EP0122820B1 - Régulateur d'alternateur de charge de batterie - Google Patents

Régulateur d'alternateur de charge de batterie Download PDF

Info

Publication number
EP0122820B1
EP0122820B1 EP19840400421 EP84400421A EP0122820B1 EP 0122820 B1 EP0122820 B1 EP 0122820B1 EP 19840400421 EP19840400421 EP 19840400421 EP 84400421 A EP84400421 A EP 84400421A EP 0122820 B1 EP0122820 B1 EP 0122820B1
Authority
EP
European Patent Office
Prior art keywords
voltage
transistor
regulator
supply
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840400421
Other languages
German (de)
English (en)
Other versions
EP0122820A1 (fr
Inventor
Jean-Michel Moreau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0122820A1 publication Critical patent/EP0122820A1/fr
Application granted granted Critical
Publication of EP0122820B1 publication Critical patent/EP0122820B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices

Definitions

  • the present invention relates generally to alternator voltage regulation circuits and applies more particularly in the automotive field to the stabilization of battery voltage. It is in this more particular application that the present invention will be essentially described, although provision may be made for its use in other regulation systems.
  • FIG. 1 very schematically represents a regulator for stabilizing the voltage of an automobile battery.
  • This battery 1 which is used to power all of the electrical or electronic circuits of an automobile, generally constitutes the only available power source. It is important that this voltage is relatively stable, for example autor with a value of between 13 and 14.5 volts under load. We will choose for example that this voltage is 14.4 V to 0.1 V.
  • This battery 1 is charged by an alternator 2 provided with an excitation winding 3. The winding is supplied by the battery voltage and is arranged in series with a switch such as a power transistor or a Darlington circuit 4.
  • This Darlington circuit is ordered to be conductive as soon as the voltage across the battery drops below 14.3 volts, then it is switched off as soon as this voltage reaches a value of 14.5 volts.
  • a diode 5, called a freewheeling diode ensures the continuity of the passage of current in the excitation winding 3.
  • the base of transistor 4 is connected to the positive terminal of the supply voltage by means of an impedance. 6 and to the negative terminal via a transistor 7.
  • the power transistor or Darlington 4 is conductive when the transistor 7 is blocked and blocked when the transistor 7 is conductive.
  • the actual control circuit which may or may not supply the transistor 7 as a function of the voltage across the battery, is shown diagrammatically inside the dotted frame 10.
  • This circuit includes a comparator 11, the output S of which is connected at the base of transistor 7.
  • the comparator is supplied from the battery voltage by a supply terminal F, and receives a first input voltage V M which is compared to a second input voltage V R coming from d a reference voltage source 12.
  • the voltage V M corresponds to the voltage at the terminals of the battery reduced in a determined manner by a potentiometer comprising resistors 13 and 14 and will be called “measured voltage”.
  • a reference voltage source 12 there is shown in this figure 1 a reference voltage source 12.
  • an independent reference voltage source independent of the battery voltage, but one obtains by various means, for example by using Zener diodes, a reference voltage from the battery voltage. If, at a given instant, the voltage at terminals A and B of the regulating circuit 10 becomes too low and less than the reference voltage V R , it can be considered that this reference voltage V R drops to zero. On the other hand, if the voltage at terminals A and B drops rapidly, the measured voltage V M does not drop as suddenly given the storage effect provided by the capacitor 15. Furthermore, a comparator can generally operate even for voltages d very low power supply on its terminal F.
  • the apparent supply voltage at terminals A and B of the regulating circuit 10 drops and can in certain cases drop to an almost zero value and we then find our in the particular case described above where V R is zero then that V M is not due to the influence of the capacitor 15. It follows that the transistor 7 is made conductive and that the Darlington 4 is blocked whereas on the contrary one should maintain the conduction in the winding 3 This causes an oscillation of voltage and current at high frequency; the regulator malfunctions and the Darlington or other transistors in the circuit can be destroyed.
  • FIG. 2 represents a practical and conventional embodiment of the regulator 10 of FIG. 1 and will be described in more detail to clearly show that the phenomenon described above occurs in practice.
  • the potentiometer 13-14 and the capacitor 15 of FIG. 1 as well as the terminals A, B, V M , V R , F and S of the comparator 11.
  • This comparator comprises two PNP transistors T1 and T2.
  • the base of the transistor T1 receives the voltage V M and its collector is connected to the power supply terminal negative tation via a diode 20.
