EP0121896B1 - Method of and device for bending bar-shaped materials - Google Patents

Method of and device for bending bar-shaped materials Download PDF

Info

Publication number
EP0121896B1
EP0121896B1 EP84103662A EP84103662A EP0121896B1 EP 0121896 B1 EP0121896 B1 EP 0121896B1 EP 84103662 A EP84103662 A EP 84103662A EP 84103662 A EP84103662 A EP 84103662A EP 0121896 B1 EP0121896 B1 EP 0121896B1
Authority
EP
European Patent Office
Prior art keywords
bending
mandrel
crank
slide
slides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84103662A
Other languages
German (de)
French (fr)
Other versions
EP0121896B2 (en
EP0121896A2 (en
EP0121896A3 (en
Inventor
Helmut Zahlaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruhl Heinz
Original Assignee
Ruhl Heinz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6195607&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0121896(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ruhl Heinz filed Critical Ruhl Heinz
Priority to AT84103662T priority Critical patent/ATE30861T1/en
Publication of EP0121896A2 publication Critical patent/EP0121896A2/en
Publication of EP0121896A3 publication Critical patent/EP0121896A3/en
Publication of EP0121896B1 publication Critical patent/EP0121896B1/en
Application granted granted Critical
Publication of EP0121896B2 publication Critical patent/EP0121896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D11/00Bending not restricted to forms of material mentioned in only one of groups B21D5/00, B21D7/00, B21D9/00; Bending not provided for in groups B21D5/00 - B21D9/00; Twisting
    • B21D11/10Bending specially adapted to produce specific articles, e.g. leaf springs
    • B21D11/12Bending specially adapted to produce specific articles, e.g. leaf springs the articles being reinforcements for concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S72/00Metal deforming
    • Y10S72/702Overbending to compensate for springback

Definitions

  • the invention relates to a method and a device for bending rod-shaped reinforcement steels according to the preambles of claims I and 4.
  • US-A-3805576 shows a device for bending rod-shaped materials, which comprises two bending slides, each comprising a bending mandrel, a bending crank and drive elements.
  • a device for holding the rod-shaped material is provided in addition to the bending slide.
  • the drive elements of the bending slides can be operated independently of one another.
  • DC-B-1 552970 describes a machine for bending reinforcing steels which comprises immovable bending slides corresponding to the number of bends to be made.
  • a holding element in the form of a pusher is assigned to each bending slide, which is intended to prevent the reinforcing steel to be bent from moving.
  • the object of the present invention is to design a method and a device according to the preambles of claims 1 and 4 in such a way that a largely automatic bending process takes place, by means of which end products are made available which have a high degree of accuracy with regard to the desired final shape. It should be ensured that a bending process is possible without special design effort, without the risk of the rod-shaped material slipping in an uncontrolled manner.
  • the device should also be structurally simple and easy to use, so that even untrained personnel can operate it.
  • the object is achieved according to the invention in that after the bending of one end of the reinforcing steel during the further bending processes, a section of the reinforcing steel alternately between the crank and the mandrel is fixed in both directions by one of the bending slides in the region of two legs describing an angle to one another, during which Concrete reinforcement steel non-adherent bending slide which bends or moves concrete reinforcement steel along this.
  • the steel materials to be cold-formed by the bending machine are immovably held by one of the bending slides during bending in the machine, without additional holding devices being required.
  • This ensures that the materials receive the desired geometry with a low tolerance.
  • the fact that the bending slides have the task of holding the materials to be deformed or deforming them to the desired extent results in a recognizable simple construction which not only shows ease of maintenance, but also ensures that there is little susceptibility to malfunction.
  • the process of the carriage or the holding of the materials by the carriage can be program-controlled without the need for further explanations. As a result, the bending process can take place automatically after the machine has been programmed so that the bending slides take the required positions in the desired cycle sequence in order to either hold the material firmly or to bend it.
  • the bending slides are arranged in a single hydraulic circuit, wherein both the displacement movement of the bending slides and the rotary movement of the bending cranks around the bending mandrels can take place completely independently of one another.
  • the individual drive elements can be supplied with operating fluid, the translational movement of the bending slides preferably taking place via hydraulic motors, the output movement of which is rotational, whereas the rotary movement of the bending cranks via hydraulic cylinders takes place, the straight-line output movement is converted into a rotary movement by means of a chain gripped at one end by a spring element.
  • a reduction in tension in the leg held immovably by a bending slide is achieved by twisting the bending crank in such a way that «opening» to an extent that corresponds approximately to the elastic deformation of the material.
  • a device in particular intended for carrying out the method described above, is characterized in that the bending slides are designed as devices for holding the rod-shaped concrete reinforcing steel in such a way that one of the bending slides immovably holds the concrete reinforcing steel in a section in which the intersection of two material legs, the bending mandrel being positioned on the inside at the intersection of the legs and the bending crank on the outside on the legs angled from the longitudinal axis of the material coinciding with the direction of movement of the bending slide.
  • the drive elements arranged in a hydraulic circuit for the translatory movement of the bending slides and the rotary movement of the bending cranks are thus provided men that the operating fluid coming from the pump first acts on the drive elements for the translational movement one after the other, in order subsequently to flow through the drive elements for the rotary movement of the bending cranks if necessary.
  • the elements can be activated completely independently of one another.
  • the drive elements react extremely promptly to pressurization or pressure drop, so that there is a further guarantee that the final shapes of the bent rod-shaped materials have the desired geometry with small tolerances.
  • they include an eccentrically mounted roller mandrel, which is preferably held immovably in the desired position by means of two counter-rotating threads, so that regardless of the force acting on it, i.e. regardless of whether the roller mandrel makes a right or a left turn , it is ensured that there is no unwanted movement.
  • the roll mandrel itself is held by a cylindrical disk or rod projecting from the shaft connected to the hydraulic drive, the shaft axis coinciding with the axis of the bending mandrel.
  • the roll mandrel is arranged on an eccentric disk which is connected to the bending crank by means of a pin.
  • the eccentric disc can be rotated to set different positions in relation to the mandrel.
  • spacer elements such as block screws extend from the eccentric disc and support the eccentric disc against an assigned surface of the bending crank.
  • the thread of the pin of the eccentric disc is selected so that the eccentric disc is to be tightened during the bending process, but is compensated for by the spacer elements. This ensures that a set position of the bending roller is always maintained.
  • This proposal can also be implemented in other bending machines.
  • the bending mandrel itself preferably comprises a fixed mandrel to be provided with interchangeable attachments (bending templates), so that there is the advantage that there is a slight adaptation to different thicknesses of the materials.
  • the device according to the invention can be used e.g. a processing line can be used, which comprises a cutting device cutting the material and a buffer provided between it and that preferably in the form of a roller conveyor. This clearly results in another not negligible advantage in terms of throughput.
  • a bending machine 10 is schematically shown in plan view, which comprises a horizontally lying processing table 12.
  • two bending carriages 14 and 16 are slidably arranged in the longitudinal direction of the processing table 12, by means of which steel materials 18, preferably rod-shaped, to be introduced into the bending machine 10 are to be bent, as described in more detail below.
  • These bars 18 enter the machine from a material store 20, wherein a plurality of bars 18 can be bent simultaneously by means of the bending slide 14 and 16.
  • the material store 20 can be part of a processing line shown schematically in FIG. 3, which is arranged between the bending machine 10 and a bar cutting machine 22.
  • the rod cutting machine can obey a principle as described in German patent application 3206673 by the same applicant.
  • the use of the machine 10 in a processing line has the advantage that there is a high throughput without the need for further explanations.
  • the bending machine 10 can be programmed via a keyboard 24 so as to cold-deform the materials 18 to the desired extent.
  • the work surface 12 has a slot that runs vertically or almost vertically to accommodate several round materials to be arranged one above the other, which is laterally delimited by the bending slides 14 and 16.
  • a con tainer 26 indicated, into which the bent materials 29 can be thrown by hand.
  • an automatic ejection device is integrated in the machine 10.
  • Each bending slide 14 or 16 consists of a bending crank 28, a bending mandrel 30 and a drive 32, 34, 36 and 38.
  • the bending crank 28 moves at a distance around the bending mandrel 30. Between the bending crank 28 and the bending mandrel 30 there are then materials to be deformed.
  • the bending crank 28 comprises an eccentrically mounted roller mandrel 40 which can optionally be rotated about its axis and which is immovably fixed via two opposing threads 42 and 44 in the desired position (infinitely adjustable axis distance bending roller 40, bending mandrel 30), so that it is independent a loosening of the mandrel 40 cannot take place from the direction of rotation of the bending curve 28.
  • the bending crank 28 is also received eccentrically by a shaft 46 which is connected to one of the hydraulic cylinders 36 or 38.
  • the longitudinal movement of the hydraulic cylinder 36 or 38 is converted into the desired rotary movement by means of a chain 48.
  • the chain 48 cooperating with the shaft 46 is connected at one end to the hydraulic cylinder 36 or 38 and at the other end via a spring-biased element 50. The exact structure and the mode of operation can easily be seen from FIG. 4.
  • the translational movement of the bending slide 14 or 16 itself preferably takes place via hydraulic motors 32 and 34 with a rotary output movement.
  • Both the hydraulic cylinders 36 and 38 and the hydraulic motors 32 and 34 are located in a hydraulic circuit 52, as is clearly shown in FIG. 2. This has the advantage that all drive means can be operated with a single unit, so that complex monitoring and control devices are not required: But even if only a single hydraulic circuit is required, it is nevertheless ensured that all drive means 32 to 38 can be operated completely independently of one another.
  • the individual drive means 32, 34, 36, 38 in the circuit 52 are now arranged as follows.
  • the first hydraulic motor 32 is located behind the pump 56 conveying the operating medium 54.
  • the second hydraulic motor 34 is arranged in a circuit-like manner behind the first hydraulic motor 32.
  • the hydraulic cylinders 38 and 36 then follow in order to close the circuit.
  • the connection between the circuit 52 and the drive elements 32 to 38 is made via solenoid valves 58, 60, 62 and 64. If all valves 58 to 64 are closed, the operating means 54 runs freely in the circuit 52. Now e.g.
  • valve 60 If the valve 60 is activated in such a way that a connection to the hydraulic motor 32 takes place — a connection PB / AT or PA / BT is consequently established — the valves 62, 64 and 58, which are otherwise not activated, can continue to flow back directly without pressure. However, if the valve 62 is also actuated, that is to say if both bending slides 14 and 16 are to be displaced at the same time, the hydraulic motor 34 is acted upon by the return fluid of the motor 32 without the independence of the actuation being canceled thereby. Accordingly, the return fluid of the engine 34 can act on the hydraulic cylinders 38/36.
  • the bending mandrel 70 is then located on the inside at the intersection of the legs of the material 66 which describe an angle to one another, and the bending crank 74 is located on the outside of the angled end section 68.
  • the right end 76 of the material 66 can then be bent to the desired extent.
  • a bending crank 78 is in turn rotated around a bending mandrel 80.
  • the bending crank 78 returns to its starting position and the bending slide 82 comprising the mandrel 80 and the bending crank 78 is moved from the position B to the position C.
  • a bending process can then be carried out again, so that the material 66, viewed from its center 84, has the desired geometric figure with regard to its right side.
  • the material 66 is then held in its upper position (reference numeral 86) by the bending slide 82 between the bending mandrel 18 and the bending crank 78.
  • the bending slide 88 comprising the bending mandrel 70 and the bending crank 72 is actuated in such a way that the bending crank 74 is turned back into its starting position, so that a method of Bending carriage 88 can take place from position A to position D.
  • the bending crank 72 is then rotated around the bending mandrel 70 (reference number 90), so that the material 66 then has the desired bending shape.
  • the bending cranks are then turned back from the positions 86 and 90 to the basic position so that the material can be removed from the slides 82 and 88.
  • the slides are then moved back to positions A and B so that the same bending process can be carried out with new material.
  • FIG. 7 and 8 show other bending shapes by way of example, the bending process being carried out in the corresponding sequence in steps D ', E, F, G, H, I, K, L and M, N, 0, P, R, S is done.
  • the respective material is immovably fixed during the bending processes E, F, G, H or N, 0, P by the bending slide in the position D 'or M, whereas in the bending processes I, K and L or R and S a Set in position H or P is done.
  • the shaped materials are removed from the bending slide so that they can be moved back into their basic position, that is to say D ', E or M, N.
  • FIG. 9 A bending process is schematically shown once again in FIG. 9, which corresponds to that of FIGS. 6 to 8 in the course of the method.
  • the dashed representation of the right leg 92 should make it clear that when a closed figure is formed, relaxation takes place such that the leg 92 is moved to the right by turning the bending crank 94 back, so that when the left leg 96 is bent in the direction of the Leg 92 an undesirable further deformation of this can not take place.
  • the leg 92 is relaxed to the extent and thus the bending crank 94 is turned back, as corresponds to the elastic deformation. This ensures that overbending cannot occur when the leg ends 98 or 100 collide, so that the cold-formed end product also shows the desired geometry.
  • the relaxation is fundamentally dependent on the strength of the materials to be bent, experience has shown that turning the bending crank 94 back by 15 ° brings about a relaxation which ensures that the overbending to be avoided is ruled out for almost all conventional materials of normal strength .
  • FIG. 12 shows a design of a bending crank 102 which is particularly noteworthy and which can be rotated about a bending mandrel 108.
  • the bending mandrel 108 is the end of a fixed shaft 109, which in turn is arranged non-rotatably via a thread 110 in a section of the bending slide housing 112.
  • Interchangeable bending templates 104 can be placed on the bending mandrel 108 and are held non-rotatably on the bending mandrel 108, for example, by a feather key 106 or elements having the same effect.
  • the bending crank 102 is now rotated about the shaft 109, the bending crank 102 being supported via a hollow cylinder section 116 via bearings 114 on the shaft 108 and via bearings 118 relative to the housing 112. Furthermore, the hollow cylinder section 116 has a drive pinion 120, via which the bending crank 102 is rotated in the manner described above.
  • the bending crank 102 now has an eccentric to the axis of rotation a mandrel 122 which is fixedly connected to an eccentric disk 126 via a pin 124.
  • the roller mandrel 122 can be rotatably mounted about the pin 124.
  • the mandrel 104 is arranged non-rotatably.
  • the eccentric disk 126 is connected to a leg 132 projecting from the hollow cylinder 116 by means of an eccentric pin 136 , the thread of which is selected such that when the bending crank 102 is turned to bend the material 18 to be inserted between the mandrel 122 and the mandrel 108 or the bending template 104, the eccentric disc 126 is tightened without changing the position of the bending roller.
  • spacer elements 134 protrude from the side of the eccentric disk facing the bending crank 102, by means of which the eccentric disk is fixed on the opposite section 132 of the bending crank 102 without play.
  • the pin 136 of the eccentric disk 126 is secured when the pin 136 is frictionally locked by means of roller mandrel 126 with the material 18 to be located between the latter and the bending template 128. (For example, the bending crank is counter-clockwise rotated, the slope of the eccentric mandrel is clockwise).
  • the bending crank 102 with the bending mandrel 122 is now rotated on a circle X 1 around the shaft 108 as the center point, the radius of the roller mandrel 120 depending on its position relative to the center point M being greater or smaller than X 1 .
  • the radius X 2 is smaller than X 1
  • the radius X 3 is larger than X 1 .
  • the bending templates 128 and 130 can have different diameters.
  • a counter bearing 136 is also shown in FIGS. 13 and 14 in order to keep the materials 18 in a horizontal position in the exemplary embodiment during bending with respect to the section not to be deformed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Wire Processing (AREA)

