EP0126668B1 - Tube radiogène à anode tournante - Google Patents

Tube radiogène à anode tournante Download PDF

Info

Publication number
EP0126668B1
EP0126668B1 EP84400848A EP84400848A EP0126668B1 EP 0126668 B1 EP0126668 B1 EP 0126668B1 EP 84400848 A EP84400848 A EP 84400848A EP 84400848 A EP84400848 A EP 84400848A EP 0126668 B1 EP0126668 B1 EP 0126668B1
Authority
EP
European Patent Office
Prior art keywords
anode
cathode
hollow
hollow anode
tube according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84400848A
Other languages
German (de)
English (en)
Other versions
EP0126668A1 (fr
Inventor
Jacques Le Guen
André Plessis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0126668A1 publication Critical patent/EP0126668A1/fr
Application granted granted Critical
Publication of EP0126668B1 publication Critical patent/EP0126668B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • H01J35/1017Bearings for rotating anodes
    • H01J35/103Magnetic bearings

Definitions

  • the invention relates to an X-ray tube with a rotating anode, in which the rotation of the anode is effected by magnetic bearings.
  • High power X-ray tubes generally use a rotating anode, the rotation of which is still very commonly ensured by mechanical bearings. Given the high rotational speed, which can reach 20,000 revolutions per minute, these mechanical bearings exhibit rapid wear, and are frequently the cause of the decommissioning of X-ray tubes.
  • An important improvement consists in mounting the rotating anode with magnetic bearings. These generally include electromagnets mounted two by two in opposition, which create magnetic fields under the influence of which a rotor, integral with the rotating anode which it ensures rotation, is kept in equilibrium; the rotating anode and the mechanical parts which accompany it in rotation, thus no longer have mechanical contact with the rest of the X-ray tube.
  • thermo-emissive cathodes mechanically linked to the rotating anode; these electrons being captured by fixed anodes.
  • One of the main difficulties is then to supply, to these rotated cathodes, the energy necessary to raise their temperature to a level sufficient to meet the laws of thermoelectronic emission.
  • This patent application describes the arrangement of an X-ray tube with a rotating anode, provided with magnetic bearings and means for flowing, without contact, the anode current.
  • a rotating anode secured to a rotor is mounted on magnetic bearings.
  • the rear of the rotor has two cathodes rotating around an axis, on which an anode is arranged.
  • the cathodes comprise windings cooperating during the rotation of the rotary anode, with a plurality of excitation coils; these excitation coils being distributed over the periphery of the tube and inducing in the rotating windings, the heating voltage of the cathodes.
  • Another French patent application published under No. 2,494,497, also describes an X-ray tube, comprising a rotating anode with magnetic bearings, and means for discharging the anode current without contacts.
  • An auxiliary cathode is placed in the central position of the anode, and a heating filament, in a fixed position, is placed in front of the auxiliary cathode.
  • An auxiliary anode in the form of a tube or ring surrounds the heating filament and collects the electrons emitted by the auxiliary cathode.
  • One of the drawbacks of this solution is that the dimensions of the heating filament are limited by the diameter of the auxiliary ring anode, and therefore it is difficult to obtain the desired heating power.
  • heating intended to flow an anode current is obtained by a combination of much simpler means, which do not have the above-mentioned drawbacks.
  • the present invention relates to an X-ray tube with a rotating anode mounted on magnetic bearings, making it possible to flow the anode current without contact; this being obtained in the X-ray tube according to the invention in a simpler and less expensive way than according to the prior art, thanks in particular to the use of a thermo-emissive cathode and a new arrangement making it possible to heat it by thermal rays.
  • an X-ray tube comprising a rotating anode mounted on magnetic bearings and at least one device intended to drain the anode current from the tube, is characterized in that this device comprises in a fixed position a hollow anode, inside of which a cathode is coupled in rotation to the rotating anode, the hollow anode being associated with heating means external to the hollow anode, the hollow anode being connected to the positive pole of the high voltage, the cathode being electrically connected to the rotating anode so as to ensure the passage of the anode current.
  • the X-ray tube 1 shown in FIG. 1, comprises a vacuum-tight envelope 2-3, constituted in the nonlimiting example described by an insulating central part 2 and, by end parts 3 formed by thin metal shirts; a main cathode 5 carried by the insulating central part 2, is intended to supply an electron beam (not shown) whose impact on a rotating anode 6 causes X-radiation.
  • the rotating anode 6 is carried by a metal shaft 7, integral with a rotor 8; this rotor 8 forms with. a stator 9 located outside the casing 2-3, a motor ensuring the rotation of the rotary anode 6 around a longitudinal axis 10.
  • the shaft 7 is also secured at its ends 4, to rotating parts 11, 12, conical in the nonlimiting example described, and which constitute the suspended parts of magnetic bearings 11-13, 12-14; active parts 13, 14 of these magnetic bearings being located outside the envelope 2-3.
  • guard bearings 25 situated opposite the ends 4 of the shaft 7, with which these bearings 25 are in contact only in the event of failure of the magnetic suspension .
  • the tube 1 also includes a device 40, represented in a frame in dotted lines, located inside the envelope 2-3 and intended, in operation, to drain the anode current from the tube 1.
  • a device 40 represented in a frame in dotted lines, located inside the envelope 2-3 and intended, in operation, to drain the anode current from the tube 1.
  • This device 40 comprises a metal axis 15 extending the shaft 7 along the longitudinal axis 10, on the side of the rotor 8, and carrying a cathode 16.
  • the cathode 16 of spherical shape, in the nonlimiting example described, is centered on the longitudinal axis 10; it is electrically connected by the metal axis 15 and the shaft 7 to the rotating anode 6, and is in operation brought to the same potential as the latter.
  • a hollow anode 17, also of spherical shape in the non-limiting example described, is held in a fixed position and centered around the cathode 16, by a metal support 18 secured to an insulating support 19.
  • the hollow anode 17 comprises a hole 20 intended for the passage of the metal axis 15, thus allowing the movement of the cathode 16, which is coupled in rotation to the rotating anode 6; the rotation of the cathode 16 taking place inside the hollow anode 17, and, like that of the rotating anode 6, around the longitudinal axis 10 according to arrow 29.
  • a heating filament 21 supported in a conventional manner by means not shown and connected to two sealed bushings 22, 23, which is provided with the insulating support 19; the latter also vacuum-tight, has a third bushing 24, electrically connected to the metal support 18 of the hollow anode 17.
  • the high voltage necessary for the operation of the tube 1 is supplied in a known manner by a high voltage generator 31.