  • the base of transistor T2 receives the reference voltage V R and its collector, which serves as output terminal S, is connected to the negative supply terminal B via an NPN transistor T3, the base of which is connected to the collector of transistor T 1.
  • the reference voltage is supplied by a Zener diode 21 supplied by a PNP transistor 22.
  • the emitters of transistors T1 and T2, connected to terminal F, are connected to the positive supply terminal A via a PNP transistor 23 whose emitter is connected to that of transistor 22 and whose base is common with that of transistor 22. These bases are supplied by the point common of a diode 24 and a resistor 25 arranged between the positive and negative supply terminals A and B.
  • this regulator is as follows. If the voltage V M is lower than the reference voltage V R , the transistor T1 is conductive while the transistor T2 is blocked and the transistor T3 is also conductive. The output signal S is therefore at low level, which ensures the blocking of the transistor 7 and the conduction of the Darlington 4 and therefore the excitation of the alternator 2. Conversely, if V M becomes greater than V R , T1 and T3 are blocked while T2 is conductive and a high level signal appears at terminal S, which makes transistor 7 conductive and blocks Darlington 4.
  • the present invention aims to avoid this drawback and to maintain correct operation of the regulator in all configurations and in particular when the supply voltage of the regulator drops rapidly.
  • the invention provides a battery voltage regulator comprising a circuit for supplying an excitation voltage to an alternator as soon as the battery voltage drops below a predetermined voltage, this regulator comprising a comparator supplied by the battery voltage and one of the inputs of which receives a measurement voltage which is a fraction of the battery voltage and which is stabilized by a capacitor and the other input of which receives a reference voltage obtained from the battery voltage by means of a reference element providing a constant voltage, characterized by switching means which interrupts the supply of the comparator supply voltage as soon as the battery voltage drops below a voltage equal to that of the 'Reference element so that the comparator output signal is canceled resulting in the supply of an excitation voltage to the alternator.
  • FIGS. 1 and 2 which represent regulators of the prior art have been described previously
  • FIG. 3 represents a regulator according to the present invention.
  • the regulator of FIG. 3 is connected between positive and negative supply terminals A and B. It includes resistors 13 and 14 connected as a potentiometer and supplying the voltage V M , a capacitor 1 being in parallel on the resistor 14.
  • the comparator proper which receives the reference voltage V R and a supply voltage on its terminal F to supply an output signal S comprises the same transistors T1, T2, T3 and the same diode 20 connected in the same way as in the conventional circuit.
  • the main difference between the conventional circuit and the present invention lies in the way in which the supply potential of the comparator and the reference voltage are applied.
  • the emitters of the transistors T 1 and T2 that is to say the terminal F, are connected to the positive supply terminal A by means of two PNP transistors 30 and 31 in series.
  • a Zener diode 21 in series with a PNP transistor 22 is disposed between the terminals A and B.
  • the junction point between the Zener diode 21 and the transistor 22 is connected to the bases of the transistors 30 and 32.
  • the base of the transistor 22 is connected to the base of the transistor 31 and to the junction point of a diode 35 and a resistor 36.
  • the transistor 32 being an NPN transistor whose emitter is connected to the resistor 33, the voltage across the potentiometer 33-34 is equal to the voltage Vz of the Zener diode minus the base / emitter voltage V BE of the transistor 32.
  • the voltage at the terminals of this potentiometer is substantially equal to the voltage V z reduced by a base / emitter voltage V BE which is substantially constant and equal to a value of the order of 0.6 to 0, volts.
  • the Zener diode is suitably supplied as long as the voltage between the positive and negative supply terminals A and B is greater than or equal to V z plus the collector / emitter saturation voltage V cEsat of the PNP transistor 22.
  • Vcc is called supply between the positive and negative terminals, or can write that the voltage V z is normally supplied, that is to say that the reference voltage V R is normally present, as long as Vcc is greater than or equal to V z + VcEsat.
  • Vc E sat of an integrated PNP transistor is of the order of a few tens of millivolts. But it will be noted that, when the voltage reaches this value, the base and emitter terminals of transistor 30 are substantially at the same potential, the emitter terminal of this transistor also seeing the voltage Vcc reduced by the voltage Vc Esat of the transistor 31; Consequently, the transistor 30 is then blocked, that is to say that the comparator 11 is no longer supplied. More precisely, this transistor 30 ceases to be supplied as soon as:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Eletrric Generators (AREA)