Abstract

In order to form materials (18) in a cold state automatically and reproduceably a bending machine (10) is proposed, comprising at least two bending carriages (14, 16), which interact with the material so that one of the bending carriages (14 or 16) constantly holds the material (18) immoveable when the other bending carriage (16 or 14) is bending the material (12) or is being moved along it.

Description

Die Erfindung bezieht sich auf ein Verfahren sowie eine Vorrichtung zum Biegen von stabförmigen Bewehrungsstählen gemäss Oberbegriffen der Ansprüche I und 4.The invention relates to a method and a device for bending rod-shaped reinforcement steels according to the preambles of claims I and 4.

Der US-A-3805576 ist eine Vorrichtung zum Biegen von stabförmigen Materialien zu entnehmen, die zwei Biegeschlitten umfasst, die jeweils einen Biegedorn, eine Biegekurbel und Antriebselemente umfasst. Um beim Biegen ein Verrücken der Materialien zu verhindern, ist zusätzlich zu den Biegeschlitten eine Einrichtung zum Festhalten des stabförmigen Materials vorgesehen. Die Antriebselemente der Biegeschlitten sind voneinander unabhängig betätigbar.US-A-3805576 shows a device for bending rod-shaped materials, which comprises two bending slides, each comprising a bending mandrel, a bending crank and drive elements. In order to prevent the materials from moving during bending, a device for holding the rod-shaped material is provided in addition to the bending slide. The drive elements of the bending slides can be operated independently of one another.

In der DC-B-1 552970 ist eine Maschine zum Biegen von Bewehrungsstählen beschrieben, die der Anzahl der vorzunehmenden Biegungen entsprechende unverrückbare Biegeschlitten umfasst. Jedem Biegeschlitten ist ein Halteelement in Form eines Drückers zugeordnet, der ein Verrücken der zu biegenden Bewehrungsstähle verhindern soll.DC-B-1 552970 describes a machine for bending reinforcing steels which comprises immovable bending slides corresponding to the number of bends to be made. A holding element in the form of a pusher is assigned to each bending slide, which is intended to prevent the reinforcing steel to be bent from moving.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung gemäss den Oberbegriffen der Ansprüche 1 und 4 derart auszubilden, dass ein weitgehend automatischer Biegeprozess stattfindet, durch den Endprodukte zur Verfügung gestellt werden, die eine hohe Genauigkeit hinsichtlich der gewünschten Endform aufweisen. Dabei soll gewährleistet sein, dass ohne gesonderten konstruktiven Aufwand ein Biegeprozess möglich ist, ohne dass die Gefahr des unkontrollierten Verrutschens des stabförmigen Materials besteht. Auch soll die Vorrichtung konstruktiv einfach aufgebaut und zu handhaben sein, so dass insbesondere auch ungeschultes Personal eine Bedienung vornehmen kann.The object of the present invention is to design a method and a device according to the preambles of claims 1 and 4 in such a way that a largely automatic bending process takes place, by means of which end products are made available which have a high degree of accuracy with regard to the desired final shape. It should be ensured that a bending process is possible without special design effort, without the risk of the rod-shaped material slipping in an uncontrolled manner. The device should also be structurally simple and easy to use, so that even untrained personnel can operate it.

Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass nach dem Umbiegen eines Endes des Betonbewehrungsstahles bei den weiteren Biegevorgängen ein Abschnitt des Betonbewehrungsstahles abwechselnd zwischen Biegekurbel und Biegedorn in beiden Richtungen von einem der Biegeschlitten im Bereich zweier einen Winkel zueinander beschreibenden Schenkel unverrückbar festgelegt wird, während der den Betonbewehrungsstahl nicht festhaltende Biegeschlitten den Betonbewehrungsstahl biegt oder entlang diesem verschoben wird.The object is achieved according to the invention in that after the bending of one end of the reinforcing steel during the further bending processes, a section of the reinforcing steel alternately between the crank and the mandrel is fixed in both directions by one of the bending slides in the region of two legs describing an angle to one another, during which Concrete reinforcement steel non-adherent bending slide which bends or moves concrete reinforcement steel along this.

Erfindungsgemäss wird demzufolge vorgeschlagen, dass die von der Biegemaschine kalt zu verformenden Stahlmaterialien während des Biegens in der Maschine unverrückbar von einem der Biegeschlitten festgehalten werden, ohne dass zusätzlich Halteeinrichtungen erforderlich sind. Hierdurch ist sichergestellt, dass die Materialien die gewünschte Geometrie bei geringer Toleranz erhalten. Dadurch, dass die Biegeschlitten die Aufgabe zu erfüllen haben, die zu verformenden Materialien festzuhalten bzw. im gewünschten Umfang zu verformen, ergibt sich erkennbar eine einfache Konstruktion, die nicht nur eine Wartungsfreundlichkeit zeigt, sondern sicherstellt, dass eine geringe Störanfälligkeit gegeben ist. Dabei kann selbstverständlich das Verfahren der Schlitten bzw. das Halten der Materialien durch die Schlitten programmgesteuertwerden, ohne dass es hierzu weiterer Erläuterungen bedarf. Demzufolge kann der Biegevorgang automatisch ablaufen, nachdem man die Maschine so programmiert hat, dass die Biegeschlitten in der gewünschten Taktfolge die erforderlichen Positionen einnehmen, um wahlweise das Material unverrückbar festzuhalten oder dieses zu verbiegen.Accordingly, it is proposed according to the invention that the steel materials to be cold-formed by the bending machine are immovably held by one of the bending slides during bending in the machine, without additional holding devices being required. This ensures that the materials receive the desired geometry with a low tolerance. The fact that the bending slides have the task of holding the materials to be deformed or deforming them to the desired extent results in a recognizable simple construction which not only shows ease of maintenance, but also ensures that there is little susceptibility to malfunction. Of course, the process of the carriage or the holding of the materials by the carriage can be program-controlled without the need for further explanations. As a result, the bending process can take place automatically after the machine has been programmed so that the bending slides take the required positions in the desired cycle sequence in order to either hold the material firmly or to bend it.

Die Biegeschlitten werden nach einer weiteren Ausgestaltung der Erfindung in einem einzigen Hydraulikkreislauf angeordnet, wobei sowohl die Verschiebebewegung der Biegeschlitten als auch die Drehbewegung der Biegekurbeln um die Biegedorne herum völlig unabhängig voneinander erfolgen kann. Daraus resuliert der Vorteil, dass mit einem einzigen Antriebsaggregat, also der die Betriebsflüssigkeit fördernden Pumpe, die einzelnen Antriebselemente mit Betriebsflüssigkeit beaufschlagt werden können, wobei die translatorische Bewegung der Biegeschlitten vorzugsweise über Hydromotoren erfolgt, deren Ausgangsbewegung rotatorisch ist, wohingegen die Drehbewegung der Biegekurbeln über Hydrozylinder erfolgt, deren gradlinige Ausgangsbewegung mittels einer an einem Ende von einem Federelement erfassten Kette in eine Drehbewegung umgesetzt wird.According to a further embodiment of the invention, the bending slides are arranged in a single hydraulic circuit, wherein both the displacement movement of the bending slides and the rotary movement of the bending cranks around the bending mandrels can take place completely independently of one another. This results in the advantage that with a single drive unit, i.e. the pump conveying the operating fluid, the individual drive elements can be supplied with operating fluid, the translational movement of the bending slides preferably taking place via hydraulic motors, the output movement of which is rotational, whereas the rotary movement of the bending cranks via hydraulic cylinders takes place, the straight-line output movement is converted into a rotary movement by means of a chain gripped at one end by a spring element.

Um auch sicherzugehen, dass z.B. bei der Verformung des Materials zu geschlossenen Figuren ein unerwünschtes weiteres Verbiegen aufeinanderstossender Schenkel nicht erfolgt, wird nach einer weiteren Ausgestaltung der Erfindung ein Spannungsabbau in dem von einem Biegeschlitten unverrückbar festgehaltenen Schenkel dadurch erzielt, dass eine Verdrehung der Biegekurbel derart erfolgt, dass ein «Öffnen» in einem Umfang erfolgt, der in etwa der elastischen Verformung des Materials entspricht.To make sure that e.g. when the material is deformed into closed figures, there is no undesired further bending of adjoining legs, according to a further embodiment of the invention, a reduction in tension in the leg held immovably by a bending slide is achieved by twisting the bending crank in such a way that «opening» to an extent that corresponds approximately to the elastic deformation of the material.

Dabei hat sich herausgestellt, dass ein Zurückdrehen der Biegekurbel um ca. 15° nahezu für sämtliche normalerweise zu verformenden Stahlmaterialien üblicher Stärken genügt.It turned out that turning the bending crank back by approx. 15 ° is almost sufficient for all steel materials of normal thickness that are normally to be deformed.

Eine Vorrichtung gemäss Oberbegriff des Anspruchs 4 insbesondere bestimmt zur Durchführung des zuvor beschriebenen Verfahrens zeichnet sich dadurch aus, dass die Biegeschlitten als Einrichtungen zum Festhalten des stabförmigen Betonbewehrungsstahls derart ausgebildet sind, dass einer der Biegeschlitten den Betonbewehrungsstahl in einem Abschnitt unverrückbar festhält, in dem der Schnittpunkt von zwei Materialschenkeln liegt, wobei der Biegedorn innen im Schnittpunkt der Schenkel und die Biegekurbel aussen an den von der mit der Bewegungsrichtung der Biegeschlitten zusammenfallenden Materiallängsachse abgewinkelten Schenkel positioniert ist.A device according to the preamble of claim 4, in particular intended for carrying out the method described above, is characterized in that the bending slides are designed as devices for holding the rod-shaped concrete reinforcing steel in such a way that one of the bending slides immovably holds the concrete reinforcing steel in a section in which the intersection of two material legs, the bending mandrel being positioned on the inside at the intersection of the legs and the bending crank on the outside on the legs angled from the longitudinal axis of the material coinciding with the direction of movement of the bending slide.

Die in einem Hydraulikkreislauf angeordneten Antriebselemente für die translatorische Bewegung der Biegeschlitten sowie die Drehbewegung der Biegekurbeln ist dabei so vorgenommen, dass die von der Pumpe kommende Betriebsflüssigkeit erst die Antriebselemente für die Translationsbewegung nacheinander beaufschlagt, um anschliessend die Antriebselemente für die Drehbewegung der Biegekurbeln gegebenenfalls zu durchströmen. Trotz des Anordnens in einem einzigen Hydraulikkreislauf ist sichergestellt, dass die Elemente völlig unabhängig voneinander aktiviert werden können. Durch das Verwenden eines einzigen Aggregats und Hydraulikkreislaufes wird u.a. der Vorteil erzielt, dass aufwendige Überwachungsschaltungen nicht erforderlich werden. Ausserdem ist aufgrund des hydraulischen Antriebs die Gewähr gegeben, dass die Antriebselemente überaus prompt auf Druckbeaufschlagung bzw. Druckabfall reagieren, so dass dadurch eine weitere Sicherheit gegeben ist, dass die Endformen der gebogenen stabförmigen Materialien die gewünschte Geometrie bei geringen Toleranzen aufweisen. Um eine optimale Funktionstüchtigkeit der Biegekurbeln sicherzustellen, umfassen diese einen exzentrisch gelagerten Rollendorn, der vorzugsweise über zwei gegenläufige Gewinde in gewünschter Position unverrückbar festgehalten wird, so dass unabhängig von der Krafteinwirkung auf diesen, also unabhängig, ob der Rollendorn eine Rechts- oder eine Linksdrehung vollführt, sichergestellt ist, dass ein unerwünschtes Verrücken nicht erfolgt. Der Rollendorn selbst ist dabei von einer mit dem Hydraulikantrieb verbundenen Welle abragenden Zylinderscheibe oder Stab gehalten, wobei die Wellenachse mit der Achse des Biegedorns zusammenfällt. Auch besteht die Möglichkeit, den Rollendorn in bezug auf die Biegedornachse im unterschiedlichen Abstand dadurch anzuordnen, dass der Rollendorn auf einer Exzenterscheibe angeordnet wird, die über einen Zapfen mit der Biegekurbel verbunden ist. Dabei kann die Exzenterscheibe gedreht werden, um verschiedene Positionen in bezug auf den Biegedorn einstellen zu können. Um jedoch zu verhindern, dass bei Krafteinwirkung auf die Biegerolle und damit die Exzenterscheibe diese gedreht wird, gehen von der Exzenterscheibe Abstandselemente wie Blockschrauben aus, die die Exzenterscheibe gegen eine zugeordnete Fläche der Biegekurbel abstützen. Ferner ist das Gewinde des Zapfens der Exzenterscheibe so gewählt, dass beim Biegevorgang ein Anziehen der Exzenterscheibe erfolgen soll, das jedoch durch die Abstandselemente ausgeglichen wird. Dadurch ist sichergestellt, dass eine eingestellte Position der Biegerolle stets beibehalten bleibt. Dieser Vorschlag ist im übrigen auch in anderen Biegeautomaten realisierbar.The drive elements arranged in a hydraulic circuit for the translatory movement of the bending slides and the rotary movement of the bending cranks are thus provided men that the operating fluid coming from the pump first acts on the drive elements for the translational movement one after the other, in order subsequently to flow through the drive elements for the rotary movement of the bending cranks if necessary. Despite being arranged in a single hydraulic circuit, it is ensured that the elements can be activated completely independently of one another. By using a single unit and hydraulic circuit, the advantage is achieved, among other things, that complex monitoring circuits are not required. In addition, due to the hydraulic drive, there is a guarantee that the drive elements react extremely promptly to pressurization or pressure drop, so that there is a further guarantee that the final shapes of the bent rod-shaped materials have the desired geometry with small tolerances. In order to ensure optimal functionality of the bending cranks, they include an eccentrically mounted roller mandrel, which is preferably held immovably in the desired position by means of two counter-rotating threads, so that regardless of the force acting on it, i.e. regardless of whether the roller mandrel makes a right or a left turn , it is ensured that there is no unwanted movement. The roll mandrel itself is held by a cylindrical disk or rod projecting from the shaft connected to the hydraulic drive, the shaft axis coinciding with the axis of the bending mandrel. There is also the possibility of arranging the roll mandrel at different distances from the bending mandrel axis in that the roll mandrel is arranged on an eccentric disk which is connected to the bending crank by means of a pin. The eccentric disc can be rotated to set different positions in relation to the mandrel. However, in order to prevent the bending roller and thus the eccentric disc from being rotated when force is exerted, spacer elements such as block screws extend from the eccentric disc and support the eccentric disc against an assigned surface of the bending crank. Furthermore, the thread of the pin of the eccentric disc is selected so that the eccentric disc is to be tightened during the bending process, but is compensated for by the spacer elements. This ensures that a set position of the bending roller is always maintained. This proposal can also be implemented in other bending machines.