  • a positive + HT output of this high voltage is connected to the end portions 3, as well as to the third crossing 24, to be applied to the hollow anode 17;
  • a negative output - HT of the generator 31 is connected in a conventional manner by a fourth bushing 35 to the main cathode 5, the latter also comprising in known manner and not shown, heating connections.
  • the heating filament 21 heats the hollow anode 17, which constitutes a practically closed enclosure in which the cathode 16 is heated in its turn as in an oven, by the thermal radiation of the hollow anode 17.
  • the device 40 may include, as in the nonlimiting example described, a partially shown thermal reflector 32, enveloping the heating filament 21.
  • the cathode 16 electrically connected to the rotating anode 6 then generates electrons which are captured by the hollow anode 17, which is connected to the positive + HT pole of the high voltage; the intensity of the electronic current thus generated is the same as that of the electron beam emitted by the main cathode 5, towards the rotating anode 6.
  • the anodic current of the tube 1 is thus passed with a small difference in voltage between the polarity positive + HT of the high voltage, and the value + HT 'established at the rotating anode 6.
  • the thermal energy supplied by the heating filament 21 is transferred via the hollow anode 17 to the cathode 16 to constitute the energy necessary for the extraction of the electrons.
  • This energy transfer can be made more efficient by appropriate adaptations of the cathode and hollow anode 16, 17, and by the use of a second voltage source, as explained with reference to Figure 2; for better clarity of this FIG. 2, the representation of the X-ray tube according to the invention is limited in order to better show the device 40.
  • the cathode 16 can be hollow as in the example shown in Figure 2, where it has the shape of a sphere; this form may be different as explained in the following description.
  • the cathode 16 has a wall 26, having a small thickness e, and preferably consisting of a refractory material such as tantalum or thoriated tungsten; this wall 26 can also be covered on its outer surface 33, to increase the emissivity in electrons, of lanthanum boride for example (not shown).
  • the hollow anode 17 is formed by two half-spheres 27, 28 assembled made of graphite, pyrolitic graphite for example, or also of a refractory material such as tungsten or molybdenum.
  • the X-ray tube according to the invention comprises a power source constituted by a low-voltage DC generator 45.
  • a positive output V + of this low voltage generator 45 is connected to the hollow anode 17 and also to the positive pole of the high voltage + HT; a negative output -V being it connected to one of the ends of the heating filament 21, to the bushing 23 for example.
  • the DC voltage delivered by this low voltage generator 45 determines, between the heating filament 21 and the hollow anode 17, a potential difference.
  • the hollow anode 17, being positive with respect to the heating filament 21 is subjected to the bombardment of electrons emitted by this filament; this electron bombardment of the hollow anode 17 causes the latter to have a high temperature which determines its thermal radiation in the direction of the cathode 16.
  • This latter mode of heating the hollow anode 17 can be used either alone or combined with that previously described, the heat shield 32, not shown in FIG. 2, which can be kept in this variant.
  • the hollow anode 17 is made of graphite
  • its outer surface 34 is preferably covered with a highly reflective metal deposit (of the so-called mirror-polished type for example) .
  • its external surface 34 can also be reflective (mirror-polished), its internal surface 36 being covered with a material (not shown) with high thermal radiation power.
  • This description constitutes a nonlimiting example of an X-ray tube according to the invention, capable of flowing the anode current from the tube 1, without contact between the fixed parts and the rotating parts of this tube.
  • a device 40 notably includes an electron-emitting cathode 16, which receives the electron extraction energy thanks to the radiation of a hollow anode 17 intended to capture these electrons.
  • the shape of this cathode 16 and of this hollow anode may be different from that shown in FIGS. 1, 2, the main thing being that the cathode 16, integral with the rotating anode 6, is located in an enclosure, heated, constituting a hollow anode 17. Nevertheless, the shapes of the hollow anode 17 and of the cathode 16 are preferably adapted so that their surfaces 36, 33, facing each other, are at a distance D as constant as possible.
  • the hollow anode 17 and the cathode 16 can also have a conical or cylindrical shape as shown in FIG. 3.
  • This arrangement of the hollow anode 17 and the cathode 16 also makes it possible to use heating means different from those constituted by the heating filament 21 and of low-voltage generator 45; the heating of the cathode 16 being obtained by the thermal radiation of the hollow anode 17. It should also be noted that the combination of means of the device 40 can also be located at one or the other of the ends 3 of the 'envelope 2-3 or simultaneously at these two ends.
  • the device 40 can also be adapted to different positions as shown in the nonlimiting example of FIG. 4, where this device, already explained, is represented by a rectangle in dotted lines.
  • FIG. 4 shows an X-ray tube 1 according to the invention, the magnetic bearings 11-13, 12-14 of which are situated on the same side of the rotating anode 6.
  • the tube 1 its envelope is made up of a metal end part 3, and of an insulating part 2, on the side of which are contained the rotating anode 6 and the main cathode 5.
  • the part of metal end 3 being brought to earth potential, as well as the magnetic bearings 11-13,12-14 and the rotor 8, by conventional means and not shown; the guard bearings 25 being arranged around a fixed shaft 39, disposed in the rotor 8 along the longitudinal axis 10.
  • the rotor 8 rotates the rotary anode 6 around the longitudinal axis 10, by means of an insulating shaft 38, the latter being made of a refractory material and highly electrical insulator, such as for example alumina , or ceramic as in the example described.
  • the device 40 serving to drain the anode current is in the immediate vicinity of the rotating anode 6, to which it is mechanically and electrically connected thanks to the metal axis 15; cathode 16, not shown in FIG. 4, being coupled in rotation to the rotating anode 6 as previously explained.
  • the internal electrical connections (not shown), necessary for the device 40 are routed, out of the tube 1, by a sheath 37 made of a refractory material with very low coefficient of expansion, such as for example alumina or ceramic ; these internal connections leading to the crossings 22, 23, 24 of the base 19.
  • the operation of the device 40 remains, in this arrangement, the same as previously explained, as well as its external electrical connections not shown in FIG. 4; an exception however being that in this last version, the end part 3 is at ground potential, and is therefore no longer connected to + HT.
  • An X-ray tube 1 according to the invention is applicable to all fields of radiology, to which it provides a simple, reliable and economical solution, by means of the device 40 serving to flow the anode current without contact.

