EP0122534A1 - Process for operating a plant for cracking hydrocarbons - Google Patents

Process for operating a plant for cracking hydrocarbons Download PDF

Info

Publication number
EP0122534A1
EP0122534A1 EP84103658A EP84103658A EP0122534A1 EP 0122534 A1 EP0122534 A1 EP 0122534A1 EP 84103658 A EP84103658 A EP 84103658A EP 84103658 A EP84103658 A EP 84103658A EP 0122534 A1 EP0122534 A1 EP 0122534A1
Authority
EP
European Patent Office
Prior art keywords
gas
air
gas turbine
steam
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84103658A
Other languages
German (de)
French (fr)
Other versions
EP0122534B1 (en
Inventor
Klaus Dipl.-Ing. Mikulla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6196771&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0122534(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0122534A1 publication Critical patent/EP0122534A1/en
Application granted granted Critical
Publication of EP0122534B1 publication Critical patent/EP0122534B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the invention relates to a method for operating a plant for the splitting of hydrocarbons, the hydrocarbons in cracking furnaces being heated indirectly by the heat generated when a heating medium is burned with an oxygen-containing gas.
  • hydrocarbons in cracking furnaces are exposed to the effects of high temperatures in a plant of the type specified.
  • a heating medium is burned with air in the cracking furnaces.
  • the waste heat from the fission gases is used to generate high pressure steam.
  • the steam formed is fed into the steam system of the plant, which consists of several steam rails.
  • the steam is expanded, among other things, in steam turbines, which are driven by the plant's large compressors, such as the compressors for the raw gas, for the ethylene and for the propylene of the ethylene or propylene circuit.
  • the invention is therefore based on the object of specifying a method for operating a plant for the splitting of hydrocarbons, in which the operating cost is lower than in previous methods.
  • This object is achieved in that the exhaust gas from a gas turbine is mixed with air and the gas mixture is fed to the cracking furnace for the combustion of the heating medium, an: electric generator being driven by the gas turbine.
  • Gas turbines for generator drive can be single-shaft gas turbines because of the constant speed during operation.
  • Single-shaft gas turbines including generators are, however, available as standard components and much cheaper than (two-shaft) gas turbines for mechanical drives.
  • the gas turbine is used to generate electrical energy.
  • This energy can be used within the system to drive pumps or compressors, for example. It is therefore not necessary to have a gas turbine installed with an output that is too large for the plant size. Rather, it is possible to be able to select a gas turbine that always works at full load for the respective plant and therefore has more favorable consumption figures than a gas turbine with an output that is too large for the plant size and that works in part-load operation.
  • a certain current import may be required in the method according to the invention, which will, however, be less than that for the operation of a system belonging to the prior art.
  • the amount of electricity to be imported depends on whether a more or less well-adapted gas turbine can be found for the system under investigation and which type of drive (steam turbines or electric motors) the respective system compressor is selected for.
  • a failure of the gas turbine has no serious influence on the operation of the plant if full electrical power can be drawn from the network immediately. In this case, the system can continue to supply products that meet specifications. Changes in the combustion air data must be absorbed by the furnace control.
  • the gas turbine can continue to be operated.
  • the turbine exhaust gas is introduced into a chimney and the electricity generated is exported if possible.
  • the turbine exhaust gas which still contains a relatively large amount of oxygen (approx. 16%), is used as preheated “combustion air” in the cracking furnaces.
  • the residual oxygen contained in the gas turbine exhaust gas is not sufficient for a complete supply of all furnaces in an olefin plant.
  • air is therefore added to the gas turbine exhaust gas. If air from ambient temperature is mixed into the exhaust gas from the turbine, the relatively high temperature of the exhaust gas is greatly reduced. When mixed with air at ambient temperature, disproportionate exergy losses occur.
  • the air is therefore preheated before being added to the turbine exhaust gas. It is particularly expedient to preheat the air by exchanging heat with steam from the system's steam system. Because of the higher theoretical combustion temperature, the radiation zone efficiency increases, so that the heating medium requirement of the cracking furnaces is reduced.
  • the heat supply in the convection zone becomes smaller. Due to the lower heat supply, the steam production of the cracking furnaces is also reduced. If process pumps and compressors of the system are not driven by steam turbines but by electric motors, the steam export in the method according to the invention increases in comparison to the conventional method despite the lower steam production.
  • the air to be mixed with the exhaust gas is advantageously heated to a temperature compensating for temperature fluctuations in the gas turbine exhaust gas.
  • the temperature of the gas mixture formed from gas turbine exhaust gas and air is always kept constant. Effects of temperature fluctuations in the gas turbine exhaust gas on the furnace operation are avoided.
  • the air is mixed with the exhaust gas from the gas turbine in an amount to compensate for fluctuations in the exhaust gas quantity of the gas turbine.
  • This variant is particularly important in the event of a gas turbine failure, since in this case the cracking furnaces are only supplied with fresh air.
  • the temperature of the turbine exhaust gas is e.g. approx. 550 ° C.
  • the additional air is reduced to e.g. 200 ° C preheated to achieve a mixing temperature of 400 ° C.
  • the air preheater is expediently designed for normal operation. He is therefore also able to heat the full amount of air to approx. 100 ° C in the event of a gas turbine failure, so that there are as few changes as possible in the cracking furnaces with regard to the radiation zone efficiency and thus the heating medium requirement and steam production.
  • compressors and pumps of the system are driven by electric motors which are supplied with electrical energy by the electrical generator driven by the gas turbine.
  • the amount of steam to be condensed drops sharply, the cooling water requirement of the system is also reduced.
  • the cost of resources and thus the economic viability of the two methods to be compared are influenced by the heat price and the relationship between the heat price and the steam rating. Depending on the value of these two parameters, the resource costs of the method according to the invention can be reduced by up to 12% and more compared to the conventional method.
  • a cracking furnace 1 is supplied with fuel via line 2 and via line 3 with an oxygen-containing gas for the combustion of the fuel.
  • the oxygen-containing gas is normally formed from two components.
  • One component is the exhaust gas of a gas turbine 4, the essential components of which are air compressors 5; Gas generator 6 and utility turbine 7 are.
  • the exhaust gas leaves the turbine via a line 8 leading to an air preheater 9.
  • the second component is air, which is drawn in via a fresh air blower 10 and introduced into the air preheater 9.
  • the air is heated indirectly by steam that flows in heat exchanger elements 11 and then mixed with the gas turbine exhaust gas.
  • the mixture is fed into line 3 leading to the cracking furnace.
  • the cracked gas formed in the cracking furnace 1 leaves the cracking furnace via a line 21. It is cooled in a quench cooler 22 by heat exchange with pressurized water from a steam drum 23 and fed to the oil fractionation, not shown in the sketch. Water evaporated during the heat exchange is returned to the steam drum 23.
  • Steam is withdrawn from the steam drum 23 via a line 25, overheated in a heat exchanger 24 in the heat exchange with flue gases from the cracking furnace 1 and introduced into a steam rail 26.
  • Steam is removed from this steam rail via steam turbines 30, 31, 32, expanded and, depending on the pressure of the expanded steam, fed into a high-pressure steam rail 27, a medium-pressure steam rail 28 or a low-pressure steam rail 29.
  • the raw gas compressor (not shown) can be driven by the turbine 30, for example.
  • the the Steam leaving turbine 30 and expanded to condensation pressure is condensed in a condenser 34 and fed to a feed water tank 33 in which the condensate is degassed.
  • steam can be exported from the system via the high-pressure steam rail 27, but steam can also be imported.
  • the steam from the two steam rails 28 and 29 is delivered to condensers 35, for example process steam generators or column boilers, and is condensed.
  • the condensate of these steam rails and the condensate formed in the heat exchanger 11 during the heat exchange with the air to be preheated are conducted in the feed water tanks 13.
  • Feed water is removed from the feed water tank via a line 36, brought to the pressure of the steam in the steam drum 23 and warmed in the steam system against condensing steam of various pressure levels (heat exchanger 37).
  • the preheated feed water enters the steam drum 23 via line 38.
  • forced air burners are used as burners for the cracking furnace (s).
  • forced air burners offer the option of measuring the amount of air flowing into the burner and keeping the excess air scarce. Since the oxygen content of the gas mixture composed of gas turbine exhaust gas and air in the method according to the invention can change, it is not the amount of air but the amount of oxygen that is measured and regulated according to the invention. In order to avoid a lack of oxygen, air is used and the heating medium is drawn in.
  • each of the forced air burners has an air supply and a throttle device for volume regulation.
  • the furnace outlet temperature is measured. Via a throttle valve necessary for the required heating power amount of oxygen (pressure and Tem eraturkorrigiert p) predetermined.
  • the amount of fuel that is possible for a certain excess of oxygen is fed in via a ratio divider, in which, in the event of fluctuations in the heating medium, its wobbe number is also used as a correction variable.
  • a pressure regulator 13 in line 3 for the gas mixture flowing to the cracking furnaces acts on a swirl throttle control for the fresh air blower 10 when the pressure is too low submitted.
  • a temperature controller 12 is also installed in line 3. This acts on a control valve 39 in the steam line leading to the heat exchanger 11. By preheating the fresh air, it is possible to keep the temperature of the mixture of gas turbine exhaust gas and fresh air constant even with fluctuations in the gas turbine outlet temperature and to avoid any effects on the furnace operation.
  • An essential feature of the method according to the invention is that the turbine 7 drives an electric generator 15.
  • the electrical current generated in the generator 15 is used to drive motors 16, 17 for compressors 18, 19 in which, for example, ethylene and propylene are compressed.
  • the generator 15 supplies the drive energy for other compressors or pumps of the system for splitting hydrocarbons.
  • the operating costs of an olefin plant can be reduced by using a gas turbine as a generator drive and by continuing to use the gas turbine exhaust gas together with preheated fresh air.