Description

  • La présente invention concerne de façon générale des circuits de régulation de tension d'alternateur et s'applique plus particulièrement dans le domaine de l'automobile à la stabilisation de tension de batterie. C'est dans cette application plus particulière que la présente invention sera essentiellement décrite bien qu'on puisse prévoir son utilisation dans d'autres systèmes de régulation.
  • Pour permettre de définir le problème que vise à résoudre l'invention, on va d'abord décrire de façon relativement détaillée un régulateur d'alternateur de charge de batterie d'automobile classique en relation avec les figures 1 et 2. On pourra se reporter par ailleurs à un autre exemple d'art antérieur, constitué par le régulateur décrit dans le brevet français 2 008 278.
  • La figure 1 représente de façon très schématique un régulateur pour stabiliser la tension d'une batterie d'automobile. Cette batterie 1, qui sert à alimenter l'ensemble des circuits électriques ou électroniques d'une automobile, constitue généralement la seule source d'alimentation disponible. Il importe que cette tension soit relativement stable, par exemple autor d'une valeur comprise entre 13, et 14,5 volts en charge. On choisira par exemple que cette tension soit de 14,4 V à 0,1 V près. Cette batterie 1 est chargée par un alternateur 2 muni d'un enroulement d'excitation 3. L'enroulement est alimenté par la tension de batterie et est disposé en série avec un interrupteur tel qu'un transistor de puissance ou un montage Darlington 4. Ce montage Darlington est commandé pour être conducteur dès que la tension aux bornes de la batterie chute en-dessous de 14,3 volts, puis il est coupé dès que cette tension atteint une valeur de 14,5 volts. Une diode 5, dite diode roue libre, assure la continuité du passage du courant dans l'enroulement d'excitation 3. La base du transistor 4 est connectée à la borne positive de la tension d'alimentation par l'intermédiaire d'une impédance 6 et à la borne négative par l'intermédiaire d'un transistor 7. Ainsi, le transistor de puissance ou Darlington 4 est conducteur quand le transistor 7 est bloqué et bloqué quand le transistor 7 est conducteur.
  • Le circuit de régulation proprement dit, qui alimente ou non le transistor 7 en fonction de la tension aux bornes de la batterie, est représenté schématiquement à l'intérieur du cadre en pointillés 10. Ce circuit comprend un comparateur 11 dont la sortie S est reliée à la base du transistor 7. Le comparateur est alimenté à partir de la tension de batterie par une borne d'alimentation F, et reçoit une première tension d'entrée VM qui est comparée à une seconde tension d'entrée VR provenant d'une source de tension de référence 12. La tension VM correspond à la tension aux bornes de la batterie réduite de façon déterminée par un potentiomètre comprenant des résistances 13 et 14 et sera appelée «tension mesurée». Pour éviter l'influence de tensions parasites, il est nécessaire de prévoir aux bornes de la résistance 14 un condensateur 15 éliminant les surtensions brèves.
  • On a représenté dans cette figure 1 une source de tension de référence 12. En fait, il n'existe pas à proprement parler de source de tension de référence autonome indépendante de la tension de batterie, mais on obtient par des moyens divers, par exemple par utilisation de diodes Zener, une tension de référence à partir de la tension de batterie. Si, à un instant donné, la tension aux bornes A et B du circuit de régulation 10 devient trop faible et inférieure à la tension de référence VR, on peut considérer que cette tension de référence VR chute à zéro. Par contre, si la tension aux bornes A et B chute rapidement, la tension mesurée VM ne chute pas aussi brutalement étant donné l'effet de mémorisation apporté par le condensateur 15. Par ailleurs, un comparateur peut généralement fonctionner même pour des tensions d'alimentation très faibles sur sa borne F. Ainsi, si pour une raison ou une autre, la tension aux bornes A et B chute à une valeur inférieure à la tension de référence, il faudrait obtenir à la sortie S du comparateur une indication représentative de ce fait, mais c'est exactement le contraire qui se produit puisque la valeur VR a chuté à zéro alors que VM est resté à un niveau relativement élevé en raison de la mémorisation par le condensateur 15. On obtient donc dans ce cas particulier une sortie S à un niveau inverse de celui qui est souhaité.
  • Ce défaut de fonctionnement se produit en fait lors de chaque commutation du Darlington 4. En effet, quand ce transistor est conducteur, l'enroulement d'excitation 3 est aux bornes de la batterie et le courant d'excitation croît. Quand ce courant atteint une valeur limite supérieure, déterminée par le circuit de régulation, le Darlington 4 est coupé, le courant dans l'enroulement d'excitation passe dans la diode roue libre et décroit. Puis, quand le Darlington 4 redevient conducteur, l'enroulement d'excitation est à nouveau mis aux bornes de la batterie et il circule un courant important dans les fils de câblage. Ces fils de câblage comprennent une inductance inhérente non localisée et arbitrairement et symboliquement représentée en figure 1 par des enroulements 8. Le brusque appel de courant provoque dans ces inductances parasites de câblage une chute de la tension d'une durée de quelques microsecondes. En conséquence, la tension d'alimentation apparente aux bornes A et B du circuit de régulation 10 chute et peut dans certains cas descendre à une valeur presque nulle et l'on se trouve alors dans le cas particulier exposé précédemment où VR est nul alors que VM ne l'est pas en raison de l'influence du condensateur 15. Il en résulte que le transistor 7 est rendu conducteur et que le Darlington 4 se bloque alors qu'au contraire on devrait maintenir la conduction dans l'enroulement 3. Ceci provoque une oscillation de tension et de courant à fréquence élevée; le régulateur fonctionne mal et le Darlington ou d'autres transistors du circuit peuvent être détruits.
  • La figure 2 représente un exemple de réalisation pratique et classique du régulateur 10 de la figure 1 et va être décrite plus en détail pour bien montrer que le phénomène exposé précédemment se produit en pratique. On retrouve en figure 2 le potentiomètre 13-14 et le condensateur 15 5 de la figure 1 ainsi que les bornes A, B, VM, VR, F et S du comparateur 11. Ce comparateur comprend deux transistors PNP T1 et T2. La base du transistor T1 reçoit la tension VM et son collecteur est connecté à la borne d'alimentation négative par l'intermédiaire d'une diode 20. La base du transistor T2 reçoit la tension de référence VR et son collecteur, qui sert de borne de sortie S, est relié à la borne d'alimentation négative B par l'intermédiaire d'un transistor NPN T3 dont la base est connectée au collecteur du transistor T 1. La tension de référence est fournie par une diode Zener 21 alimentée par un transistor PNP 22. Les émetteurs des transistors T1 et T2, reliés à la borne F, sont connectés à la borne d'alimentation positive A par l'intermédiaire d'un transistor PNP 23 dont l'émetteur est relié à celui du transistor 22 et dont la base est commune avec celle du transistor 22. Ces bases sont alimentées par le point commun d'une diode 24 et d'une résistance 25 disposées entre les bornes d'alimentation positive et négative A et B.
  • Le fonctionnement de ce régulateur est le suivant. Si la tension VM est inférieure à la tension de référence VR, le transistor T1 est conducteur alors que le transistor T2 est bloqué et le transistor T3 est également conducteur. Le signal S de sortie est donc à bas niveau, ce qui assure le blocage du transistor 7 et la mise en conduction du Darlington 4 et donc l'excitation de l'alternateur 2. Inversement, si VM devient supérieur à VR, T1 et T3 sont bloqués alors que T2 est conducteur et un signal à haut niveau apparaît à la borne S, ce qui rend conducteur le transistor 7 et bloque le Darlington 4.
  • Dans le cas considéré précédemment où la tension aux bornes A et B du circuit de régulation 10 chute momentanément à une valeur très faible, inférieure à la tension de la diode Zener 21, plus aucun courant ne circule dans cette diode Zener et la tension VM maintenue par le condensateur 15 apparaît supérieure à la tension VR; la borne S est alors à haut niveau, et le Darlington 4 se bloque.
  • La présente invention vise à éviter cet inconvénient et à maintenir un fonctionnement correct du régulateur dans toutes les configurations et notamment quand la tension d'alimentation du régulateur chute rapidement.
  • Pour atteindre cet objet l'invention prévoit un régulateur de tension de batterie comprenant un circuit pour fournir une tension d'excitation à un alternateur dès que la tension de batterie chute en dessous d'une tension prédéterminée, ce régulateur comprenant un comparateur alimenté par la tension de batterie et dont l'une des entrées reçoit une tension de mesure qui est une fraction de la tension de batterie et qui est stabilisée par une capacité et dont l'autre entrée reçoit une tension de référence obtenue à partir de la tension de batterie par l'intermédiaire d'un élément de référence fournissant une tension constante, caractérisé par un moyen de commutation qui interrompt la fourniture de la tension d'alimentation du comparateur dès que la tension de batterie chute en dessous d'une tension égalant celle de l'élément de référence de telle sorte que le signal de sortie du comparateur s'annule entraînant la fourniture d'une tension d'excitation à l'alternateur.
  • Ces caractéristiques et avantages de la présente invention seront exposés plus en détail dans la description suivante d'un mode de réalisation particulier faite en relation avec les figures jointes parmi lesquelles:
  • les figures 1 et 2 qui représentent des régulateurs de l'art antérieur ont été décrites précédemment,
  • la figure 3 représente un régulateur selon la présente invention.
  • Comme le dispositif de l'art antérieur, le régulateur de la figure 3 est connecté entre des bornes d'alimentation positive et négative A et B. Il comprend des résistances 13 et 14 connectées en potentiomètre et fournissant la tension VM, un condensateur 1 étant en parallèle sur la résistance 14. Le comparateur proprement dit qui reçoit la tension de référence VR et une tension d'alimentation sur sa borne F pour fournir un signal de sortie S comprend les mêmes transistors T1, T2, T3 et la même diode 20 connectée de la même manière que dans le circuit classique.
  • La différence principale entre le circuit classique et la présente invention réside dans la façon dont sont appliqués le potentiel d'alimentation du comparateur et la tension de référence. Les émetteurs des transistors T 1 et T2, c'est-à-dire la borne F, sont connectés à la borne d'alimentation positive A par l'intermédiaire de deux transistors PNP 30 et 31 en série. Entre les bornes d'alimentation positve et négative A et B, est également disposée la connexion en série d'un transistor NPN 32 et d'un potentiomètre comprenant des résistances 33 et 34, la tension de référence VR étant prise entre ces résistances 33 et 34. Une diode Zener 21 en série avec un transistor PNP 22 est disposée entre les bornes A et B. Le point de jonction entre la diode Zener 21 et le transistor 22 est relié aux bases des transistors 30 et 32. La base du transistor 22 est reliée à la base du transistor 31 et au point de jonction d'une diode 35 et d'une résistance 36.
  • Le transistor 32 étant un transistor NPN dont l'émetteur est relié à la résistance 33, la tension aux bornes du potentiomètre 33-34 est égale à la tension Vz de la diode Zener moins la tension base/émetteur VBE du transistor 32. Ainsi, la tension aux bornes de ce potentiomètre est sensiblement égale à la tension Vz réduite d'une tension base/émetteur VBE qui est sensiblement constante et égale à une valeur de l'ordre de 0, 6 à 0, volt. La diode Zener est convenablement alimentée tant que la tension entre les bornes d'alimentation positive et négative A et B est supérieure ou égale à Vz plus la tension de saturation collecteur/émetteur VcEsat du transistor PNP 22. Si on appelle Vcc la tension d'alimentation entre les bornes positive et négative, ou pourra écrire que la tension Vz est normalement fournie, c'est-à-dire que la tension de référence VR est normalement présente, tant que Vcc est supérieur ou égal à Vz + VcEsat. Classiquement, la valeur VcEsat d'un transistor PNP intégré est de l'ordre de quelques dizaines de millivolts. Mais on notera que, quand la tension atteint cette valeur, les bornes de base et d'émetteur du transistor 30 sont sensiblement au même potentiel, la borne d'émetteur de ce transistor voyant également la tension Vcc réduite de la tension VcEsat du transistor 31; en conséquence, le transistor 30 est alors bloqué, c'est-à-dire que le comparateur 11 n'est plus alimenté. Plus précisement, ce transistor 30 cesse d'être alimenté dès que:
    Figure imgb0001
  • c'est-à-dire essentiellement dès que la tension d'alimentation Vcc chute à une valeur égale à Vz augmentée d'une valeur correspondant à la chute de tension base/émetteur du transistor 30, soit une valeur d'environ 600 à 700 millivolts. A ce moment, le comparateur 11 n'est plus alimenté et il n'est plus possible d'extraire un courant de la borne de sortie S, ce qui signifie dans le cas du montage de la figure 1 que le transistor 7 ne peut plus être rendu conducteur et donc le montage Darlington 4 est maintenu à l'état conducteur.
  • En d'autres termes, avec un choix convenable d'une structure d'adaptation reliée à la borne de sortie S, on peut fixer un signal de commande prédéterminé dans le cas où la tension d'alimentation Vcc descend à une valeur peu supérieure à la tension fixée par un moyen de fourniture de tension de référence. On évite ainsi les inconvénients des dispositifs de l'art antérieur précédemment décrits.

Claims (2)

1. Régulateur (10) de tension de batterie comprenant un circuit pour fournir une tension d'excitation à un alternateur (2, 3) dès que la tension de batterie chute en dessous d'une tension prédéterminée, ce régulateur comprenant un comparateur (11) alimenté par la tension de batterie et dont l'une des entrées reçoit une tension de mesure (VM qui est une fraction de la tension de batterie et qui est stabilisée par une capacité ( 15) et dont l'autre entrée reçoit une tension de référence (VR) obtenue à partir de la tension de batterie par l'intermédiaire d'un élément de référence (21) fournissant une tension constante (Vz), caractérisé par un moyen de commutation (30) qui interrompt la fourniture de la tension d'alimentation du comparateur dès que la tension de batterie chute en dessous d'une tension égalant celle (Vz) de lélément de référence (21 ) de telle sorte que le signal de sortie (S) du comparateur ( 11 ) s'annule entraînant la fourniture d'une tension d'excitation à l'alternateur (2, 3).
2. Régulateur selon la revendication 1, caractérisé en ce que la tension d'alimentation du comparateur est fournie par l'intermédiaire d'une chaîne de transistors (30-31), le transistor le plus proche de la borne d'alimentation étant commandé par la tension aux bornes de l'élément de référence, elle-même obtenue à partir de la tension de batterie avec interposition d'un nombre de transistors moindre.
EP19840400421 1983-03-11 1984-03-02 Régulateur d'alternateur de charge de batterie Expired EP0122820B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8304047 1983-03-11
FR8304047A FR2542524B1 (fr) 1983-03-11 1983-03-11 Procede de regulation et regulateur d'alternateur de charge de batterie

Publications (2)

Publication Number Publication Date
EP0122820A1 EP0122820A1 (fr) 1984-10-24
EP0122820B1 true EP0122820B1 (fr) 1987-05-13