Landscapes

  • X-Ray Techniques (AREA)

Description

  • L'invention concerne un tube radiogène à anode tournante, dans lequel la rotation de l'anode s'effectue grâce à des paliers magnétiques.
  • Des tubes radiogènes de forte puissance utilisent généralement une anode tournante, dont la rotation est encore très couramment assurée grâce à des paliers mécaniques. Etant donné la vitesse de rotation élevée, qui peut atteindre 20 000 tours par minute, ces paliers mécaniques présentent une usure rapide, et sont fréquemment la cause de la mise hors service de tubes radiogènes.
  • Une amélioration importante consiste à monter l'anode tournante avec des paliers magnétiques. Ceux-ci comportent généralement des électroaimants montés deux à deux en opposition, qui créent des champs magnétiques sous l'influence desquels un rotor, solidaire de l'anode tournante dont il assure la rotation, est maintenu en équilibre ; l'anode tournante et les pièces mécaniques qui l'accompagnent en rotation, n'ont ainsi plus de contact mécanique avec le reste du tube radiogène.
  • Ceci pose un nouveau problème qui réside en ce que l'anode, étant mécaniquement isolée du reste du tube, elle l'est également électriquement ; aussi sa connexion à la haute tension du tube, et l'écoulement du courant anodique sont imparfaitement réalisés à ce jour. Des solutions proposées sont souvent des systèmes à frotteurs ou à billes, donc mécaniques, et l'on perd de ce fait une partie de l'avantage du système à paliers magnétiques, à savoir l'absence totale de frottements mécaniques.
  • 'Une autre solution, qui permet l'écoulement du courant anodique sans contact mécanique, utilise l'émission d'électrons générés par des cathodes thermo-émissives liées mécaniquement à l'anode tournante ; ces électrons étant captés par des anodes fixes. L'une des principales difficultés est alors de fournir, à ces cathodes mises en rotation, l'énergie nécessaire à élever leur température à un niveau suffisant pour répondre aux lois de l'émission thermo-électronique.
  • A ce jour, cette difficulté est tournée grâce à des solutions relativement complexes et onéreuses, consistant par exemple à utiliser des phénomènes d'induction pour transférer à ces cathodes l'énergie nécessaire à leur chauffage. Une telle solution est décrite dans unè demande de brevet français publiée sous le N° 2 494 496.
  • Cette demande de brevet expose l'agencement d'un tube à rayons X à anode tournante, muni de paliers magnétiques et de moyens pour écouler, sans contact, le courant anodique. Dans' cette demande de brevet, une anode tournante solidaire d'un rotor, est montée sur des paliers magnétiques. Pour évacuer le courant anodique, l'arrière du rotor comporte deux cathodes tournant autour d'un axe, sur lequel est disposée une anode. Les cathodes comportent des enroulements coopérant durant la rotation de l'anode tournante, avec une pluralité de bobines d'excitation ; ces bobines d'excitation étant réparties sur la périphérie du tube et induisant dans les enroulements en rotation, la tension de chauffage des cathodes.
  • La mise en oeuvre de cette solution est compliquée et la rend coûteuse ; d'autre part, des problèmes de fiabilité peuvent se présenter du fait des températures élevées auxquelles sont exposés, les enroulements tournants. En effet, ces enroulements doivent comporter des isolants électriques capables de supporter ces températures et, qui ne dégazent pas ; ceci posant un problème technologique encore mal résolu.
  • Une autre demande de brevet français, publiée sous le N° 2 494 497, décrit également un tube à rayons X, comportant une anode tournante à paliers magnétiques, et des moyens pour évacuer le courant anodique sans contacts. Une cathode auxiliaire est disposée en position centrale de l'anode, et un filament chauffant, en position fixe, est disposé en face de la cathode auxiliaire. Une anode auxiliaire en forme de tube ou anneau entoure le filament chauffant et capte les électrons émis par la cathode auxiliaire. L'un des inconvénients de cette solution est que les dimensions du filament chauffant sont limitées par le diamètre de l'anode auxiliaire en anneau, et par suite, il est difficile d'obtenir la puissance de chauffage désirée.
  • Dans la présente invention, un chauffage destiné à écouler un courant anodique, est obtenu grâce à une combinaison de moyens beaucoup plus simples, qui ne présentent pas les inconvénients ci-dessus mentionnés.
  • La présente invention concerne un tube radiogène à anode tournante montée sur paliers magnétiques, permettant d'écouler sans contact le courant anodique ; ceci étant obtenu dans-le tube radiogène selon l'invention d'une manière plus simple et moins onéreuse que selon l'art antérieur, grâce notamment à l'utilisation d'une cathode thermo-émissive et un agencement nouveau permettant de la chauffer par rayonnement thermique.
  • Selon l'invention, un tube radiogène, comportant une anode tournante montée sur paliers magnétiques et au moins un dispositif destiné à écouler le courant anodique du tube, est caractérisé en ce que ce dispositif comporte en position fixe une anode creuse, à l'intérieur de laquelle une cathode est couplée en rotation à l'anode tournante, l'anode creuse étant associée à des moyens de chauffage extérieurs à l'anode creuse, l'anode creuse étant reliée au pôle positif de la haute tension, la cathode étant électriquement reliée à l'anode tournante de manière à assurer le passage du courant anodique.
  • L'invention sera mieux comprise grâce à la description qui suit et aux quatre figures annexées dont :
    • la figure 1 représente schématiquement un tube radiogène conforme à l'invention ;
    • la figure 2 montre plus particulièrement des moyens du dispositif destiné à écouler le courant anodique du tube selon l'invention ;
    • la figure 3 montre une variante du dispositif destiné à écouler le courant anodique ;
    • la figure 4 montre schématiquement une variante du tube radiogène selon l'invention.
  • Le tube radiogène 1 selon l'invention, montré sur la figure 1, comporte une enveloppe 2-3 étanche au vide, constituée dans l'exemple non limitatif décrit par une partie centrale isolante 2 et, par des parties d'extrémités 3 formées par des chemises métalliques de faible épaisseur ; une cathode principale 5 portée par la partie centrale isolante 2, est destinée à fournir un faisceau d'électrons (non représenté) dont l'impact sur une anode tournante 6 provoque le rayonnement X.
  • L'anode tournante 6 est portée par un arbre 7 métallique, solidaire d'un rotor 8 ; ce rotor 8 forme avec. un stator 9 situé à l'extérieur de l'enveloppe 2-3, un moteur assurant la rotation de l'anode tournante 6 autour d'un axe longitudinal 10. L'arbre 7 est également solidaire à ses extrémités 4, de parties tournantes 11, 12, coniques dans l'exemple non limitatif décrit, et qui constituent les parties en suspension de paliers magnétiques 11-13, 12-14 ; des parties actives 13, 14 de ces paliers magnétiques étant situées à l'extérieur de l'enveloppe 2-3. A l'intérieur de cette enveloppe sont disposés des roulements de garde 25, situés en vis-à-vis des extrémités 4 de l'arbre 7, avec lequel ces roulements 25 ne sont en contact qu'en cas de défaillance de la suspension magnétique.
  • Le tube 1 comporte également un dispositif 40, représenté dans un cadre en traits pointillés, situé à l'intérieur de l'enveloppe 2-3 et destiné, en fonctionnement, à écouler le courant anodique du tube 1.
  • Ce dispositif 40 comporte un axe métallique 15 prolongeant l'arbre 7 selon l'axe longitudinal 10, du côté du rotor 8, et portant une cathode 16. La cathode 16 de forme sphérique, dans l'exemple non limitatif décrit, est centrée sur l'axe longitudinal 10 ; elle est électriquement reliée par l'axe métallique 15 et l'arbre 7 à l'anode tournante 6, et se trouve en fonctionnement portée au même potentiel que cette dernière.
  • Une anode creuse 17, également de forme sphérique dans l'exemple non limitatif décrit, est maintenue en position fixe et centrée autour de la cathode 16, par un support métallique 18 solidaire d'un support isolant 19. L'anode creuse 17 comporte un trou 20 destiné au passage de l'axe métallique 15, permettant ainsi le mouvement de la cathode 16, laquelle est couplée en rotation à l'anode tournante 6 ; la rotation de la cathode 16 s'effectuant à l'intérieur de l'anode creuse 17, et, comme celle de l'anode tournante 6, autour de l'axe longitudinal 10 selon la flèche 29.
  • Autour de l'anode creuse 17 est disposé un filament chauffant 21, supporté d'une manière classique par des moyens non représentés et relié à deux traversées 22, 23 étanches, dont est muni le support isolant 19 ; ce dernier également étanche au vide, comporte une troisième traversée 24, électriquement reliée au support métallique 18 de l'anode creuse 17.
  • Le filament chauffant 21, constitué dans l'exemple non limitatif décrit en tungstène, est destiné à élever la température de l'anode creuse 17. A cette fin, le filament 21 est chauffé par effet JOULE, et les deux traversées 22, 23 auxquelles il aboutit dans le tube 1 sont reliées à une source de tension classique, telle qu'un transformateur 30 par exemple.