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen. Dabei werden die Kohlenwasserstoffe in Spaltöfen indirekt über die bei der Verbrennung eines Heizmittels mit einem sauerstoffhaltigen Gas entstehende Wärme erhitzt. Um die Betriebsmittelkosten eines derartigen Verfahrens zu senken wird vorgeschlagen, das Abgas einer Gasturbine mit Luft zu vermischen und das Gasgemisch dem Spaltofen zur Verbrennung des Heizmittels zuzuführen, wobei durch die Gasturbine ein Elektrogenerator angetrieben wird.The invention relates to a method for operating a plant for the splitting of hydrocarbons. The hydrocarbons in cracking furnaces are heated indirectly via the heat generated when a heating medium is burned with an oxygen-containing gas. In order to reduce the operating cost of such a method, it is proposed to mix the exhaust gas from a gas turbine with air and to feed the gas mixture to the cracking furnace for the combustion of the heating medium, an electric generator being driven by the gas turbine.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen, wobei die Kohlenwasserstoffe in Spaltöfen indirekt durch die bei der Verbrennung eines Heizmittels mit einem sauerstoffhaltigen Gas entstehende Wärme erhitzt werden.The invention relates to a method for operating a plant for the splitting of hydrocarbons, the hydrocarbons in cracking furnaces being heated indirectly by the heat generated when a heating medium is burned with an oxygen-containing gas.

Zur Erzeugung olefinreicher Spaltgase werden in einer Anlage der angegebenen Art Kohlenwasserstoffe in Spaltöfen der Einwirkung hoher Temperaturen ausgesetzt. Zu diesem Zweck wird in den Spaltöfen ein Heizmittel mit Luft verbrannt. Um das am Ofenaustritt bestehende Reaktionsgleichgewicht des Spaltgases zu erhalten, wird dieses in Quenchkühlern gekühlt. Die Abhitze der Spaltgase wird zur Hochdruckdampferzeugung genutzt. Herkömmlicherweise wird der gebildete Dampf in das aus mehreren Dampfschienen bestehende Dampfsystem der Anlage eingespeist. Der Dampf wird unter anderem in Dampfturbinen entspannt, durch die Großverdichter der Anlage, wie beispielsweise die Verdichter für das Rohgas, für das Äthylen und das Propylen des Äthylen- bzw. Propylenkreislaufs, angetrieben werden.To generate olefin-rich fission gases, hydrocarbons in cracking furnaces are exposed to the effects of high temperatures in a plant of the type specified. For this purpose, a heating medium is burned with air in the cracking furnaces. In order to maintain the reaction equilibrium of the cracked gas at the furnace outlet, it is cooled in quench coolers. The waste heat from the fission gases is used to generate high pressure steam. Conventionally, the steam formed is fed into the steam system of the plant, which consists of several steam rails. The steam is expanded, among other things, in steam turbines, which are driven by the plant's large compressors, such as the compressors for the raw gas, for the ethylene and for the propylene of the ethylene or propylene circuit.

Die auf ein hohes Niveau gestiegenen Rohstoffpreise verursachen bei der bisherigen Prozeßführung hohe Betriebsmittelkosten.The raw material prices, which have risen to a high level, have caused high operating costs in the previous litigation.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen anzugeben, bei dem die Betriebsmittelkosten geringer sind als bei bisherigen Verfahren.The invention is therefore based on the object of specifying a method for operating a plant for the splitting of hydrocarbons, in which the operating cost is lower than in previous methods.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Abgas einer Gasturbine mit Luft vermischt und das Gasgemisch dem Spaltofen zur Verbrennung des Heizmittels zugeführt wird, wobei durch die Gasturbine ein:Elektrogenerator angetrieben wird.This object is achieved in that the exhaust gas from a gas turbine is mixed with air and the gas mixture is fed to the cracking furnace for the combustion of the heating medium, an: electric generator being driven by the gas turbine.

Beim erfindungsgemäßen Verfahren ist davon ausgegangen worden, daß das Abgas einer Gasturbine auf einem - im Vergleich zu einem Dampfkreislauf - hohen Temperaturniveau zur Verfügung steht. Wird die Abwärme des Gasturbinenprozesses genutzt, so kann der Gesamtwirkungsgrad eines Gasturbinenprozesses wesentlich verbessert werden.In the method according to the invention, it has been assumed that the exhaust gas from a gas turbine is available at a high temperature level, in comparison to a steam cycle. If the waste heat from the gas turbine process is used, the overall efficiency of a gas turbine process can be significantly improved.

Andererseits ist man bei der Auswahl einer Gasturbine an die Typenlisten der Anbieter gebunden, die zur Zeit grosse Leistungssprünge aufweisen. Eine Anpassung an die gewünschte Leistung, wie bei Dampfturbinen ist nicht möglich. Dies führt dazu, daß man für eine bestimmte Anlagengröße eventuell eine zu große Leistung installieren und ungünstigere Verbrauchszahlen durch ständigen Teillastbetrieb hinnehmen muß.On the other hand, when choosing a gas turbine, you are bound to the type lists of the suppliers, who currently have major leaps in performance. An adaptation to the desired output, as with steam turbines, is not possible. This means that you may have to install too much power for a certain system size and have to accept less favorable consumption figures due to constant part-load operation.

Ist eine Drehzahlregelung der Nutzturbine erforderlich, so muß die Gasturbine zweiwellig ausgelegt werden. Diese Art der Gasturbine ist jedoch relativ kostspielig. Unter Berücksichtigung dieser Eigenschaften von Gasturbinen besitzt das erfindungsgemäße Verfahren entscheidende Vorteile:

  • Durch die erfindungsgemäße Vorwärmung der Verbrennungsluft der Spaltöfen, die Weiterverwendung des Gasturbinenabgases sowie durch den Einsatz einer Gasturbine als Generatorantrieb lassen sich die Betriebsmittelkosten von Olefinanlagen - wie an anderer Stelle noch ausgeführt wird - senken.
If speed control of the utility turbine is required, the gas turbine must be designed with two shafts. However, this type of gas turbine is relatively expensive. Taking into account these properties of gas turbines The method according to the invention has decisive advantages:
  • The preheating of the combustion air of the cracking furnaces according to the invention, the further use of the gas turbine exhaust gas and the use of a gas turbine as a generator drive can reduce the operating costs of olefin plants, as will be explained elsewhere.

Gasturbinen für Generatorantrieb können wegen der im Betrieb konstanten Drehzahl einwellige Gasturbinen sein. Einwellige Gasturbinen inklusive Generatoren sind aber als Standardbausteine erhältlich und wesentlich billiger als (zweiwellige) Gasturbinen für mechanische Antriebe.Gas turbines for generator drive can be single-shaft gas turbines because of the constant speed during operation. Single-shaft gas turbines including generators are, however, available as standard components and much cheaper than (two-shaft) gas turbines for mechanical drives.

Erfindungsgemäß wird die Gasturbine zur Elektroenergieerzeugung genutzt. Diese Energie kann innerhalb der Anlage beispielsweise zum Antrieb von Pumpen oder von Verdichtern genutzt werden. Es ist daher nicht erforderlich, eine Gasturbine mit einer für die Anlagengröße zu großen Leistung installieren zu lassen. Vielmehr ist es möglich, eine Gasturbine auswählen zu können, die der jeweiligen Anlage angemessen stets im Vollastbetrieb arbeitet und daher günstigere Verbrauchszahlen hat, als eine Gasturbine mit einer für die Anlagengröße zu großen Leistung, die im Teillastbetrieb arbeitet.According to the invention, the gas turbine is used to generate electrical energy. This energy can be used within the system to drive pumps or compressors, for example. It is therefore not necessary to have a gas turbine installed with an output that is too large for the plant size. Rather, it is possible to be able to select a gas turbine that always works at full load for the respective plant and therefore has more favorable consumption figures than a gas turbine with an output that is too large for the plant size and that works in part-load operation.

Allerdings kann beim erfindungsgemäßen Verfahren ein bestimmter Stromimport erforderlich werden, der jedoch geringer sein wird, als der für den Betrieb einer zum Stand der Technik zählenden Anlage. Die zu importierende Strommenge ist davon abhängig, ob sich'für die untersuchte Anlage eine mehr oder weniger gut angepaßte Gasturbine finden läßt und welche Antriebsart (Dampfturbinen oder E-Motore) der jeweiligen Anlagenverdichter gewählt wird. Ein Ausfall der Gasturbine hat prinzipiell keinen gravierenden Einfluß auf den Anlagenbetrieb, wenn sofort elektrische Leistung in vollem Umfang aus dem Netz bezogen werden kann. In diesem Fall kann die Anlage weiterhin spezifikationsgerechte Produkte liefern. Änderungen der Verbrennungsluftdaten müssen von der Ofenregelung aufgefangen werden.However, a certain current import may be required in the method according to the invention, which will, however, be less than that for the operation of a system belonging to the prior art. The amount of electricity to be imported depends on whether a more or less well-adapted gas turbine can be found for the system under investigation and which type of drive (steam turbines or electric motors) the respective system compressor is selected for. In principle, a failure of the gas turbine has no serious influence on the operation of the plant if full electrical power can be drawn from the network immediately. In this case, the system can continue to supply products that meet specifications. Changes in the combustion air data must be absorbed by the furnace control.