Der Biegedorn selbst umfasst vorzugsweise einen mit austauschbaren Aufsätzen (Biegeschablonen) zu versehenden feststehenden Mutterdorn, so dass sich dadurch der Vorteil ergibt, dass eine leichte Anpassung an unterschiedliche Dicken der Materialien gegeben ist.The bending mandrel itself preferably comprises a fixed mandrel to be provided with interchangeable attachments (bending templates), so that there is the advantage that there is a slight adaptation to different thicknesses of the materials.

Durch den Vorschlag, den Biegeablauf automatisch vorzunehmen, kann die erfindungsgemässe Vorrichtung in z.B. einer Bearbeitungsstrasse eingesetzt werden, die eine das Material ablängende Schneidvorrichtung sowie einen zwischen dieser und jener vorgesehenen Puffer vorzugsweise in Form einer Rollbahn umfasst. Erkennbar ergibt sich daraus ein weiterer nicht zu vernachlässigender Vorteil hinsichtlich der Durchsatzleistungen.With the proposal to carry out the bending process automatically, the device according to the invention can be used e.g. a processing line can be used, which comprises a cutting device cutting the material and a buffer provided between it and that preferably in the form of a roller conveyor. This clearly results in another not negligible advantage in terms of throughput.

Die Erfindung wird nachstehend an Hand von der Zeichnung zu entnehmenden Ausführungsbeispielen näher erläutert.The invention is explained in more detail below with reference to exemplary embodiments that can be found in the drawing.

Es zeigen:

  • Fig. 1 eine Vorrichtung in Draufsicht,
  • Fig. 2 einen Hydraulikschaltplan,
  • Fig. 3 einen Einsatz der Vorrichtung nach Fig. 1 in einer Arbeitsstrasse,
  • Fig. 4 eine Detaildarstellung eines Antriebs einer Biegekurbel,
  • Fig. 5 einen Ausschnitt einer ersten Ausführungsform eines Biegeschlittens,
  • Fig. 6 bis 9 schematische Darstellungen von Biegevorgängen,
  • Fig. 10 und 11 Biegeformen von Rundstahl, die mit der beschriebenen Vorrichtung hergestellt werden können,
  • Fig. 12 einen Ausschnitt einer zweiten Ausführungsform eines Biegeschlittens und
  • Fig. 13 und 14 schematische Darstellungen von Biegevorgängen.
Show it:
  • 1 shows a device in plan view,
  • 2 shows a hydraulic circuit diagram,
  • 3 shows an application of the device according to FIG. 1 in a work street,
  • 4 shows a detailed illustration of a drive of a bending crank,
  • 5 shows a detail of a first embodiment of a bending slide,
  • 6 to 9 are schematic representations of bending processes,
  • 10 and 11 bending shapes of round steel, which can be produced with the described device,
  • Fig. 12 shows a detail of a second embodiment of a bending slide and
  • 13 and 14 are schematic representations of bending processes.

In Fig. 1 ist schematisch eine Biegemaschine 10 in Draufsicht dargestellt, die einen horizontal liegenden Bearbeitungstisch 12 umfasst. In Längsrichtung des Bearbeitungstisches 12 sind im Ausführungsbeispiel zwei Biegeschlitten 14 und 16 verschiebbar angeordnet, mittels derer in die Biegemaschine 10 einzubringende vorzugsweise stabförmig ausgebildete Stahlmaterialien 18 -wie nachstehend näher beschrieben- gebogen werden sollen. Diese Stäbe 18 gelangen von einem Materiallager 20 in die Maschine, wobei mehrere Stäbe 18 gleichzeitig mittels der Biegeschlitten 14 und 16 gebogen werden können. Das Materiallager 20 kann dabei ein Teil einer in Fig. 3 schematisch dargestellten Bearbeitungsstrasse sein, das zwischen der Biegemaschine 10 und einer Stabschneidemaschine 22 angeordnet ist. Die Stabschneidemaschine kann dabei einem Prinzip gehorchen, wie es in der Deutschen Patentanmeldung 3206673 desselben Anmelders beschrieben ist. Das Materiallager 20, das eine Biegewagen-Rollbahn sein kann, dient dabei gleichzeitig als Puffer. Durch den Einsatz der Maschine 10 in einer Bearbeitungsstrasse ergibt sich der Vorteil, dass ein hoher Durchsatz gegeben ist, ohne dass es hierzu näherer Erläuterungen bedarf. Die Biegemaschine 10 ist über eine Tastatur 24 programmierbar, um so die Materialien 18 im gewünschten Umfang kalt zu verformen. Ferner sei erwähnt, dass die Arbeitsfläche 12 einen vertikal oder nahezu vertikal zu ihr verlaufenden Schlitz zur Aufnahme von mehreren übereinander anzuordnenden Rundmaterialien aufweist, der von den Biegeschlitten 14 und 16 seitlich begrenzt wird. Neben der Maschine 10 ist ferner ein Container 26 angedeutet, in den die gebogenen Materialien 29 von Hand hineingeworfen werden können. Selbstverständlich besteht auch die Möglichkeit, dass eine automatische Auswurfvorrichtung in der Maschine 10 integriert ist.In Fig. 1, a bending machine 10 is schematically shown in plan view, which comprises a horizontally lying processing table 12. In the exemplary embodiment, two bending carriages 14 and 16 are slidably arranged in the longitudinal direction of the processing table 12, by means of which steel materials 18, preferably rod-shaped, to be introduced into the bending machine 10 are to be bent, as described in more detail below. These bars 18 enter the machine from a material store 20, wherein a plurality of bars 18 can be bent simultaneously by means of the bending slide 14 and 16. The material store 20 can be part of a processing line shown schematically in FIG. 3, which is arranged between the bending machine 10 and a bar cutting machine 22. The rod cutting machine can obey a principle as described in German patent application 3206673 by the same applicant. The material store 20, which can be a bending carriage runway, also serves as a buffer. The use of the machine 10 in a processing line has the advantage that there is a high throughput without the need for further explanations. The bending machine 10 can be programmed via a keyboard 24 so as to cold-deform the materials 18 to the desired extent. It should also be mentioned that the work surface 12 has a slot that runs vertically or almost vertically to accommodate several round materials to be arranged one above the other, which is laterally delimited by the bending slides 14 and 16. In addition to the machine 10 is a con tainer 26 indicated, into which the bent materials 29 can be thrown by hand. Of course, there is also the possibility that an automatic ejection device is integrated in the machine 10.

Jeder Biegeschlitten 14 bzw. 16 besteht aus einer Biegekurbel 28, einem Biegedorn 30 sowie einem Antrieb 32, 34, 36 bzw. 38. Dabei bewegt sich die Biegekurbel 28 im Abstand um den Biegedorn 30. Zwischen Biegekurbel 28 und Biegedorn 30 befinden sich dann die zu verformenden Materialien. Wie in Fig. 5 angedeutet, umfasst die Biegekurbel 28 einen exzentrisch gelagerten gegebenenfalls um seine Achse drehbaren Rollendorn 40, der über zwei gegenläufige Gewinde 42 und 44 in gewünschter Position (stufenlos einstellbarer Achsenabstand Biegerolle 40, Biegedorn 30) unverrückbar festgelegt wird, so dass unabhängig von der Drehrichtung der Biegekurbei 28 ein Lösen des Biegedorns 40 nicht erfolgen kann. Die Biegekurbel 28 wird gleichfalls exzentrisch von einer Welle 46 aufgenommen, die mit einem der Hydrozylinder 36 oder 38 verbunden ist Dabei wird die Längsbewegung des Hydrozylinders 36 oder 38 über eine Kette 48 in die gewünschte Drehbewegung umgesetzt. Die mit der Welle 46 zusammenwirkende Kette 48 ist dabei an einem Ende mit dem Hydrozylinder 36 bzw. 38 und mit dem anderen Ende über ein federvorgespanntes Element 50 verbunden. Der genaue Aufbau bzw. die Wirkungsweise ist leicht aus der Fig. 4 ersichtlich.Each bending slide 14 or 16 consists of a bending crank 28, a bending mandrel 30 and a drive 32, 34, 36 and 38. The bending crank 28 moves at a distance around the bending mandrel 30. Between the bending crank 28 and the bending mandrel 30 there are then materials to be deformed. As indicated in FIG. 5, the bending crank 28 comprises an eccentrically mounted roller mandrel 40 which can optionally be rotated about its axis and which is immovably fixed via two opposing threads 42 and 44 in the desired position (infinitely adjustable axis distance bending roller 40, bending mandrel 30), so that it is independent a loosening of the mandrel 40 cannot take place from the direction of rotation of the bending curve 28. The bending crank 28 is also received eccentrically by a shaft 46 which is connected to one of the hydraulic cylinders 36 or 38. The longitudinal movement of the hydraulic cylinder 36 or 38 is converted into the desired rotary movement by means of a chain 48. The chain 48 cooperating with the shaft 46 is connected at one end to the hydraulic cylinder 36 or 38 and at the other end via a spring-biased element 50. The exact structure and the mode of operation can easily be seen from FIG. 4.

Wird die Drehbewegung der Biegekurbel 28 vorzugsweise mittels Hydrozylindern 36 und 38 hervorgerufen, so erfolgt die translatorische Bewegung der Biegeschlitten 14 bzw. 16 selbst vorzugsweise über Hydromotoren 32 und 34 mit rotatorischer Ausgangsbewegung. Sowohl die Hydrozylinder 36 und 38 als auch die Hydromotoren 32 und 34 befinden sich, wie Fig. 2 unmissverständlich -zeigt, in einem Hydraulikkreislauf 52. Dies hat den Vorteil, dass mit einem einzigen Aggregat sämtliche Antriebsmittel betrieben werden können, so dass aufwendige Überwachungs-und Steuerungseinrichtungen nicht erforderlich sind: Aber auch wenn nur ein einziger Hydraulikkreislauf erforderlich ist, so ist dennoch sichergestellt, dass sämtliche Antriebsmittel 32 bis 38 völlig unabhängig voneinander betrieben werden können. Die einzelnen Antriebsmittel 32, 34, 36, 38 in dem Kreislauf 52 sind nun wie folgt angeordnet. Hinter der das Betriebsmittel 54 fördernden Pumpe 56 befindet sich der erste Hydromotor 32. Hinter dem ersten Hydromotor 32 ist der zweite Hydromotor 34 kreisläufmässig angeordnet. Sodann folgen die Hydrozylinder 38 bzw. 36, um den Kreislauf zu schliessen. Im Ausführungsbeispiel nach Fig. 2 führt die Verbindung zwischen dem Kreislauf 52 und den Antriebselementen 32 bis 38, über Magnetventile 58, 60, 62 bzw. 64 hergestellt. Sind alle Ventile 58 bis 64 geschlossen, findet im Kreislauf 52 ein freier Durchlauf des Betriebsmittels 54 statt. Wird nun z.B. das Ventil 60 derart aktiviert, dass eine Verbindung zum Hydromotor 32 erfolgt -es wird demzufolge eine Verbindung PB/AT oder PA/BT hergestellt-, so kann bei ansonsten nicht aktivierten Ventilen 62, 64 und 58 das Betriebsmittel weiterhin unmittelbar drucklos zurückströmen. Wird jedoch auch das Ventil 62 betätigt, also wenn beide Biegeschlitten 14 und 16 gleichzeitig verschoben werden sollen, so wird der Hydromotor 34 vom Rücklauffluid des Motors 32 beaufschlagt, ohne dass dadurch die Unabhängigkeit der Betätigung aufgehoben wird. Dementsprechend kann das Rücklauffluid des Motors 34 die Hydrozylinder 38/36 beaufschlagen. Gleiches kann selbstverständlich auch dann erfolgen, wenn nur einer der Hydromotoren 32 oder 34 oder keiner von diesen von dem Betriebsmittel 54 beaufschlagt wird. Aus der zuvor wiedergegebenen Schilderung ergibt sich, dass die Antriebsmittel 32 bis 38 für das Betätigen der Biegeschlitten 14 und 16 in einem einzigen Hydraulikkreislauf 52 angeordnet sind und vollkommen unabhängig voneinander, aber auch gemeinsam aktiviert werden können.If the rotary movement of the bending crank 28 is preferably brought about by means of hydraulic cylinders 36 and 38, the translational movement of the bending slide 14 or 16 itself preferably takes place via hydraulic motors 32 and 34 with a rotary output movement. Both the hydraulic cylinders 36 and 38 and the hydraulic motors 32 and 34 are located in a hydraulic circuit 52, as is clearly shown in FIG. 2. This has the advantage that all drive means can be operated with a single unit, so that complex monitoring and control devices are not required: But even if only a single hydraulic circuit is required, it is nevertheless ensured that all drive means 32 to 38 can be operated completely independently of one another. The individual drive means 32, 34, 36, 38 in the circuit 52 are now arranged as follows. The first hydraulic motor 32 is located behind the pump 56 conveying the operating medium 54. The second hydraulic motor 34 is arranged in a circuit-like manner behind the first hydraulic motor 32. The hydraulic cylinders 38 and 36 then follow in order to close the circuit. In the exemplary embodiment according to FIG. 2, the connection between the circuit 52 and the drive elements 32 to 38 is made via solenoid valves 58, 60, 62 and 64. If all valves 58 to 64 are closed, the operating means 54 runs freely in the circuit 52. Now e.g. If the valve 60 is activated in such a way that a connection to the hydraulic motor 32 takes place — a connection PB / AT or PA / BT is consequently established — the valves 62, 64 and 58, which are otherwise not activated, can continue to flow back directly without pressure. However, if the valve 62 is also actuated, that is to say if both bending slides 14 and 16 are to be displaced at the same time, the hydraulic motor 34 is acted upon by the return fluid of the motor 32 without the independence of the actuation being canceled thereby. Accordingly, the return fluid of the engine 34 can act on the hydraulic cylinders 38/36. The same can of course also take place if only one of the hydraulic motors 32 or 34 or none of these is acted upon by the operating means 54. From the description given above it follows that the drive means 32 to 38 for actuating the bending slides 14 and 16 are arranged in a single hydraulic circuit 52 and can be activated completely independently of one another, but also together.

Ein wesentliches Merkmal ist darin zu sehen, dass während des Biegevorganges zumindest ein abgewinkeltes Ende aufweisender Abschnitt des Materials 18 zwischen Biegedorn und Biegekurbel derart festgehalten wird, dass bei einem Biegen des Materials mit dem anderen Biegeschlitten eine Unverrückbarkeit gegeben ist. Anhand der Fig. 6 soll nun ein entsprechender Biegevorgang näher erläutert werden. Das in Fig. 6 schematisch dargestellte stabförmige Material 66 wird zunächst am linken Ende 68 abgewinkelt, d.h. dass um den Biegedorn 70 die Biegekurbel 72 im Uhrzeigersinn gedreht wird. Im abgewinkelten Zustand nimmt daher die Biegekurbel 72 die Position 74 ein. In dieser Stellung wird das Ende 68 zwischen Biegedorn 70 und Biegekurbel 74 unverrückbar festgelegt. Der Biegedorn 70 befindet sich dann innen im Schnittpunkt der einen Winkel zueinander beschreibenden Schenkel des Materials 66 und die Biegekurbel 74 befindet sich an der Aussenseite des abgewinkelten Endabschnitts 68. Sodann kann im gewünschten Umfang ein Umbiegen des rechten Endes 76 des Materials 66 erfolgen. Zu diesem Zweck wird wiederum eine Biegekurbel 78 um einen Biegedorn 80 gedreht. Nachdem dieser Biegevorgang abgeschlossen ist, gelangt die Biegekurbel 78 in seine Ausgangsstellung zurück und der den Biegedorn 80 und die Biegekurbel 78 umfassende Biegeschlitten 82 wird von der Position B in die Position C verschoben. Sodann kann erneut ein Biegevorgang vorgenommen werden, so dass das Material 66 hinsichtlich seiner rechten Seite betrachtet von seinem Mittelpunkt 84 aus die gewünschte geometrische Figur aufweist. Dieser Vorgang kann in beliebig vielen Strecken erfolgen. Sodann wird das Material 66 von dem Biegeschlitten 82 zwischen dem Biegedorn 18 und der Biegekurbel 78 in seiner oberen Stellung (Bezugszeichen 86) festgehalten. Daraufhin wird der den Biegedorn 70 und die Biegekurbel 72 umfassende Biegeschlitten 88 derart betätigt, dass die Biegekurbel 74 in seine Ausgangsstellung zurückgedreht wird, so dass anschliessend ein Verfahren des Biegeschlittens 88 von der Position A in die Position D erfolgen kann. In dieser Stellung wird sodann die Biegekurbel 72 um den Biegedorn 70 gedreht (Bezugszeichen 90), so dass anschliessend das Material 66 die gewünschte Biegeform aufweist. Sodann werden die Biegekurbeln aus der Position 86 und 90 in die Grundposition zurückgedreht, damit das Material aus den Schlitten 82 und 88 entfernt werden kann. Anschliessend werden die Schlitten in die Position A und B zurückgefahren, damit mit neuem Material der gleiche Biegeablauf durchgeführt werden kann.An essential feature can be seen in the fact that during the bending process, at least one section of the material 18 having an angled end is held between the bending mandrel and the bending crank in such a way that there is immovability when the material is bent with the other bending slide. A corresponding bending process will now be explained in more detail with reference to FIG. 6. The rod-shaped material 66 shown schematically in FIG. 6 is first angled at the left end 68, ie the bending crank 72 is rotated clockwise around the bending mandrel 70. In the angled state, the bending crank 72 therefore assumes the position 74. In this position, the end 68 between the mandrel 70 and the bending crank 74 is fixed immovably. The bending mandrel 70 is then located on the inside at the intersection of the legs of the material 66 which describe an angle to one another, and the bending crank 74 is located on the outside of the angled end section 68. The right end 76 of the material 66 can then be bent to the desired extent. For this purpose, a bending crank 78 is in turn rotated around a bending mandrel 80. After this bending process has been completed, the bending crank 78 returns to its starting position and the bending slide 82 comprising the mandrel 80 and the bending crank 78 is moved from the position B to the position C. A bending process can then be carried out again, so that the material 66, viewed from its center 84, has the desired geometric figure with regard to its right side. This process can take place in any number of routes. The material 66 is then held in its upper position (reference numeral 86) by the bending slide 82 between the bending mandrel 18 and the bending crank 78. Thereupon, the bending slide 88 comprising the bending mandrel 70 and the bending crank 72 is actuated in such a way that the bending crank 74 is turned back into its starting position, so that a method of Bending carriage 88 can take place from position A to position D. In this position, the bending crank 72 is then rotated around the bending mandrel 70 (reference number 90), so that the material 66 then has the desired bending shape. The bending cranks are then turned back from the positions 86 and 90 to the basic position so that the material can be removed from the slides 82 and 88. The slides are then moved back to positions A and B so that the same bending process can be carried out with new material.

In den Fig. 7 und 8 sind beispielhaft andere Biegeformen aufgezeigt, wobei der Biegeprozess in entsprechender Reihenfolge in den Schritten D', E, F, G, H, I, K, L bzw. M, N, 0, P, R, S erfolgt. Dabei wird das jeweilige Material während der Biegevorgänge E, F, G, H bzw. N, 0, P von dem Biegeschlitten in der Position D' bzw. M unverrückbarfestgelegt, wohingegen bei den Biegevorgängen I, K und L bzw. R und S ein Festlegen in der Position H bzw. P erfolgt. Nachdem die Biegevorgänge abgeschlossen sind, werden, wie im Zusammenhang mit Fig. 6 erläutert, die geformten Materialien aus den Biegeschlitten entfernt, damit diese in ihre Grundposition, also D', E bzw. M, N zurückgefahren werden können.7 and 8 show other bending shapes by way of example, the bending process being carried out in the corresponding sequence in steps D ', E, F, G, H, I, K, L and M, N, 0, P, R, S is done. The respective material is immovably fixed during the bending processes E, F, G, H or N, 0, P by the bending slide in the position D 'or M, whereas in the bending processes I, K and L or R and S a Set in position H or P is done. After the bending processes have been completed, as explained in connection with FIG. 6, the shaped materials are removed from the bending slide so that they can be moved back into their basic position, that is to say D ', E or M, N.

In Fig. 9 ist noch einmal ein Biegevorgang schematisch dargestellt, der im Verfahrensablauf denen der Fig. 6 bis 8 entspricht. Allerdings soll durch die gestrichelte Darstellung des rechten Schenkels 92 verdeutlicht werden, dass bei der Ausbildung einer geschlossenen Figur ein Entspannen dahingehend erfolgt, dass der Schenkel 92 nach rechts durch Rückdrehen der Biegekurbel 94 bewegt wird, damit beim Verbiegen des linken Schenkels 96 in Richtung auf den Schenkel 92 ein unerwünschtes weiteres Verformen von diesem nicht erfolgen kann. Dabei wird in dem Umfang ein Entspannen des Schenkels 92 und somit ein Zurückdrehen der Biegekurbel 94 vorgenommen, wie es der elastischen Verformung entspricht. Dadurch ist sichergestellt, dass ein Überbiegen beim Aufeinanderstossen der Schenkelenden 98 bzw. 100 nicht erfolgen kann, so dass das kaltverformte Endprodukt auch die gewünschte Geometrie zeigt. Zwar ist die Entspannung grundsätzlich von der Festigkeit der zu verbiegenden Materialien abhängig, jedoch hat die Erfahrung gezeigt, dass ein Zurückdrehen der Biegekurbel 94 um 15° eine Entspannung hervorruft, die sicherstellt, dass nahezu bei allen üblichen Materialien normaler Stärke die zu vermeidende Überbiegung ausgeschlossen wird.A bending process is schematically shown once again in FIG. 9, which corresponds to that of FIGS. 6 to 8 in the course of the method. However, the dashed representation of the right leg 92 should make it clear that when a closed figure is formed, relaxation takes place such that the leg 92 is moved to the right by turning the bending crank 94 back, so that when the left leg 96 is bent in the direction of the Leg 92 an undesirable further deformation of this can not take place. In this case, the leg 92 is relaxed to the extent and thus the bending crank 94 is turned back, as corresponds to the elastic deformation. This ensures that overbending cannot occur when the leg ends 98 or 100 collide, so that the cold-formed end product also shows the desired geometry. Although the relaxation is fundamentally dependent on the strength of the materials to be bent, experience has shown that turning the bending crank 94 back by 15 ° brings about a relaxation which ensures that the overbending to be avoided is ruled out for almost all conventional materials of normal strength .

In den Fig. 10 und 11 sind beispielhaft verschiedene Biegeformen von Rundstahl aufgezeigt, die unter Anwendung der beschriebenen Lehre erzielt werden können. Man erkennt eine grosse Vielfalt, wobei darauf hinzuweisen ist, dass die Genauigkeit der Endprodukte sehr gross ist, so dass der Auswurf der nicht zu verwendenden kaltverformten Materialien überaus gering ist.10 and 11 show examples of different bending shapes of round steel, which can be achieved using the teaching described. A wide variety can be seen, although it should be noted that the accuracy of the end products is very high, so that the ejection of the cold-formed materials that are not to be used is extremely low.

In Fig. 12 ist eine besonders hervorzuhebende Ausgestaltung einer Biegekurbel 102 dargestellt, die um einen Biegedorn 108 drehbar ist. Der Biegedorn 108 ist im Ausführungsbeispiel das Ende einer feststehenden Welle 109, die ihrerseits unverdrehbar über ein Gewinde 110 in einem Abschnitt des Biegeschlittengehäuses 112 angeordnet ist. Auf den Biegedorn 108 sind austauschbare Biegeschablonen 104 aufsetzbar, die zum Beispiel über eine Passfeder 106 oder gleich wirkende Elemente unverdrehbar auf dem Biegedorn 108 festgehalten werden.FIG. 12 shows a design of a bending crank 102 which is particularly noteworthy and which can be rotated about a bending mandrel 108. In the exemplary embodiment, the bending mandrel 108 is the end of a fixed shaft 109, which in turn is arranged non-rotatably via a thread 110 in a section of the bending slide housing 112. Interchangeable bending templates 104 can be placed on the bending mandrel 108 and are held non-rotatably on the bending mandrel 108, for example, by a feather key 106 or elements having the same effect.

Um die Welle 109 wird nun die Biegekurbel 102 gedreht, wobei die Biegekurbel 102 über einen Hohlzylinderabschnitt 116 über Lager 114 auf der Welle 108 und über Lager 118 gegenüber dem Gehäuse 112 abgestützt ist. Ferner weist der Hohlzylinderabschnitt 116 ein Antriebsritzel 120 auf, über den die Drehung der Biegekurbel 102 in der zuvor beschriebenen Art erfolgt. Die Biegekurbel 102 weist nun exzentrisch zur Drehachse einen Rollendorn 122 auf, der über einen Zapfen 124 mit einer Exzenterscheibe 126 fest verbunden ist. Dabei kann der Rollendorn 122 um den Zapfen 124 drehbar gelagert sein. Im Gegensatz dazu ist der Biegedorn 104 unverdrehbar angeordnet. Gleiches gilt für auf die -wie erwähnt- auf dem Biegedorn 108 anzuordnenden Aufsätze bzw. Biegeschablonen 104 und 128, 130 gemäss Fig. 13 und Fig. 14. Die Exzenterscheibe 126 ist mit einem von dem Hohlzylinder 116 abragenden Schenkel 132 mittels eines Exzenterzapfens 136 verbunden, dessen Gewinde so gewählt ist, dass beim Drehen der Biegekurbel 102 zum Biegen des zwischen Rollendorn 122 und Biegedorn 108 bzw. Biegeschablone 104 einzulegenden Materials 18 ein Festziehen der Exzenterscheibe 126 erfolgt, ohne dass die Position der Biegerolle verändert wird. Zu diesem Zweck ragen von der der Biegekurbel 102 zugewandten Seite der Exzenterscheibe Abstandselemente 134 ab, durch die die Exzenterscheibe spielfrei an dem abgewandten Abschnitt 132 der Biegekurbel 102 festgelegt wird.The bending crank 102 is now rotated about the shaft 109, the bending crank 102 being supported via a hollow cylinder section 116 via bearings 114 on the shaft 108 and via bearings 118 relative to the housing 112. Furthermore, the hollow cylinder section 116 has a drive pinion 120, via which the bending crank 102 is rotated in the manner described above. The bending crank 102 now has an eccentric to the axis of rotation a mandrel 122 which is fixedly connected to an eccentric disk 126 via a pin 124. The roller mandrel 122 can be rotatably mounted about the pin 124. In contrast, the mandrel 104 is arranged non-rotatably. The same applies to the attachments or bending templates 104 and 128, 130 according to FIGS. 13 and 14 to be arranged on the bending mandrel 108, as mentioned. The eccentric disk 126 is connected to a leg 132 projecting from the hollow cylinder 116 by means of an eccentric pin 136 , the thread of which is selected such that when the bending crank 102 is turned to bend the material 18 to be inserted between the mandrel 122 and the mandrel 108 or the bending template 104, the eccentric disc 126 is tightened without changing the position of the bending roller. For this purpose, spacer elements 134 protrude from the side of the eccentric disk facing the bending crank 102, by means of which the eccentric disk is fixed on the opposite section 132 of the bending crank 102 without play.

Die Position der Exzenterscheibe 126 und damit des Rollendorns 122 in bezug auf die Drehachse kann nun mittels der als Abstandselemente ausgebildeten Blockschrauben 134 eingestellt werden, um nachstehend aufgezeigte Aufgaben lösen zu können. Es ist nämlich gefordert, dass beim Biegen von Betonstahlmaterialien 18 vom Stabdurchmesser abhängige Biegeradien hergestellt werden. Nach den geltenden Bauvorschriften sind fünf verschiedene Verhältnisse einzuhalten. Es handelt sich dabei um: Biegedurchmesser = 4d oder 5d oder 7d oder 15d oder 20d mit d = Stabdurchmesser. Dies erfordert in einem Bereich von d-Durchmessern zwischen 24 und 560 mm sechzig verschiedene Biegeschablonen und die dazu erforderlichen Biegezapfeneinstellungen, sofern man die bekannten Biegevorrichtungen benutzt. Bei den bekannten Vorrichtungen muss nämlich bei Änderung der Biegeschablone entweder die Biegekurbel mit feststehendem Biegedorn jeweils ausgewechselt werden oder auf der Biegekurbel muss der Biegezapfen umgesteckt werden. Das erfordert auch verschiedene Durchmesser der Rollendorne, da die Umsteckmöglichkeiten des Biegezapfens nicht in beliebig kleinen Schritten erfolgen kann, wohingegen sich die Durchmesser der zu biegenden Stähle im Millimeterbereich ändern. (Entsprechende bekannte Biegemaschinen sind zum Beispiel unter der Bezeichnung MUBEA BO 55, 32, 40L bekannt.)The position of the eccentric disc 126 and thus of the roller mandrel 122 with respect to the axis of rotation can now be adjusted by means of the block screws 134 designed as spacer elements in order to be able to solve the tasks shown below. This is because it is required that 18 bending radii dependent on the bar diameter be produced when bending reinforcing steel materials. According to the applicable building regulations, five different conditions must be observed. These are: bending diameter = 4d or 5d or 7d or 15d or 20d with d = rod diameter. In a range of d-diameters between 24 and 560 mm, this requires sixty different bending templates and the required bending pin settings if the known bending devices are used. In the known devices, when the bending template is changed, either the bending crank with a fixed mandrel must be replaced or the bending pin must be repositioned on the bending crank. This also requires different diameters of the roll mandrels, since the reversing options of the bending pin are not in Any small steps can take place, whereas the diameters of the steels to be bent change in the millimeter range. (Corresponding known bending machines are known for example under the name MUBEA BO 55, 32, 40L.)

Nach den Vorschlägen der Fig. 12 und 5 wird nun dahingehend eine Vereinfachung erzielt, dass nur noch die Biegeschablonen 104, 128, 130 ausgewechselt werden müssen, wohingegen der Rollendorn 122 nach Lockern der Blockschrauben 134 um den Mittelpunkt M der Exzenterscheibe 126 in die erforderliche Biegestellung, die maximal um 2E mit E maximaler Abstand vom Mittelpunkt M differieren kann (siehe Fig. 13). Ist die erforderliche Position des Rollendorns 124 eingestellt, so werden die Blockschrauben angezogen, also die Exzenterscheibe 126 gegen die Fläche 135 abgestützt. Da die Gewindesteigung des Exzentergewindezapfens 136 gegen die Drehrichtung der Biegekurbel 102 verläuft, ist bei Kraftschluss des Zapfens 136 mittels Rollendorn 126 mit dem zwischen diesem und Biegeschablone 128 zu liegendem Material 18 ein Klemmen der Exzenterscheibe 126 sichergestellt.(Wird die Biegekurbel zum Beispiel entgegen dem Uhrzeigersinn gedreht, so ist die Steigung des Exzenterdornes rechtsgängig).According to the proposals of FIGS. 12 and 5, a simplification is now achieved in that only the bending templates 104, 128, 130 have to be replaced, whereas the roller mandrel 122 after loosening the block screws 134 around the center point M of the eccentric disc 126 into the required bending position , which can differ by a maximum of 2E with E maximum distance from the center M (see FIG. 13). If the required position of the roller mandrel 124 is set, the block screws are tightened, that is to say the eccentric disk 126 is supported against the surface 135. Since the thread pitch of the eccentric thread pin 136 runs counter to the direction of rotation of the bending crank 102, the pin 136 of the eccentric disk 126 is secured when the pin 136 is frictionally locked by means of roller mandrel 126 with the material 18 to be located between the latter and the bending template 128. (For example, the bending crank is counter-clockwise rotated, the slope of the eccentric mandrel is clockwise).

Die Biegekurbel 102 mit dem Biegedorn 122 wird nun auf einem Kreis X1 um die Welle 108 als Mittelpunkt gedreht, wobei der Radius des Rollendorns 120 in Abhängigkeit von seiner Stellung zum Mittelpunkt M grösser oder kleiner als X1 sein kann. Im Ausführungsbeispiel nach Fig. 13 ist der Radius X2 kleiner als X1, wohingegen im Ausführungsbeispiel nach Fig. 14 der Radius X3 grösser als X1 ist.The bending crank 102 with the bending mandrel 122 is now rotated on a circle X 1 around the shaft 108 as the center point, the radius of the roller mandrel 120 depending on its position relative to the center point M being greater or smaller than X 1 . In the exemplary embodiment according to FIG. 13, the radius X 2 is smaller than X 1 , whereas in the exemplary embodiment according to FIG. 14 the radius X 3 is larger than X 1 .

Auch erkennt man aus den Ausführungsbeispielen der Fig. 13 und 14, dass in Abhängigkeit von dem zu biegenden Material 18 bzw. zu erzielenden Biegeradius die Biegeschablonen 128 bzw. 130 unterschiedliche Durchmesser aufweisen können. Schliesslich ist in den Fig. 13 und 14 noch ein Gegenlager 136 dargestellt, um die Materialien 18 beim Biegen hinsichtlich des nicht zu verformenden Abschnitts in einer im Ausführungsbeispiel horizontalen Lagezu halten.It can also be seen from the exemplary embodiments in FIGS. 13 and 14 that, depending on the material 18 to be bent or the bending radius to be achieved, the bending templates 128 and 130 can have different diameters. Finally, a counter bearing 136 is also shown in FIGS. 13 and 14 in order to keep the materials 18 in a horizontal position in the exemplary embodiment during bending with respect to the section not to be deformed.

Claims (11)

1. A method for bending bar-shaped steel reinforcements (18, 66) using two bending slides (14, 16, 82, 88) each comprising a bending mandrel (30, 70, 80, 104, 108, 128, 130), a bending crank (28, 72, 78, 102), and drive elements (32, 34, 36, 38), characterized in that in further bending operations following bending of an end of a steel reinforcement (68) a section of said steel reinforcement is fixed immovably between bending crank (28, 72, 78, 102) and bending mandrel (30, 70, 80, 104, 108, 128, 130) in both directions alternately by a bending slide in the area of two lengths (68, 66; 76, 66) which each describe an angle in relation to the other, while the bending slide not holding the steel reinforcement bends the said reinforcement or is shifted along it.
2. A method according to Claim 1, characterized in that the drive elements (32, 34, 36, 38) for the bending slide (14, 16, 82, 88) are arranged in a single hydraulic circuit (52).
3. A method according to Claim 1, characterized in that when bending the material to form in particular a closed figure such as a rectangle, the bending crank (94) of the bending slide immovably holding the material is turned before the final length (96) is bent such that a reduction of the stress in the fixed length (92) of the material occurs that corresponds to the elastic deformation of the material (Fig. 9).
4. A device for bending bar-shaped steel reinforcements (18, 66) using two bending slides (14, 16, 82, 88) each comprising a bending mandrel (30, 70,80,104,108,128,130), a bending crank (28, 72, 78, 94, 102) rotatably arranged about said bending mandrel, drive elements (32, 34, 36, 38), and devices for holding the bar-shaped steel reinforcements, in particular for implementation of the method according to Claim 1 at least, characterized in that the bending slides (14, 16, 82, 88) are designed as devices for holding the bar-shaped steel reinforcements in such a way that one of the bending slides (14 or 16; 88 or 82) holds the steel reinforcement (18, 66) immovably at a section in which the intersection of two material lengths is situated, with the bending mandrel (30, 70, 80,104,108,128,130) being positioned on the inside in the intersection of the lengths and the bending crank (28, 72, 74, 90; 78, 86; 94, 102, 122) being positioned on the outside at the lengths (68,76,92) angled away from the longitudinal axis of the material coinciding with the direction of slide movement.
5. A device according to Claim 4, characterized in that the drive elements (32, 34, 36, 38) are arranged in a single hydraulic circuit and are actuatable by said circuit.
6. A device according to Claim 5, characterized in that the drive means (32, 34, 36, 38) are all actuatable simultaneously or separately, and independently of one another.
7. A device according to Claim 4, characterized in that the drive elements (32, 36; 34, 38) of the bending slides (14, 16, 82, 88) are arranged in the hydraulic circuit (52) in such a way that the operating fluid (54) coming from the pump (56) first operates the drive elements (32, 34) for the translation movement one after the other.
8. A device in particular according to Claim 4, characterized in that the bending crank (28, 102) comprises a roller mandrel (40, 122) which is eccentrically supported for alteration of the distance between the axes of the roller mandrel (122) and the rotary axis (46, 108) of the bending crank (28,102).
9. A device according to Claim 8, characterized in that the roller mandrel (122, 124) projects from an eccentric disc (126) arranged rotatably in the bending crank (102, 132) about a journal (136) and being supportable by a spacer element (134) against a face (135) of the bending crank, with the journal having a thread pitch opposite to the direction of rotation of the bending crank.
10. A device according to Claim 4 at least, characterized in that the bending mandrel (30, 70, 80) comprises a bending mandrel (108) provided with interchangeable bending templates (104, 128,130).
11. A device according to Claim 4, characterized in that the work surface (12) of the device is arranged horizontally or almost horizontally and has a slot vertical or almost vertical thereto and laterally limited by the bending slide (14, 16, 82, 88), said slot being intended to take several bar-shaped steel reinforcements (18, 66) arranged one above the other.
EP84103662A 1983-04-06 1984-04-04 Method of and device for bending bar-shaped materials Expired - Lifetime EP0121896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT84103662T ATE30861T1 (en) 1983-04-06 1984-04-04 METHOD AND DEVICE FOR BENDING ROD-SHAPED MATERIALS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833312397 DE3312397A1 (en) 1983-04-06 1983-04-06 METHOD AND DEVICE FOR BENDING ROD-SHAPED MATERIALS
DE3312397 1983-04-06

Publications (4)

Publication Number Publication Date
EP0121896A2 EP0121896A2 (en) 1984-10-17
EP0121896A3 EP0121896A3 (en) 1985-01-23
EP0121896B1 true EP0121896B1 (en) 1987-11-19
EP0121896B2 EP0121896B2 (en) 1991-12-18

Family

ID=6195607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84103662A Expired - Lifetime EP0121896B2 (en) 1983-04-06 1984-04-04 Method of and device for bending bar-shaped materials

Country Status (4)

Country Link
US (1) US4702097A (en)
EP (1) EP0121896B2 (en)
AT (1) ATE30861T1 (en)
DE (2) DE3312397A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985005053A1 (en) * 1984-04-30 1985-11-21 Howard Bruce Apparatus for fabricating concrete reinforcing stirrups and the welding thereof with rods to form a concrete reinforcing cage
EP0238026B1 (en) 1986-03-14 1991-06-26 Ruhl, Heinz Method of and device for bending bar-shaped materials
DE3903301A1 (en) * 1988-03-25 1989-10-05 Frank Ebert METHOD AND DEVICE FOR BENDING PREFERABLY ROD-SHAPED MATERIAL
DE3919607C2 (en) * 1989-06-15 1994-05-05 Heinz Ruhl Device for bending rod-shaped material
FR2657546B1 (en) * 1990-01-26 1992-05-22 Eaton Leonard Picot Sa TWO-HEAD BENDING TUBE BENDING MACHINE.
CA2100530A1 (en) * 1992-09-02 1994-03-03 Michael W. Bogart Needle curving apparatus
CA2106791A1 (en) * 1992-10-09 1994-04-10 Michael W. Bogart Needle curving apparatus
US5388441A (en) * 1992-12-29 1995-02-14 United States Surgical Corporation Needle curver with automatic feed
AT401360B (en) * 1993-05-07 1996-08-26 Progress Ag BENDING SYSTEM FOR BARS
JP3685526B2 (en) * 1995-07-14 2005-08-17 臼井国際産業株式会社 Pipe bending machine
US5927132A (en) * 1998-04-30 1999-07-27 Schnell Spa Method of bending bars
FR2900078B1 (en) * 2006-04-24 2008-06-13 Numalliance Soc Par Actions Si WIRE BENDING MACHINE COMBINING A SEQUENTIAL STITCHING DEVICE AND A DEVICE USING A TOOLING PLATE
JP4626623B2 (en) * 2007-03-12 2011-02-09 トヨタ自動車株式会社 Edgewise bending method and processing apparatus for flat rectangular material
CN112720033B (en) * 2020-12-29 2022-04-12 新昌县三特自动化科技有限公司 Full-automatic turning production line of miniature bearing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1546147A (en) * 1924-04-25 1925-07-14 Frederick A C Skinner Pipe-bending machine
US1769570A (en) * 1927-12-28 1930-07-01 Hudson Motor Car Co Apparatus for shaping sheet metal
DE1552970B2 (en) * 1965-04-24 1977-01-13 MACHINE FOR BENDING STENCILS, REINFORCEMENT IRON OR DGL.
US3481177A (en) * 1967-09-29 1969-12-02 Lear Siegler Inc Wire bending assembly
US3568300A (en) * 1968-07-02 1971-03-09 Zidell Explorations Inc Method and apparatus for forming ship hulls
DE1752716A1 (en) * 1968-07-05 1971-07-15 Ernst Stegmann Process for machine bending of wire and strip material and machine for carrying out the process
US3803893A (en) * 1971-08-17 1974-04-16 P Peddinghaus Process for multiple bending of rods and a bending machine for carrying out this process
US3805576A (en) * 1972-08-18 1974-04-23 Cyril Bath Co High speed multi-bending machine
GB1463522A (en) * 1974-09-11 1977-02-02 Russel Bowen Systems Ltd Bending machines
AT338071B (en) * 1974-12-16 1977-07-25 Evg Entwicklung Verwert Ges BENDING MACHINE FOR ROD-SHAPED MATERIAL, IN PARTICULAR FOR CONCRETE REINFORCEMENT ROD
IT1137724B (en) * 1981-07-10 1986-09-10 Mec Montorfano Di Montorfano V BENDING UNIT FOR METAL PIPES AND WIRES AND START-UP PROCEDURE OF THE UNIT
DE3206673A1 (en) 1982-02-25 1983-09-01 Helmut 6230 Kriftel Zahlaus Device for cutting bar-shaped materials to size

Also Published As

Publication number Publication date
DE3467519D1 (en) 1987-12-23
EP0121896B2 (en) 1991-12-18
US4702097A (en) 1987-10-27
EP0121896A2 (en) 1984-10-17
ATE30861T1 (en) 1987-12-15
DE3312397A1 (en) 1984-10-11
EP0121896A3 (en) 1985-01-23

Similar Documents

Publication Publication Date Title
EP0121896B1 (en) Method of and device for bending bar-shaped materials
DE69121069T2 (en) Bar bending apparatus and method for making bends at the rear ends of bars
DE69003116T2 (en) Movable scissors located upstream of a bender and method for bending the rear ends of bars.
CH652947A5 (en) WIRE BENDING MACHINE.
CH648517A5 (en) DEVICE FOR CUTTING A WIRE REEL AND BENDING THE WIRE END AROUND THE LAST COIL WINDING.
DE2802621A1 (en) METAL SHEET MOLDING MACHINE
AT402032B (en) MACHINE FOR THE PROCESSING OF GRID MATS FROM LENGTHED AND CROSSWIRE WELDED TOGETHER
DE69611622T2 (en) METAL FORMING DEVICE.
EP2789406B1 (en) Bending machine
DE1527437C3 (en) Vibration straightening machine for rod-shaped workpieces
DE69307461T2 (en) Plant for the production of products from wire material
DE2456303A1 (en) METHODS AND DEVICES FOR EDGE FORMING ON A METAL PLATE
DE3885783T2 (en) Side transfer device for flat knitting machines.
DE4103134A1 (en) DEVICE FOR PRODUCING CURVED SECTIONS ON A PIPE, IN PARTICULAR FOR PRODUCING A PIPE SNAKE
DE1602064B2 (en) ROLLING MILL FOR ROLLING OUT A METAL BLANK
DE3838984C2 (en) Blow mold
EP0371960B1 (en) Method for bending bar-shaped materials
DE10065255B4 (en) Multistage press
AT410707B (en) APPARATUS FOR MOUNTING A HYDRAULIC HOSE TO A HOSE ARMATURE WITH A PRESS
DE69504895T2 (en) Additional processing device, in particular for partial bending and cutting in a press brake
DE3875243T2 (en) MATRIX EXCHANGE AT PRESSES.
DE2223461A1 (en) DEVICE FOR ALIGNING AND BENDING BAR MATERIAL
DE3423052C2 (en)
DE2630224A1 (en) Drawing frame assembly - uses preassembled groups of lower roller sections to be coupled together
DE2525896A1 (en) ADJUSTABLE STOP TO SET UP A WORKPIECE TO BE MACHINED ON A MACHINE TOOL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19841228

17Q First examination report despatched

Effective date: 19860313

R17C First examination report despatched (corrected)

Effective date: 19860904

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 30861

Country of ref document: AT

Date of ref document: 19871215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3467519

Country of ref document: DE

Date of ref document: 19871223

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HEINZ RUHL

26 Opposition filed

Opponent name: MUHR UND BENDER MASCHINENBAU GMBH

Effective date: 19880507

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;RUHL, HEINZ

RIN2 Information on inventor provided after grant (corrected)

Free format text: ZAHLAUS, HELMUT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: RUHL, HEINZ

ITTA It: last paid annual fee
PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19911218

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920331

Year of fee payment: 9

Ref country code: CH

Payment date: 19920331

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920406

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920410

Year of fee payment: 9

ET3 Fr: translation filed ** decision concerning opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920424

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920429

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930404

Ref country code: AT

Effective date: 19930404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930430

Ref country code: CH

Effective date: 19930430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84103662.7

Effective date: 19931110