  • La haute tension nécessaire au fonctionnement du tube 1 est fournie de manière connue par un générateur haute tension 31. Une sortie positive + HT de cette haute tension est reliée aux parties d'extrémités 3, ainsi qu'à la troisième traversée 24, pour être appliquée à l'anode creuse 17 ; une sortie négative - HT du générateur 31, est reliée d'une manière classique par une quatrième traversée 35 à la cathode principale 5, cette dernière comportant également de manière connue et non representée, des connexions de chauffage.
  • En fonctionnement, le filament chauffant 21 chauffe l'anode creuse 17, laquelle constitue une enceinte pratiquement close dans laquelle la cathode 16 est chauffée à son tour comme dans un four, par le rayonnement thermique de l'anode creuse 17. Pour limiter les pertes thermiques, le dispositif 40 peut comporter ainsi que dans l'exemple non limitatif décrit, un reflecteur thermique 32 partiellement représenté, enveloppant le filament chauffant 21.
  • La cathode 16 électriquement reliée à l'anode tournante 6, génère alors des électrons qui sont captés par l'anode creuse 17, laquelle est reliée au pôle positif + HT de la haute tension ; l'intensité du courant électronique ainsi généré est la même que celle du faisceau d'électrons émis par la cathode principale 5, vers l'anode tournante 6. Le courant anodique du tube 1 est ainsi écoulé avec une faible différence de tension entre la polarité positive + HT de la haute tension, et la valeur + HT' établie au niveau de l'anode tournante 6. Cette disposition permet au trajet anode creuse-cathode 17, 16 de présenter une faible impédance qui permettrait sous une faible tension, le passage d'un courant électronique d'une intensité très supérieure à celle nécessaire en utilisation courante ; ceci permettant de ne perturber en aucun cas le fonctionnement du tube 1. Il est à remarquer de plus, que la puissance dissipée sous forme de chaleur au niveau de l'anode creuse 17, par l'impact des électrons qui constituent le courant anodique, contribue à favoriser l'émission électronique de la cathode 16.
  • Ainsi l'énergie thermique fournie par le filament chauffant 21, est transférée par l'intermédiaire de l'anode creuse 17 à la cathode 16 pour constituer l'énergie nécessaire à l'extraction des électrons. Ce transfert d'énergie peut être rendu plus efficace par des aménagements appropriés de la cathode et de l'anode creuse 16, 17, et par l'utilisation d'une seconde source de tension, ainsi qu'il est expliqué en référence à la figure 2 ; pour une meilleure clarté de cette figure 2, la représentation du tube radiogène selon l'invention est limitée afin de mieux montrer ie dispositif 40.
  • Dans le but de diminuer l'énergie nécessaire à l'extraction des électrons, la cathode 16 peut être creuse ainsi que dans l'exemple montré par la figure 2, où elle a la forme d'une sphère ; cette forme pouvant être différente ainsi qu'il est expliqué dans la suite de la description. La cathode 16 compte une paroi 26, ayant une épaisseur e faible, et constituée de préférence par un matériau réfractaire tel que du tantale ou du tungstène thorié ; cette paroi 26 pouvant également être recouverte sur sa surface extérieure 33, pour augmenter le pouvoir émissif en électrons, de borure de lanthane par exemple (non représenté).
  • Dans l'exemple non limitatif décrit, l'anode creuse 17 est formée par deux demi-sphères 27, 28 assemblées constituées en graphite, en graphite pyrolitique par exemple, ou encore par un matériau réfractaire tel que le tungstène ou le molybdène.
  • Afin d'augmenter encore l'efficacité du chauffage de l'anode creuse 17, et par là celui de la cathode 16, le tube radiogène selon l'invention comporte une source d'alimentation constituée par un générateur basse tension continue 45.
  • Une sortie positive V+ de ce générateur basse tension 45 est reliée à l'anode creuse 17 et également au pôie positif de la haute tension + HT; une sortie négative -V étant elle reliée à l'une des extrémités du filament chauffant 21, à la traversée 23 par exemple. La tension continue délivrée par ce générateur basse tension 45 détermine, entre le filament chauffant 21 et l'anode creuse 17, une différence de potentiel. Par cette différence de potentiel, l'anode creuse 17, étant positive par rapport au filament chauffant 21, est soumise au bombardement d'électrons émis par ce filament ; ce bombardement électronique de l'anode creuse 17 provoque à cette dernière une température élevée qui détermine son rayonnement thermique en direction de la cathode 16.
  • Ce dernier mode de chauffage de l'anode creuse 17 peut être utilisé soit seul, soit conjugué avec celui précédemment décrit, l'écran thermique 32, non représenté sur la figure 2 pouvant être conservé dans cette variante.
  • Pour cette variante et dans le cas précédemment mentionné où l'anode creuse 17 est en graphite, sa surface extérieure 34 est préférentiellement recouverte d'un dépôt métallique très réflecteur (du type dit poli-miroir par exemple).; quand l'anode creuse 17 est en matériau réfractaire, sa surface extérieure 34 peut être également réflectrice (poli-miroir), sa surface intérieure 36 étant recouverte d'un matériau (non représenté) à haut pouvoir de rayonnement thermique.
  • Cette description constitue un exemple non limitatif d'un tube radiogène selon l'invention, capable d'écouler le courant anodique du tube 1, sans contacts entre les parties fixes et les parties tournantes de ce tube. Ceci est obtenu grâce à un agencement nouveau de ce tube radiogène, dans lequel un dispositif 40 comporte notamment une cathode 16 émettrice d'électrons, laquelle reçoit l'énergie d'extraction des électrons grâce au rayonnement d'une anode creuse 17 destinée à capter ces électrons. La forme de cette cathode 16 et de cette anode creuse peut être différente de celle montrée par les figures 1, 2, l'essentiel étant que la cathode 16, solidaire de l'anode tournante 6, soit située dans une enceinte, chauffée, constituant une anode creuse 17. Néanmoins, les formes de l'anode creuse 17 et de la cathode 16 sont de préférence adaptées pour que leurs surfaces 36, 33, en vis-à-vis, soient à une distance D aussi constante que possible.
  • Ainsi, par exemple l'anode creuse 17 et la cathode 16 peuvent également comporter une forme conique, ou cylindrique comme montré par la figure 3.
  • Cet agencement de l'anode creuse 17 et de la cathode 16 permet également d'utiliser des moyens de chauffage différents de ceux constitués par le filament chauffant 21 et de générateur basse tension 45 ; le chauffage de la cathode 16 étant obtenu par le rayonnement thermique de l'anode creuse 17. Il est aussi à remarquer que la combinaison de moyens du dispositif 40, peut également être située à l'une ou l'autre des extrémités 3 de l'enveloppe 2-3 ou simultanément à ces deux extrémités.
  • Il est enfin à remarquer que le dispositif 40 peut également s'adapter à des positions différentes comme montré dans l'exemple non limitatif de la figure 4, où ce dispositif déjà explicité est représenté par un rectangle en traits pointillés.
  • La figure 4 montre un tube radiogène 1 selon l'invention dont les paliers magnétiques 11-13, 12-14 sont situés d'un même côté de l'anode tournante 6.
  • Dans cette version du tube 1, son enveloppe est constituée d'une partie d'extrémité 3 métallique, et d'une partie isolante 2, du côté de laquelle sont contenues l'anode tournante 6 et la cathode principale 5. La partie d'extrémité 3 métallique étant portée au potentiel de la terre, ainsi que les paliers magnétiques 11-13,12-14 et le rotor 8, par des moyens classiques et non représentés ; les roulements de garde 25 étant disposés autour d'un arbre fixe 39, disposé dans le rotor 8 selon l'axe longitudinal 10.
  • Le rotor 8 entraîne en rotation l'anode tournante 6 autour de l'axe longitudinal 10, par l'intermédiaire d'un arbre isolant 38, ce dernier étant constitué en un matériau réfractaire et hautement isolant électrique, comme par exemple de l'alumine, ou de la céramique ainsi que dans l'exemple décrit.
  • Dans cette version du tube 1 selon l'invention, le dispositif 40, servant à écouler le courant anodique est à proximité immédiate de l'anode tournante 6, à laquelle il est mécaniquement et électriquement relié grâce à l'axe métallique 15 ; la cathode 16, non représentée sur la figure 4, étant couplée en rotation à l'anode tournante 6 ainsi qu'il a été précédemment expliqué.
  • Les liaisons électriques internes (non représentées), nécessaires au dispositif 40 sont acheminées, pour sortir du tube 1, par un fourreau 37 constitué d'un matériau réfractaire à très faible coefficient de dilatation, comme par exemple de l'alumine ou de la céramique ; ces liaisons internes aboutissant aux traversées 22, 23, 24 de l'embase 19.
  • Le fonctionnement du dispositif 40 reste, dans cette disposition, le même que précédemment expliqué ainsi que ses connexions électriques extérieures non représentées sur la figure 4 ; une exception toutefois étant que dans cette dernière version, la partie d'extrémité 3 est au potentiel de la terre, et n'est donc plus reliée au + HT.
  • Un tube radiogène 1 conforme à l'invention est applicable à tous les domaines de la radiologie, auxquels il apporte une solution simple, fiable et économique, grâce au dispositif 40 servant à écouler sans contact le courant anodique.

Claims (9)

1. Tube radiogène, comportant une anode tournante (6) montée sur paliers magnétiques et au moins un dispositif (40) destiné à écouler le courant anodique du tube (1), caractérisé en ce que ce dispositif (40) comporte en position fixe une anode creuse (17), à l'intérieur de laquelle une cathode (16) est couplée en rotation à l'anode tournante (6), l'anode creuse (17) étant associée à des moyens de chauffage (21, 45, 32) extérieurs à l'anode (17), l'anode creuse (17) étant reliée au pôle positif (+ HT) de la haute tension et la cathode (16) étant électriquement reliée à l'anode tournante (6), de manière à assurer le passage du courant anodique.
2. Tube radiogène selon la revendication 1, caractérisé en ce que les moyens de chauffage ' (21, 45, 32) comportent un filament chauffant (21) disposé autour de l'anode creuse (17) pour le chauffage de cette dernière.
3. Tube radiogène selon la revendication 2, caractérisé en ce que le filament chauffant (21) est entouré par un réflecteur thermique (32).
4. Tube radiogène selon la revendication 2, caractérisé en ce que les moyens de chauffage (21, 45, 32) comportent en outre un genérateur basse tension (45) coopérant avec le filament chauffant (21) et l'anode creuse (17), pour réaliser entre ces deux derniers une différence de potentiel permettant un bombardement électronique de l'anode creuse (17).
5. Tube radiogène selon l'une des revendications précédentes, caractérisé en ce que l'anode creuse (17) constitue une enceinte pratiquement close faisant office de four pour le chauffage de la cathode (16).
6. Tube radiogène selon l'une des revendications précédentes, caractérisé en ce que la cathode (16) est creuse.
7. Tube radiogène selon l'une des revendications précédentes, caractérisé en ce que l'anode creuse (17) et la cathode (16) ont des formes conformées pour que leurs surfaces, respectivement intérieure et extérieure (36, 33) soient à une distance (D) constante.
8. Tube radiogène selon l'une des revendications précédentes, caractérisé en ce que l'anode creuse (17) et la cathode (16) ont la forme d'une sphère.
9. Tube radiogène selon l'une des revendications précédentes, caractérisé en ce que l'anode creuse (17) et la cathode (16) ont une forme cylindrique.
EP84400848A 1983-05-06 1984-04-26 Tube radiogène à anode tournante Expired EP0126668B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8307610A FR2545649B1 (fr) 1983-05-06 1983-05-06 Tube radiogene a anode tournante
FR8307610 1983-05-06

Publications (2)

Publication Number Publication Date
EP0126668A1 EP0126668A1 (fr) 1984-11-28
EP0126668B1 true EP0126668B1 (fr) 1987-08-19

Family

ID=9288667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84400848A Expired EP0126668B1 (fr) 1983-05-06 1984-04-26 Tube radiogène à anode tournante

Country Status (4)

Country Link
US (1) US4651336A (fr)
EP (1) EP0126668B1 (fr)
DE (1) DE3465550D1 (fr)
FR (1) FR2545649B1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539193B2 (ja) * 1984-12-20 1996-10-02 バリアン・アソシエイツ・インコーポレイテッド 高強度x線源
JPS6276246A (ja) * 1985-09-30 1987-04-08 Toshiba Corp 回転陽極形x線管
DE3540303A1 (de) * 1985-11-13 1987-05-14 Siemens Ag Drehanoden-roentgenroehre
FR2599555A1 (fr) * 1986-06-03 1987-12-04 Thomson Cgr Tube radiogene tournant
GB2346007B (en) 1999-01-21 2004-03-03 Imaging & Sensing Tech Corp Getter flash shield
US8284899B2 (en) * 2007-11-21 2012-10-09 Varian Medical Systems, Inc. X-ray tube having a focal spot proximate the tube end
DE102008062671B4 (de) * 2008-12-17 2011-05-12 Siemens Aktiengesellschaft Röntgeneinrichtung
WO2013038287A1 (fr) * 2011-09-13 2013-03-21 Koninklijke Philips Electronics N.V. Rayons x dotés de multiples énergies de photon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2262757C3 (de) * 1972-12-21 1979-06-21 Siemens Ag, 1000 Berlin Und 8000 Muenchen RöntgenrShrendrehanodenlagerung
DE3043046A1 (de) * 1980-11-14 1982-07-15 Siemens AG, 1000 Berlin und 8000 München Drehanoden-roentgenroehre
DE3043670A1 (de) * 1980-11-19 1982-07-08 Siemens AG, 1000 Berlin und 8000 München Drehanoden-roentgenroehre

Also Published As

Publication number Publication date
EP0126668A1 (fr) 1984-11-28
US4651336A (en) 1987-03-17
FR2545649B1 (fr) 1985-12-13
DE3465550D1 (en) 1987-09-24
FR2545649A1 (fr) 1984-11-09

Similar Documents

Publication Publication Date Title
EP0360654B1 (fr) Système de suspension d'une anode tournante de tube à rayons X comportant des paliers magnétiques passifs
EP0126668B1 (fr) Tube radiogène à anode tournante
FR2508560A1 (fr) Groupe bulbe de forte puissance a refroidissement externe avec multiplicateur de vitesse
FR2494496A1 (fr) Tube a rayons x a anode tournante
EP0132180B1 (fr) Tube à rayons X à anode tournante muni d'un dispositif d'écoulement des charges
US6570960B1 (en) High voltage isolated rotor drive for rotating anode x-ray tube
FR2575329A1 (fr) Gaine equipee a convection forcee pour tube radiogene a anode tournante
FR2533103A1 (fr) Procede et dispositif pour le rechauffement uniforme d'un materiau dans un recipient sous vide
CH625082A5 (fr)
FR2641899A1 (fr) Canon a electrons muni d'un dispositif actif produisant un champ magnetique au voisinage de la cathode
FR2513809A1 (fr) Lampe a decharge a haute intensite
EP0325507A1 (fr) Tube à rayons x à anode tournante comportant un dispositif d'écoulement du courant anodique
EP0404621A1 (fr) Système de contrôle d'attitude de satellite utilisant une boucle magnétique supraconductrice
FR2517880A1 (fr) Tube a rayons x a anode rotative
EP0241362B1 (fr) Dispositif et notamment duoplasmatron utilisable pour ioniser un gaz et procédé d'utilisation de ce dispositif
FR2617332A1 (fr) Tube radiogene a faible rayonnement extra-focal
FR2599555A1 (fr) Tube radiogene tournant
CH651991A5 (fr) Dispositif avec tube a rayons x, dont la cathode est a polarisation multiple et source radiogene.
FR2675628A1 (fr) Ensemble anodique a forte dissipation thermique pour tube a rayons x et tube ainsi obtenu.
BE424982A (fr)
FR2687842A1 (fr) Perfectionnements aux sources de rayons x.
EP0471627A1 (fr) Cathode mobile oscillante pour tube à rayons X
FR2683943A1 (fr) Ensemble radiogene a anode tournante.
FR2833749A1 (fr) Refroidissement d'un tube electronique
FR2553575A1 (fr) Lampe a vapeurs de sodium a haute pression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE GB LI NL

17P Request for examination filed

Effective date: 19850121

17Q First examination report despatched

Effective date: 19860421

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB LI NL

REF Corresponds to:

Ref document number: 3465550

Country of ref document: DE

Date of ref document: 19870924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880430

Ref country code: CH

Effective date: 19880430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920326

Year of fee payment: 9

Ref country code: DE

Payment date: 19920326

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920430

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101