Family

ID=9286771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840400421 Expired EP0122820B1 (fr) 1983-03-11 1984-03-02 Régulateur d'alternateur de charge de batterie

Country Status (3)

Country Link
EP (1) EP0122820B1 (fr)
DE (1) DE3463713D1 (fr)
FR (1) FR2542524B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584515A (en) * 1984-12-31 1986-04-22 Motorola, Inc. Re-regulation circuit for automobile tachometer detection circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1360322A (fr) * 1963-03-28 1964-05-08 Auxilec Régulateur de tension pour alternateur
US3496443A (en) * 1967-02-23 1970-02-17 Leece Neville Co Control circuit for electrical generating system
DE1763350B2 (de) * 1968-05-10 1976-02-19 Robert Bosch Gmbh, 7000 Stuttgart Spannungsregler
JPS5622543A (en) * 1979-08-01 1981-03-03 Nippon Denso Co Generation control device for vehicle

Also Published As

Publication number Publication date
FR2542524A1 (fr) 1984-09-14
DE3463713D1 (en) 1987-06-19
FR2542524B1 (fr) 1985-06-21
EP0122820A1 (fr) 1984-10-24

Similar Documents

Publication Publication Date Title
EP0110775B1 (fr) Régulateur à faible tension de déchet
EP0691725B1 (fr) Dispositif régulateur pour batterie d'accumulateurs électriques
EP1093044B1 (fr) Régulateur linéaire à faible chute de tension série
EP1148405A1 (fr) Régulateur linéaire à faible surtension en régime transitoire
FR2494056A1 (fr) Generateur d'energie electrique a alternateur pour vehicules automobiles avec protection contre les phenomenes transitoires dus a la deconnexion de la batterie
FR2548403A1 (fr) Stabilisateur de tension integre monolithique a domaine d'utilisation etendu, pour des applications de type automobile
FR2493636A1 (fr) Circuit comparateur mos
FR3102581A1 (fr) Régulateur de tension
EP0498727A1 (fr) Circuit générateur d'une tension de référence variable en fonction de la température, notamment pour régulateur de la tension de charge d'une batterie par un alternateur
FR2554989A1 (fr) Regulateur de tension serie
FR2572600A1 (fr) Stabilisateur electronique de tension, utilisable en particulier dans l'automobile, avec protection contre les surtensions transitoires de polarite opposee a celle du generateur
FR2573257A1 (fr) Circuit de protection contre les coupures d'alimentation electrique
EP0122820B1 (fr) Régulateur d'alternateur de charge de batterie
EP0798910A1 (fr) Protection contre les surtensions d'une interface de lignes téléphoniques
FR2509925A1 (fr) Dispositif de branchement de commande protege contre les court-circuits pour un appareil electrique utilisateur
EP0716508A1 (fr) Circuit de commande pour interrupteur électronique et interrupteur en faisant application
EP0307325A1 (fr) Circuit de commande d'allumage
FR2728407A1 (fr) Circuit de selection d'une tension d'alimentation d'un regulateur de tension
EP0216697B1 (fr) Dispositif de commande d'un circuit de sortie d'un circuit intégré
EP0056568B1 (fr) Oscillateur à seuil de sécurité
EP0457397B1 (fr) circuit pour réguler le courant de ligne dans un poste téléphonique
EP1032110A1 (fr) Alternateur équipé de moyens perfectionnés de protection contre le délestage de charge, et dispositif régulateur associé
EP0280616B1 (fr) Appareil d'alimentation en énergie électrique d'un câble et son application
EP0164770A1 (fr) Relais statique pour courant continu basse tension
EP0055672B1 (fr) Appareil détecteur de proximité, respectivement de présence, du type à deux bornes, comportant un circuit d'alimentation en courant alternatif redressé et de commande d'une charge à l'aide de thyristors de commutation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19841110

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3463713

Country of ref document: DE

Date of ref document: 19870619

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010228

Year of fee payment: 18

Ref country code: DE

Payment date: 20010228

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010313

Year of fee payment: 18

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020302

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST