone wesentlich geringer als bei den Axialturbinen ohne rotierenden Umlenkkragen. Der resultierende Gewinn an Turbinenwirkungsgrad auf Grund der verkleinerten Reibung beträgt ca. 1,5 bis 3 % additiv.Since the inner wall of the exhaust gas deflecting duct 7b rotates with the turbocharger shaft 2, the relative speed between the tangential gas speed and the rotating wall in this zone becomes significantly lower than in the case of the axial turbines without a rotating deflecting collar. The resulting gain in turbine efficiency due to the reduced friction is approximately 1.5 to 3% additive.

Die Sperrluftzufuhr durch den Sperrluftkanal 8 dient zur Kühlung der Turboladerwelle 2 und der Turbinenscheibe 3 und verhindert das Abströmen des Abgases aus dem Abgasumlenkkanal 7b durch den Luftraum 13 zum Wellenlager 10 und an die Umgebung.The sealing air supply through the sealing air duct 8 serves to cool the turbocharger shaft 2 and the turbine disk 3 and prevents the exhaust gas from flowing out of the exhaust gas deflection duct 7b through the air space 13 to the shaft bearing 10 and to the environment.

Auf der der Gasströmung abgewandten Seite des Umlenkkragens 6 entsteht im Luftraum 13 eine bremsende Reibkraft, die aber relativ gering ist. Die resultierende, auf die Turboladerwelle 2 wirkende Axialkraft ist unter anderem eine Funktion der .Druckverteilung an den beiden Seiten des Umlenkkragens 6. Da die Labyrinthdichtungen 11 radial weit aussen liegen, wird diese resultierende Axialkraft stark vermindert und entspricht etwa derjenigen einer Radialturbine. Durch die Sfrömungsverluste in der Labyrinthdichtung 11' wird der Luftdruck im Luftraum 13 hinter dem Umlenkkragen 6 annähernd auf den Umgebungsdruck abgesenkt. Dadurch wird die Axialkraft auf die Turboladerwelle klein. Der Sperrluftverbrauch wird bei dieser Ausführung etwas grösser als bei den Ausführungen ohne rotierenden Umlenkkragen 6.On the side of the deflecting collar 6 facing away from the gas flow, a braking friction force arises in the air space 13, but this is relatively low. The resulting, on the turbocharger shaft 2 acting axial force is, among other things, a function of the pressure distribution on the two sides of the deflecting collar 6. Since the labyrinth seals 11 are located radially far outwards, this resulting axial force is greatly reduced and corresponds approximately to that of a radial turbine. Due to the flow losses in the labyrinth seal 11 ', the air pressure in the air space 13 behind the deflecting collar 6 is approximately reduced to the ambient pressure. As a result, the axial force on the turbocharger shaft is small. The sealing air consumption is slightly larger in this version than in the versions without a rotating deflection collar 6.

Bei der in Fig. 2 dargestellten Ausführung besteht das Element zum berührungslosen Abdichten des Umlenkkanals 7b aus einer in einer achsnormalen Ebene konzentrisch angeordneten Labyrinthdichtung 11. Die Labyrinthdichtung 11 ist auf dem Aussendurchmesser des rotierenden Umlenkkragens 6 angeordnet. Die vom Abgasumlenkkanal 7b durch die Labyrinthdichtung 11 nach innen strömende geringe Abgasmenge wird mit der radial von innen nach aussen kommenden Sperrluft in den Ableitungskanal 9 abgeführt. Der Sperrluftverbrauch ist bei dieser Ausführung kleiner als derjenige bei den Ausführungen ohne rotierenden Umlenkkragen 6. Hauptsächlich ist dieser Sperrluftverbrauch durch die notwendige Kühlung des Umlenkkragens bestimmt. Eine sehr geringe Menge des Motorabgases geht hier durch die Labyrinthdichtung 11 verloren. Dieser Mengenverlust ist auch wegen der geringen Gasdichte vernachlässigbar. Ein Hauptvorteil dieser Ausführung ist, dass die Axialkraft auf die Turboladerwelle praktisch wegfällt.In the embodiment shown in FIG. 2, the element for contactless sealing of the deflection channel 7b consists of a labyrinth seal 11 concentrically arranged in a plane normal to the axis. The labyrinth seal 11 is arranged on the outside diameter of the rotating deflection collar 6. The small amount of exhaust gas flowing inwards from the exhaust gas deflection duct 7b through the labyrinth seal 11 is discharged into the discharge duct 9 with the sealing air coming radially from the inside out. The sealing air consumption in this version is smaller than that in the versions without a rotating deflecting collar 6. This sealing air consumption is mainly determined by the necessary cooling of the deflecting collar. A very small amount of the engine exhaust gas is lost here through the labyrinth seal 11. This loss of volume is also negligible due to the low gas density. A main advantage of this design is that the axial force on the turbocharger shaft is practically eliminated.

Claims (5)

1. Axial turbine for an exhaust gas turbocharger, consisting essentially of a turbine disk (3) located on the turbocharger shaft (2) and provided with axial flow turbine rotor blades (4), and of a turbine casing (7) in which the turbocharger shaft (2) is supported, wherein a ring of radial flow turbine guide vanes (5) is located in the turbine casing (7) upstream of the rotor blades (4) and wherein a rotationally symmetrical exhaust gas deflection duct (7b) is located between the turbine guide vanes (5) and the turbine rotor blades (4) and in which the inner wall of the rotationally symmetrical exhaust gas deflection duct (7b) is an unbladed deflection boss (6) rigidly connected to the turbocharger shaft (2) and rotating with it.
2. Axial turbine according to Claim 1, characterized in that the outer diameter of the deflection boss (6) is greater than the diameter of the turbine disk (3) and at most equal to the outer diameter of the turbine rotor.
3. Axial turbine according to Claim 1, characterized in that an element for the contactless sealing of the exhaust gas deflection duct (7b) is provided between the rotating deflection boss (6) and the turbine casing (7).
4. Axial turbine according to Claim 3, characterized in that the element for the contactless sealing of the deflection duct (7b) consists of two labyrinth seals (11, 11') located on a cylindrical, concentric surface of the deflection boss (6), open towards the inside, that a sealing air duct (8) located in the turbine casing (7) is connected to a radial gap (15) located between the labyrinth seal (11') facing towards the turbine and the labyrinth seal (11) facing away from the turbine, it being possible to supply the seating air from a radially inward position through the radial gap (15) and to remove it through the labyrinth seal (11), facing away from the turbine, to the outer radius of the deflection boss (6) into the gas duct (7b) before the turbine and through the labyrinth seal (11'), facing away from the turbine, to the atmosphere or into the exhaust gas pipe.
5. Axial turbine according to Claim 3, characterized in that the element for the contactless sealing of the deflection duct (7b) is a concentrically located labyrinth seal (11) in a plane normal to the axis, it being possible to remove the engine exhaust gas from the exhaust gas deflection duct (7b), together with the sealing air entering radially from an inwards position, into a breather duct (9).
EP84106485A 1983-06-29 1984-06-06 Axial turbine for a turbo charger Expired EP0131736B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3559/83 1983-06-29
CH355983 1983-06-29

Publications (2)

Publication Number Publication Date
EP0131736A1 EP0131736A1 (en) 1985-01-23
EP0131736B1 true EP0131736B1 (en) 1987-01-21

Family

ID=4258600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84106485A Expired EP0131736B1 (en) 1983-06-29 1984-06-06 Axial turbine for a turbo charger

Country Status (6)

Country Link
US (1) US4648790A (en)
EP (1) EP0131736B1 (en)
JP (1) JPS6013926A (en)
KR (1) KR910003258B1 (en)
DE (1) DE3462169D1 (en)
DK (1) DK314684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745431A (en) * 2013-11-07 2016-07-06 株式会社京浜 Pressure regulation valve

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2648042B2 (en) * 1991-05-31 1997-08-27 ジューキ株式会社 Button feeder
DE19618313B4 (en) * 1996-05-08 2005-07-21 Abb Turbo Systems Ag Axial turbine of an exhaust gas turbocharger
DE10051223A1 (en) 2000-10-16 2002-04-25 Alstom Switzerland Ltd Connectable stator elements
DE10125250C5 (en) * 2001-05-23 2007-03-29 Man Diesel Se Axial turbine of an exhaust turbocharger with internal burst protection
ATE364780T1 (en) * 2001-06-26 2007-07-15 Volvo Lastvagnar Ab EXHAUST TURBINE DEVICE
US6715766B2 (en) * 2001-10-30 2004-04-06 General Electric Company Steam feed hole for retractable packing segments in rotary machines
GB2440344A (en) * 2006-07-26 2008-01-30 Christopher Freeman Impulse turbine design
GB0814764D0 (en) * 2008-08-13 2008-09-17 Cummins Turbo Tech Ltd Engine braking method and system
US8453448B2 (en) * 2010-04-19 2013-06-04 Honeywell International Inc. Axial turbine
US8453445B2 (en) * 2010-04-19 2013-06-04 Honeywell International Inc. Axial turbine with parallel flow compressor
US8353161B2 (en) * 2010-04-19 2013-01-15 Honeywell International Inc. High diffusion turbine wheel with hub bulb
US8468826B2 (en) * 2010-04-19 2013-06-25 Honeywell International Inc. Axial turbine wheel
JP6030462B2 (en) * 2013-01-30 2016-11-24 株式会社Ihi Pressure incineration equipment and pressure incineration method
EP3012417B1 (en) * 2013-06-20 2017-11-01 Mitsubishi Heavy Industries, Ltd. Radial-inflow type axial turbine and turbocharger
US20150159660A1 (en) * 2013-12-06 2015-06-11 Honeywell International Inc. Axial turbine with radial vnt vanes
DE102014200916A1 (en) * 2014-01-20 2015-07-23 Ford Global Technologies, Llc Internal combustion engine with double-flow axial turbine and grouped cylinders
DE102015223257A1 (en) 2015-11-25 2017-06-01 Volkswagen Aktiengesellschaft Exhaust gas turbine, exhaust gas turbocharger, internal combustion engine and motor vehicle
DE102016207698A1 (en) * 2016-05-04 2017-11-09 Bosch Mahle Turbo Systems Gmbh & Co. Kg loader
JP6674913B2 (en) * 2017-01-16 2020-04-01 三菱重工業株式会社 Radial inflow turbine, supercharger and method of assembling supercharger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0093462A1 (en) * 1982-04-29 1983-11-09 BBC Brown Boveri AG Turbo charger with a sliding ring valve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1358070A (en) * 1916-02-23 1920-11-09 Allis Chalmers Mfg Co Hydraulic installation
US1803220A (en) * 1929-07-24 1931-04-28 Thompson Thomas Water turbine
CH330608A (en) * 1953-09-11 1958-06-15 Garrett Corp Impeller for elastic fluids
US2781999A (en) * 1954-09-24 1957-02-19 Siemens Ag Turbine construction
US2854212A (en) * 1955-07-19 1958-09-30 Siemens Ag Turbine apparatus
GB978080A (en) * 1961-04-06 1964-12-16 Gasturbinenbau Und Energiemasc Improvements in rotors for gas turbines and compressors
CH480543A (en) * 1967-08-18 1969-10-31 Sulzer Ag System for conveying, compressing or circulating gases with a conveying fan driven by an electric motor
ES403795A1 (en) * 1971-07-06 1975-05-01 Andritz Ag Maschf Pump with offset inflow and discharge chambers
US3832090A (en) * 1972-12-01 1974-08-27 Avco Corp Air cooling of turbine blades
SU966316A1 (en) * 1980-12-23 1982-10-15 Ордена Ленина И Ордена Трудового Красного Знамени Производственное Объединение "Невский Завод" Им.В.И.Ленина Centrifugal blower body
SU964197A1 (en) * 1981-03-11 1982-10-07 Ленинградский Ордена Ленина Политехнический Институт Им.М.И.Калинина Steam turbine flow-through portion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0093462A1 (en) * 1982-04-29 1983-11-09 BBC Brown Boveri AG Turbo charger with a sliding ring valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745431A (en) * 2013-11-07 2016-07-06 株式会社京浜 Pressure regulation valve

Also Published As

Publication number Publication date
DK314684A (en) 1984-12-30
DK314684D0 (en) 1984-06-27
JPH052817B2 (en) 1993-01-13
KR910003258B1 (en) 1991-05-25
KR850000589A (en) 1985-02-28
JPS6013926A (en) 1985-01-24
DE3462169D1 (en) 1987-02-26
US4648790A (en) 1987-03-10
EP0131736A1 (en) 1985-01-23

Similar Documents

Publication Publication Date Title
EP0131736B1 (en) Axial turbine for a turbo charger
EP2615289B1 (en) Turbofan with gear-driven compressor and fan-driven core
CN106401754B (en) Gas turbine engine frame assembly
US7066715B2 (en) Turbine efficiency tailoring
US9903225B2 (en) Turbocharger with low carbon steel shaft
CN107956598B (en) Gas turbine engine
EP0248624A2 (en) Variable capacity turbine
DE10223876A1 (en) Compressor, for the turbo charger of an IC motor, has a covering ring at the compressor wheel, radially around the wheel paddles, to form tunnel air flow channels between the paddles between the ring and the hub
US20230226476A1 (en) Inducer assembly for a turbine engine
US2494328A (en) Axial flow elastic fluid turbine
US4655038A (en) Exhaust gas turbo-charger turbine
EP0138516A1 (en) Centrifugal compressor wheel and its mounting on a shaft
US11118469B2 (en) Seal assembly for a turbo machine
DE102020202967A1 (en) Exhaust gas turbocharger with integral housing
US20220090506A1 (en) Turbocharger
US2962206A (en) Centrifugal compressor for a gas turbine engine
GB1465820A (en) Exchaust gas cleaner
JP2807234B2 (en) Combustion engine equipment
EP3708844A1 (en) Turbocharger and bearing housing therefor
CH676737A5 (en) IC engine exhaust turbocharger - has gas turbine rotor hub with rotary burst collar on side facing hub bearing
US20240141797A1 (en) Rotary machine seal having a wear protection assembly with an abradable covering
US11408343B1 (en) Turboshaft engine with axial compressor
EP3810901B1 (en) Turbocharger and method of operating turbocharger
US10400883B2 (en) Gear with fluid control dam and apertures
EP2083149A1 (en) Exhaust gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19841119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3462169

Country of ref document: DE

Date of ref document: 19870226

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BBC BROWN BOVERI AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900914

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910515

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910517

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910630

Ref country code: CH

Effective date: 19910630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920810

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301