Bei einem Ausfall der Spaltöfen oder der gesamten Olefinanlage kann die Gasturbine weiterbetrieben werden. In diesem Fall wird das Turbinenabgas in einen Kamin eingeleitet, der erzeugte Strom wird nach Möglichkeit exportiert.If the cracking furnace or the entire olefin plant fails, the gas turbine can continue to be operated. In this case, the turbine exhaust gas is introduced into a chimney and the electricity generated is exported if possible.

Erfindungsgemäß wird das Turbinenabgas, das noch relativ viel Sauerstoff (ca. 16 %) enthält, als vorgewärmte "Verbrennungsluft" in den Spaltöfen verwendet. Der im Gasturbinenabgas enthaltene Restsauerstoff reicht aber nicht für eine vollständige Versorgung aller öfen einer Olefinanlage aus. Erfindungsgemäß wird daher dem Gasturbinenabgas Luft zugemischt. Wird dem Abgas der Turbine Luft von Umgebungstemperatur zugemischt, so wird die relativ hohe Temperatur des Abgases stark gesenkt. Bei einer Mischung mit Luft von Umgebungstemperatur treten unverhältnismäßig große Exergieverluste auf.According to the invention, the turbine exhaust gas, which still contains a relatively large amount of oxygen (approx. 16%), is used as preheated “combustion air” in the cracking furnaces. However, the residual oxygen contained in the gas turbine exhaust gas is not sufficient for a complete supply of all furnaces in an olefin plant. According to the invention, air is therefore added to the gas turbine exhaust gas. If air from ambient temperature is mixed into the exhaust gas from the turbine, the relatively high temperature of the exhaust gas is greatly reduced. When mixed with air at ambient temperature, disproportionate exergy losses occur.

In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird daher die Luft vor der Zumischung zum Turbinenabgas vorgewärmt. Besonders zweckmäßig ist es dabei, die Luft durch Wärmetausch mit Dampf aus dem Dampfsystem der Anlage vorzuwärmen. Wegen der damit höheren theoretischen Verbrennungstemperatur erhöht sich der Strahlungszonenwirkungsgrad, so daß sich der Heizmittelbedarf der Spaltöfen verringert.In a preferred embodiment of the method according to the invention, the air is therefore preheated before being added to the turbine exhaust gas. It is particularly expedient to preheat the air by exchanging heat with steam from the system's steam system. Because of the higher theoretical combustion temperature, the radiation zone efficiency increases, so that the heating medium requirement of the cracking furnaces is reduced.

Infolge der geringeren Wärmezufuhr zu den Spaltöfen wird das Wärmeangebot in der Konvektionszone kleiner. Wegen des geringeren Wärmeangebotes verringert sich auch die Dampfproduktion der Spaltöfen. Werden Prozeßpumpen und Verdichter der Anlage nicht durch Dampfturbinen, sondern durch Elektromotoren angetrieben, so vergrößert sich der Dampfexport beim erfindungsgemäßen Verfahren im Vergleich zum herkömmlichen Verfahren trotz der geringeren Dampfproduktion.As a result of the lower heat input to the cracking furnaces, the heat supply in the convection zone becomes smaller. Due to the lower heat supply, the steam production of the cracking furnaces is also reduced. If process pumps and compressors of the system are not driven by steam turbines but by electric motors, the steam export in the method according to the invention increases in comparison to the conventional method despite the lower steam production.

In einer weiteren Ausgestaltung des Erfindungsgedankens wird die dem Abgas zuzumischende Luft mit Vorteil auf eine Temperaturschwankungen des Gasturbinenabgases ausgleichende Temperatur erhitzt. Auf diese Weise wird die Temperatur der aus Gasturbinenabgas und Luft gebildeten Gasmischung stets konstant gehalten. Auswirkungen von Temperaturschwankungen des Gasturbinenabgases auf den Ofenbetrieb werden vermieden.In a further embodiment of the inventive concept, the air to be mixed with the exhaust gas is advantageously heated to a temperature compensating for temperature fluctuations in the gas turbine exhaust gas. In this way, the temperature of the gas mixture formed from gas turbine exhaust gas and air is always kept constant. Effects of temperature fluctuations in the gas turbine exhaust gas on the furnace operation are avoided.

In einer vorteilhaften Ausgestaltung der Erfindung wird die Luft dem Abgas der Gasturbine in eine Abgasmengenschwankungen der Gasturbine ausgleichenden Menge zugemischt. Diese Variante ist insbesondere bei einem Ausfall der Gasturbine von Bedeutung, da die Spaltöfen in diesem Fall ausschließlich mit Frischluft versorgt werden.Im Normalbetrieb beträgt die Temperatur des Turbinenabgases z.B. ca. 550 °C. Die Zusatzluft wird auf z.B. 200 °C vorgewärmt, um eine Mischtemperatur von 400 °C zu erreichen. Der Luftvorwärmer wird zweckmäßigerweise für den Normalbetrieb ausgelegt. Er ist damit auch in der Lage, bei Gasturbinenausfall die volle Luftmenge auf ca. 100 °C zu erwärmen, so daß sich an den Spaltöfen möglichst geringe Änderungen bezüglich des Strahlungszonenwirkungsgrades und damit des Heizmittelbedarfs und der Dampfproduktion ergeben.In an advantageous embodiment of the invention, the air is mixed with the exhaust gas from the gas turbine in an amount to compensate for fluctuations in the exhaust gas quantity of the gas turbine. This variant is particularly important in the event of a gas turbine failure, since in this case the cracking furnaces are only supplied with fresh air. In normal operation, the temperature of the turbine exhaust gas is e.g. approx. 550 ° C. The additional air is reduced to e.g. 200 ° C preheated to achieve a mixing temperature of 400 ° C. The air preheater is expediently designed for normal operation. He is therefore also able to heat the full amount of air to approx. 100 ° C in the event of a gas turbine failure, so that there are as few changes as possible in the cracking furnaces with regard to the radiation zone efficiency and thus the heating medium requirement and steam production.

Wie bereits ausgeführt, ist es zweckmäßig, wenn nach einem Merkmal der Erfindung Verdichter und Pumpen der Anlage von Elektromotoren, die durch den von der Gasturbine angetriebenen Elektrogenerator mit elektrischer Energie versorgt werden, angetrieben werden. Da infolgedessen die zu kondensierende Dampfmenge stark zurückgeht, vermindert sich auch der Kühlwasserbedarf der Anlage.As already stated, it is expedient if, according to a feature of the invention, compressors and pumps of the system are driven by electric motors which are supplied with electrical energy by the electrical generator driven by the gas turbine. As a result, the amount of steam to be condensed drops sharply, the cooling water requirement of the system is also reduced.

Im folgenden sollen in zwei Tabellen einige wichtige Daten für den Ofenbetrieb und die Betriebsmittelverbräuche einer herkömmlichen Anlage mit den entsprechenden Daten einer nach dem erfindungsgemäßen Verfahren arbeitenden Anlage verglichen werden. Als Vergleichsanlage konventioneller Art wird eine Anlage mit einer Kapazität von 250 000 jato Äthylen aus Hydrokonverterrückstand gewählt. Die Großverdichter (Rohgas, Äthylen, Propylen) und Pumpen (wie Speisewasserpumpen, Kühlwasser, Quenchöl usw.) werden durch Dampfturbinen angetrieben. Die Spaltöfen mit integrierter Abhitze sind mit selbstansaugenden Seitenwandbrennern ausgestattet.In the following, some important data for furnace operation and the consumption of operating resources of a conventional system are to be compared in two tables with the corresponding data of a system operating according to the method according to the invention. A plant with a capacity of 250,000 tpy ethylene from hydroconverter residue is chosen as a conventional comparison plant. The large compressors (raw gas, ethylene, propylene) and pumps (such as feed water pumps, cooling water, quench oil, etc.) are driven by steam turbines. The cracking furnaces with integrated waste heat are equipped with self-priming side wall burners.

BetriebsmittelverbräucheConsumption of resources

Figure imgb0001
Ofenbetrieb
Figure imgb0002
Figure imgb0001
Kiln operation
Figure imgb0002

Die Betriebsmittelkosten und damit die Wirtschaftlichkeit der beiden zu vergleichenden Verfahren werden durch den Wärmepreis und die Relation zwischen Wärmepreis und Dampfbewertung beeinflußt. Je nach Wert dieser beiden Parameter können die Betriebsmittelkosten des erfindungsgemäßen Verfahrens gegenüber dem konventionellen Verfahren um einen Anteil von bis zu 12 % und mehr gesenkt werden.The cost of resources and thus the economic viability of the two methods to be compared are influenced by the heat price and the relationship between the heat price and the steam rating. Depending on the value of these two parameters, the resource costs of the method according to the invention can be reduced by up to 12% and more compared to the conventional method.

Gegenüber einer herkömmlichen Anlage müssen in einer Anlage, die nach dem erfindungsgemäßen Konzept betrieben wird, Änderungen vorgenommen werden, die mit zusätzlichen Investitionskosten verbunden sind (z.B. Installation einer Gasturbine mit Elektrogenerator, Ersatz der Kältemittelturbinen durch Elektromotoren, Ersatz von Kleinturbinen durch entsprechende Motoren, Installation eines Frischluftgebläses und eines Luftvorwärmers). Aufgrund der hohen Betriebskosteneinsparungen ergibt sich jedoch eine kurze Amortisationszeit.Compared to a conventional system, changes must be made in a system that is operated according to the concept according to the invention, which are associated with additional investment costs (e.g. installation of a gas turbine with an electric generator, replacement of the refrigerant turbines by electric motors, replacement of small turbines by appropriate motors, installation of a Fresh air blower and an air preheater). Due to the high savings in operating costs, however, there is a short payback period.

Im folgenden soll anhang einer schematischen Skizze ein Ausführungsbeispiel einer nach dem erfindungsgemäßen Verfahren arbeitenden Anlage erläutert werden.In the following, an exemplary embodiment of a system operating according to the method according to the invention is to be explained on the basis of a schematic sketch.

Ein Spaltofen 1 wird über Leitung 2 mit Brennstoff und über eine Leitung 3 mit einem sauerstoffhaitigen Gas für die Verbrennung des Brennstoffes versorgt. Das sauerstoffhaltige Gas wird im Normalfall aus zwei Komponenten gebildet. Die eine Komponente ist das Abgas einer Gasturbine 4, deren wesentliche Bauteile Luftverdichter 5; Gaserzeuger 6 und Nutzturbine 7 sind. Das Abgas verläßt die Turbine über eine zu einem Luftvorwärmer 9 führende Leitung 8.A cracking furnace 1 is supplied with fuel via line 2 and via line 3 with an oxygen-containing gas for the combustion of the fuel. The oxygen-containing gas is normally formed from two components. One component is the exhaust gas of a gas turbine 4, the essential components of which are air compressors 5; Gas generator 6 and utility turbine 7 are. The exhaust gas leaves the turbine via a line 8 leading to an air preheater 9.

Die zweite Komponente ist Luft, die über ein Frischluftgebläse 10 angesaugt und in den Luftvorwärmer 9 eingeleitet wird. Im Luftvorwärmer 9 wird die Luft indirekt durch Dampf, der in Wärmetausoherelementen 11 strömt, erhitzt und anschließend mit dem Gasturbinenabgas vermischt. Die Mischung wird in die zum Spaltofen führende Leitung 3 eingespeist.The second component is air, which is drawn in via a fresh air blower 10 and introduced into the air preheater 9. In the air preheater 9, the air is heated indirectly by steam that flows in heat exchanger elements 11 and then mixed with the gas turbine exhaust gas. The mixture is fed into line 3 leading to the cracking furnace.

Das im Spaltofen 1 gebildete Spaltgas verläßt den Spaltofen über eine Leitung 21. Es wird in einem Quenchkühler 22 im Wärmetausch mit Druckwasser aus einer Dampftrommel 23 gekühlt und der in der Skizze nicht dargestellten ölfraktionierung zugeführt. Beim Wärmetausch verdampftes Wasser wird in die Dampftrommel 23 zurückgeführt.The cracked gas formed in the cracking furnace 1 leaves the cracking furnace via a line 21. It is cooled in a quench cooler 22 by heat exchange with pressurized water from a steam drum 23 and fed to the oil fractionation, not shown in the sketch. Water evaporated during the heat exchange is returned to the steam drum 23.

Aus der Dampftrommel 23 wird über eine Leitung 25 Dampf entnommen, in einem Wärmetauscher 24 im Wärmetausch mit Rauchgasen des Spaltofens 1 überhitzt und in eine Dampfschiene 26 eingeleitet.Steam is withdrawn from the steam drum 23 via a line 25, overheated in a heat exchanger 24 in the heat exchange with flue gases from the cracking furnace 1 and introduced into a steam rail 26.

über Dampfturbinen 30, 31, 32 wird Dampf dieser Dampfschiene entnommen, entspannt und je nach Druck des entspannten Dampfes in eine Hochdruckdampfschiene 27, eine Mitteldruckdampfschiene 28 oder eine Niederdruckdampfschiene 29 eingespeist. Durch die Turbine 30 kann beispielsweise der nicht dargestellte Rohgasverdichter angetrieben werden. Der die Turbine 30 verlassende, auf Kondensationsdruck entspannte Dampf wird in einem Kondensator 34 kondensiert und einem Speisewasserbehälter 33, in dem das Kondensat entgast wird, zugeführt.Steam is removed from this steam rail via steam turbines 30, 31, 32, expanded and, depending on the pressure of the expanded steam, fed into a high-pressure steam rail 27, a medium-pressure steam rail 28 or a low-pressure steam rail 29. The raw gas compressor (not shown) can be driven by the turbine 30, for example. The the Steam leaving turbine 30 and expanded to condensation pressure is condensed in a condenser 34 and fed to a feed water tank 33 in which the condensate is degassed.

Über die Hochdruckdampfschiene 27 kann erfindungsgemäß Dampf aus der Anlage exportiert aber auch Dampf importiert werden. Der Dampf der beiden Dampfschienen 28 und 29 wird an Verbraucher 35, beispeilsweise Prozeßdampferzeuger oder Kolonnenaufkocher abgegeben und kondensiert. Das Kondensat dieser Dampfschienen sowie das beim Wärmetausch mit der vorzuwärmenden Luft im Wärmetauscher 11 gebildete Kondensat werden in den Speisewasserbehältern 13 geführt.According to the invention, steam can be exported from the system via the high-pressure steam rail 27, but steam can also be imported. The steam from the two steam rails 28 and 29 is delivered to condensers 35, for example process steam generators or column boilers, and is condensed. The condensate of these steam rails and the condensate formed in the heat exchanger 11 during the heat exchange with the air to be preheated are conducted in the feed water tanks 13.

Speisewasser wird dem Speisewasserbehälter über eine Leitung 36 entnommen, auf den Druck des Dampfes in der Dampftrommel 23 gebracht und im Dampfsystem gegen kondensierenden Dampf verschiedener Druckstufen angewärmt (Wärmetauscher 37). Das vorgewärmte Speisewasser tritt über Leitung 38 in die Dampftrommel 23 ein.Feed water is removed from the feed water tank via a line 36, brought to the pressure of the steam in the steam drum 23 and warmed in the steam system against condensing steam of various pressure levels (heat exchanger 37). The preheated feed water enters the steam drum 23 via line 38.

Erfindungsgemäß werden als Brenner für den bzw. die Spaltöfen Zwangsluftbrenner eingesetzt. Im Gegensatz zu selbstansaugenden Brennern hat man bei Zwangsluftbrennern die Möglichkeit, die den Brenner zuströmende Luftmenge zu messen und den Luftüberschuß knapp zu halten. Da sich der Sauerstoffgehalt der_beim erfindungsgemäßen Verfahren aus Gasturbinenabgas und Luft zusammensetzenden Gasmischung ändern kann, wird erfindungsgemäß nicht die Luftmenge, sondern die Sauerstoffmenge gemessen und geregelt. Um Sauerstoffmangel zu vermeiden, wird mit Luftvorhalt gefahren und das Heizmittel nachgezogen. Jeder der Zwangsluftbrenner hat zu diesem Zweck eine Luftzuführung und eine Drosseleinrichtung zur Mengenregulierung.According to the invention, forced air burners are used as burners for the cracking furnace (s). In contrast to self-priming burners, forced air burners offer the option of measuring the amount of air flowing into the burner and keeping the excess air scarce. Since the oxygen content of the gas mixture composed of gas turbine exhaust gas and air in the method according to the invention can change, it is not the amount of air but the amount of oxygen that is measured and regulated according to the invention. In order to avoid a lack of oxygen, air is used and the heating medium is drawn in. For this purpose, each of the forced air burners has an air supply and a throttle device for volume regulation.

Die Ofenaustrittstemperatur wird gemessen. Über eine Drosselklappe wird die für die erforderliche Heizleistung notwendige Sauerstoffmenge (Druck- und Temperaturkorrigiert) vorgegeben. Die für einen bestimmten Sauerstoffüberschuß mögliche Brennstoffmenge wird über einen Verhältnisteiler dazugefahren, in dem bei Schwankungen des Heizmittels auch dessen Wobbezahl als Korrekturgröße eingeht.The furnace outlet temperature is measured. Via a throttle valve necessary for the required heating power amount of oxygen (pressure and Tem eraturkorrigiert p) predetermined. The amount of fuel that is possible for a certain excess of oxygen is fed in via a ratio divider, in which, in the event of fluctuations in the heating medium, its wobbe number is also used as a correction variable.

Ein Druckregler 13 in Leitung 3 für die den Spaltöfen zuströmende Gasmischung wirkt bei zu geringem Druck auf eine Dralldrosselregelung für das Frischluftgebläse 10. Bei zu hohem Druck in Leitung 3 wird ein.Teil des aus Turbinenabgas und Frischluft bestehenden Gasgemisches über eine Klappe 14 in den Kamin abgegeben.A pressure regulator 13 in line 3 for the gas mixture flowing to the cracking furnaces acts on a swirl throttle control for the fresh air blower 10 when the pressure is too low submitted.

In Leitung 3 ist zudem ein Temperaturregler 12 eingebaut. Dieser wirkt auf ein Regelventil 39 in der zum Wärmetauscher 11 führenden Dampfleitung. Durch die Vorwärmung der Frischluft hat man die Möglichkeit, die Temperatur des Gemisches aus Gastürbinenabgas und Frischluft auch bei Schwankungen der Gasturbinenaustrittstemperatur konstant zu halten und Auswirkungen auf den Ofenbetrieb zu vermeiden.A temperature controller 12 is also installed in line 3. This acts on a control valve 39 in the steam line leading to the heat exchanger 11. By preheating the fresh air, it is possible to keep the temperature of the mixture of gas turbine exhaust gas and fresh air constant even with fluctuations in the gas turbine outlet temperature and to avoid any effects on the furnace operation.

Wesentliches Merkmal des erfindungsgemäßen Verfahrens ist, daß die Turbine 7 einen Elektrogenerator 15 antreibt. Der im Generator 15 erzeugte elektrische Strom dient zum Antrieb von Motoren 16, 17 für Verdichter 18, 19, in denen beispielsweise Äthylen und Propylen verdichtet werden. In gleicher Weise liefert der Generator 15 die Antriebsenergie für andere Verdichter oder Pumpen der erfindungsgemäßen Anlage zur Spaltung von Kohlenwasserstoffen.An essential feature of the method according to the invention is that the turbine 7 drives an electric generator 15. The electrical current generated in the generator 15 is used to drive motors 16, 17 for compressors 18, 19 in which, for example, ethylene and propylene are compressed. In the same way, the generator 15 supplies the drive energy for other compressors or pumps of the system for splitting hydrocarbons.

Zusammenfassend ist festzustellen, daß durch den Einsatz einer Gasturbine als Generatorantrieb und durch die Weiterverwendung des Gasturbinenabgases zusammen mit vorgewärmter Frischluft die Betriebskosten einer Olefinanlage gesenkt werden können.In summary, it can be stated that the operating costs of an olefin plant can be reduced by using a gas turbine as a generator drive and by continuing to use the gas turbine exhaust gas together with preheated fresh air.

Claims (6)

1. Verfahren zum Betreiben einer Anlage für die Spaltung von Kohlenwasserstoffen, wobei die Kohlenwasserstoffe in Spaltöfen indirekt über die bei der Verbrennung eines Heizmittels mit einem sauerstoffhaltigen Gas entstehende Wärme erhitzt werden, dadurch gekennzeichnet, daß das Abgas einer Gasturbine mit Luft vermischt und das Gasgemisch dem Spaltofen zur Verbrennung des Heizmittels zugeführt wird, wobei durch die Gasturbine ein Elektrogenerator angetrieben wird.1. A method for operating a plant for the splitting of hydrocarbons, the hydrocarbons in cracking furnaces being heated indirectly via the heat generated during the combustion of a heating medium with an oxygen-containing gas, characterized in that the exhaust gas of a gas turbine is mixed with air and the gas mixture Cracking furnace is fed to the combustion of the heating medium, wherein an electric generator is driven by the gas turbine. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Luft vor der Vermischung erwärmt wird.2. The method according to claim 1, characterized in that the air is heated before mixing. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Luft durch Wärmetausch mit Dampf aus dem Dampfsytem der Anlage vorgewärmt wird.3. The method according to claim 2, characterized in that the air is preheated by heat exchange with steam from the steam system of the system. 4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß die Luft auf eine Temperaturschwankungen des Gasturbinenabgases ausgleichende Temperatur erhitzt wird.4. The method according to any one of claims 2 or 3, characterized in that the air is heated to compensate for a temperature fluctuations in the gas turbine exhaust gas. 5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnetr daß die Luft dem Abgas der Gasturbine in einer Gas-Mengenschwankungen der Gasturbine ausgleichenden Menge zugemischt wird.5. The method according to any one of claims 1 to 3, characterized r that the air is admixed to the exhaust gas of the gas turbine in a gas-quantity variation of the gas turbine-balancing amount. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Verdichter und Pumpen der Anlage von Elektromotoren, die durch den von der Gasturbine angetriebenen Elektrogenerator mit elektrischer Energie versorgt werden, angetrieben werden.6. The method according to any one of claims 1 to 5, characterized in that the compressor and pumps of the system are driven by electric motors which are supplied with electrical energy by the electric generator driven by the gas turbine.
EP84103658A 1983-04-19 1984-04-03 Process for operating a plant for cracking hydrocarbons Expired EP0122534B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833314132 DE3314132A1 (en) 1983-04-19 1983-04-19 METHOD FOR OPERATING A PLANT FOR HYDROCARBON FUSE
DE3314132 1983-04-19

Publications (2)

Publication Number Publication Date
EP0122534A1 true EP0122534A1 (en) 1984-10-24
EP0122534B1 EP0122534B1 (en) 1986-09-17

Family

ID=6196771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84103658A Expired EP0122534B1 (en) 1983-04-19 1984-04-03 Process for operating a plant for cracking hydrocarbons

Country Status (4)

Country Link
US (1) US4912282A (en)
EP (1) EP0122534B1 (en)
JP (1) JPS59199792A (en)
DE (2) DE3314132A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617109A (en) * 1985-12-23 1986-10-14 The M. W. Kellogg Company Combustion air preheating
FR2796078B1 (en) * 1999-07-07 2002-06-14 Bp Chemicals Snc PROCESS AND DEVICE FOR VAPOCRACKING HYDROCARBONS
GB0204140D0 (en) * 2002-02-22 2002-04-10 Bp Chem Int Ltd Production of olefins
US6896707B2 (en) * 2002-07-02 2005-05-24 Chevron U.S.A. Inc. Methods of adjusting the Wobbe Index of a fuel and compositions thereof
US7488459B2 (en) * 2004-05-21 2009-02-10 Exxonmobil Chemical Patents Inc. Apparatus and process for controlling temperature of heated feed directed to a flash drum whose overhead provides feed for cracking
US7789658B2 (en) * 2006-12-14 2010-09-07 Uop Llc Fired heater
US20080145805A1 (en) * 2006-12-14 2008-06-19 Towler Gavin P Process of Using a Fired Heater
US9296955B2 (en) * 2010-09-20 2016-03-29 Exxonmobil Chemical Patents Inc. Process and apparatus for co-production of olefins and electric power
DE102010050090A1 (en) * 2010-10-29 2012-05-03 Linde Aktiengesellschaft Steam system comprises low pressure degasser for degassing feed water, low pressure steam rail, whose operating pressure is at second pressure level, and high pressure steam rail, whose operating pressure is at third pressure level
BR112015009114B1 (en) * 2012-10-22 2024-02-20 Applied Research Associates, Inc PROCESS FOR IMPROVING AN ORGANIC FEED LOAD, AND, HYDROTHERMAL REACTOR SYSTEM
US9346721B2 (en) 2013-06-25 2016-05-24 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion
US9914678B2 (en) 2015-11-04 2018-03-13 Exxonmobil Chemical Patents Inc. Fired tube conversion system and process
WO2017078891A1 (en) 2015-11-04 2017-05-11 Exxonmoble Chemical Patents Inc. Integrated gas turbine and conversion system process
EP3405553A1 (en) * 2016-01-20 2018-11-28 SABIC Global Technologies B.V. Methods and systems for superheating dilution steam and generating electricity
EP3488091A1 (en) * 2016-07-25 2019-05-29 SABIC Global Technologies B.V. Process for cracking hydrocarbon stream using flue gas from gas turbine
JOP20180091B1 (en) 2017-10-12 2022-09-15 Red Leaf Resources Inc Heating materials through co-generation of heat and electricity
CN109026188B (en) * 2018-09-14 2024-01-16 雷泽永 Steam turbine speed regulating oil pump using residual steam pressure
EP4056892A1 (en) * 2021-03-10 2022-09-14 Linde GmbH Method and system for steamcracking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE898745C (en) * 1949-10-04 1953-12-03 Nat Res Dev Process for controlling partial oxidation or splitting of organic substances
FR1415550A (en) * 1963-05-29 1965-10-29 Process and device for cracking hydrocarbons and products obtained
FR2088026A1 (en) * 1970-05-08 1972-01-07 Oemv Ag Utilization of energy in flue gases fromcata
FR2258443A1 (en) * 1974-01-17 1975-08-18 Spie Batignolles
EP0008166A1 (en) * 1978-08-07 1980-02-20 Imperial Chemical Industries Plc Hydrocarbon conversion process and apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2632689A (en) * 1944-11-03 1953-03-24 Phillips Petroleum Co Process and apparatus for effecting chemical reactions
US2660032A (en) * 1947-10-04 1953-11-24 Rosenthal Henry Gas turbine cycle employing secondary fuel as a coolant
BE541035A (en) * 1954-09-03
US3233005A (en) * 1962-03-05 1966-02-01 Pullman Inc Production of acetylene
US3329605A (en) * 1963-07-23 1967-07-04 Michikazu Takeyoshi Gaseous phase cracking reaction methods
US3765167A (en) * 1972-03-06 1973-10-16 Metallgesellschaft Ag Power plant process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE898745C (en) * 1949-10-04 1953-12-03 Nat Res Dev Process for controlling partial oxidation or splitting of organic substances
FR1415550A (en) * 1963-05-29 1965-10-29 Process and device for cracking hydrocarbons and products obtained
FR2088026A1 (en) * 1970-05-08 1972-01-07 Oemv Ag Utilization of energy in flue gases fromcata
FR2258443A1 (en) * 1974-01-17 1975-08-18 Spie Batignolles
EP0008166A1 (en) * 1978-08-07 1980-02-20 Imperial Chemical Industries Plc Hydrocarbon conversion process and apparatus

Also Published As

Publication number Publication date
JPS59199792A (en) 1984-11-12
DE3460750D1 (en) 1986-10-23
EP0122534B1 (en) 1986-09-17
DE3314132A1 (en) 1984-10-25
US4912282A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
EP0122534B1 (en) Process for operating a plant for cracking hydrocarbons
EP0150340B1 (en) Method of operating a combined gas/steam turbine power plant
DE4301100C2 (en) Process for operating a combined cycle power plant with coal or oil gasification
DE60114752T2 (en) Control system for fuel gas humidification
DE3503103A1 (en) METHOD AND DEVICE FOR HEAT RECOVERY
DE2826448A1 (en) METHOD AND DEVICE FOR GENERATING ENERGY
DE3319732A1 (en) MEDIUM-POWER PLANT WITH INTEGRATED COAL GASIFICATION SYSTEM FOR GENERATING ELECTRICITY AND METHANOL
DE3702654A1 (en) METHOD FOR OPERATING A GAS TURBINE PLANT WITH LOW-VALUE FUEL
EP0563553A1 (en) Air cooling of turbines in compressed air storage driven by gas turbine
DE3731627A1 (en) METHOD FOR CONTROLLING THE PERFORMANCE OF A CARBON COMBINED BLOCK WITH INTEGRATED COAL GASIFICATION AND A COAL POWER PLANT OPERATED BY THE METHOD
EP0498289A1 (en) Process for drying of coal for fusion or coal gazifier
DE19902437B4 (en) Method and device for rapid startup and for rapid increase in output of a gas turbine plant
EP0008680A2 (en) Method of producing thermal energy by the combination of a heat engine with a heat pump
CH661097A5 (en) METHOD FOR DISTRIBUTING RESIDUAL GAS INTO THE ATMOSPHERA.
DE102014206474A1 (en) Plant for providing heat energy for heat consumers
EP0584072A1 (en) Gas-turbine/steam-turbine installation.
DE3524882C1 (en) Method for operating a district heating power station plant for generating district heating and power
EP0304827A1 (en) Power regulation for a combined plant
EP0010254A1 (en) Process for generating electric power in a counter pressure steam system
EP1116862B1 (en) Steam generating method and plant
EP0995891A2 (en) Turbomachine and method for its operation
DE3833832A1 (en) Method for the operation of a thermal power plant
DE4223528A1 (en) Method of operating a gas turbine
DE2551430A1 (en) PROCEDURE AND DEVICE FOR RAISING THE STEAM TEMPERATURE IN THE OVERHEATER OF A POWER PLANT
DE823541C (en) Method for operating a gas turbine plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT DE FR GB NL

17P Request for examination filed

Effective date: 19841030

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3460750

Country of ref document: DE

Date of ref document: 19861023

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: COMBUSTION ENGINEERING, INC.

Effective date: 19870612

NLR1 Nl: opposition has been filed with the epo

Opponent name: COMBUSTION ENGINEERING,INC.

26 Opposition filed

Opponent name: EXXON CHEMICAL PATENTS INC.

Effective date: 19870615

NLR1 Nl: opposition has been filed with the epo

Opponent name: EXXON CHEMICAL PATENTS INC.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900331

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900415

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900430

Year of fee payment: 7

27W Patent revoked

Effective date: 19900122

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
NLR2 Nl: decision of opposition
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO