EP0121683A1 - Casting in an exothermic reduction atmosphere - Google Patents
Casting in an exothermic reduction atmosphere Download PDFInfo
- Publication number
- EP0121683A1 EP0121683A1 EP84101458A EP84101458A EP0121683A1 EP 0121683 A1 EP0121683 A1 EP 0121683A1 EP 84101458 A EP84101458 A EP 84101458A EP 84101458 A EP84101458 A EP 84101458A EP 0121683 A1 EP0121683 A1 EP 0121683A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- gas
- reducing
- atmosphere
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005266 casting Methods 0.000 title claims abstract description 47
- 230000009467 reduction Effects 0.000 title description 6
- 238000010791 quenching Methods 0.000 claims abstract description 95
- 229910052751 metal Inorganic materials 0.000 claims abstract description 65
- 239000002184 metal Substances 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000000171 quenching effect Effects 0.000 claims abstract description 28
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 15
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 14
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 15
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 15
- 238000006722 reduction reaction Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 106
- 239000000758 substrate Substances 0.000 description 22
- 239000000155 melt Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 230000007547 defect Effects 0.000 description 18
- 230000005291 magnetic effect Effects 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- 230000001590 oxidative effect Effects 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000005300 metallic glass Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 6
- 229910001092 metal group alloy Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000005219 brazing Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000009736 wetting Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000007712 rapid solidification Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000005058 metal casting Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000968 Chilled casting Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000006424 Flood reaction Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000000075 oxide glass Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/0697—Accessories therefor for casting in a protected atmosphere
Definitions
- the invention relates to the casting of metal strip directly from a melt, and more particularly to the rapid solidification of metal directly from a melt to form substantially continuous metal strip.
- U.S. Patent No. 4,142,571 issued to M. Narasimhan discloses a conventional apparatus and method for rapidly quenching a stream of molten metal to form continuous metal strip.
- the metal can be cast in an inert atmosphere or a partial vacuum.
- U.S. Patent No. 3,862,658 issued to J. Bedell and U.S. Patent No. 4,202,404 issued to C. Carlson disclose flexible belts employed to prolong contact of cast metal filament with a quench surface.
- U.S. Patent No. 4,154,283 to R. Ray et al. discloses that vacuum casting of metal strip reduces the formation of gas pocket defects.
- the vacuum casting system taught by Ray et al. requires specialized chambers and pumps to produce a low pressure casting atomosphere.
- auxiliary means are required to continuously transport the cast strip out of the vacuum chamber. Further, in such a vacuum casting system, the strip tends to weld excessively to the quench surface instead of breaking away as typically happens when casting in an ambient atmosphere.
- U.S. Patent No. 4,301,855 issued to H. Suzuki et al. discloses an apparatus for casting metal ribbon wherein the molten metal is poured from a heated nozzle onto the outer peripheral surface of a rotary roll.
- a cover encloses the roll surface upstream of the nozzle to provide a chamber, the atmosphere of which is evacuated by a vacuum pump.
- a heater in the cover heats the roll surface upstream from the nozzle to remove dew droplets and gases from the roll surface.
- the vacuum chamber lowers the density of the moving gas layer next to the casting roll surface, thereby decreasing formation of air pocket depressions in the cast ribbon. The heater helps drive off moisture and adhered gases from the roll surface to further decrease formation of air pocket depressions.
- U.S. Patent No. 3,861,450 to Mobley, et al. discloses a method and apparatus for making metal filament.
- a disk-like, heat-extracting member rotates to dip an edge surface thereof into a molten pool, and a non-oxidizing gas is introduced at a critical process region where the moving surface enters the melt.
- This non-oxidizing gas can be a reducing gas, the combustion of which in the atmosphere yields reducing or non-oxidizing combustion products at the critical process region.
- a cover composed of carbon or graphite encloses a portion of the disk and reacts with the oxygen adjacent the cover to produce non-oxidizing carbon monoxide and carbon dioxide gases which can then surround the disk portion and the entry region of the melt.
- non-oxidizing gas as taught by Mobley, et al., disrupts and replaces an adherent layer of oxidizing gas with the non-oxidizing gas.
- the controlled introduction of non-oxidizing gas also provides a barrier to prevent particulate solid materials on the melt surface from collecting at the critical process region where the rotating disk would drag the impurities into the melt to the point of initial filament solidification.
- the exclusion of oxidizing gas and floating contaminants from the critical region increases the stability of the filament release point from the rotating disk by decreasing the adhesion therebetween and promoting spontaneous release.
- Mobley, et al. address only the problem of oxidation at the disk surface and in the melt.
- the flowing stream of non-oxidizing gas taught by Mobley, et al. is still drawn into the molten pool by the viscous drag of the rotating wheel and can separate the melt from the disk edge to momentarily disturb filament formation.
- the particular advantage provided by Mobley, et al. is that the non-oxidizing gas decreases the oxidation at the actual point of filament formation within the melt pool.
- Mobley, et al. fail to minimize the entrainment of gas that could separate and insulate the disk surface from the melt.
- U.S. Patent No. 4,282,921 and U.S. Patent No. 4,262,734 issued to H. Liebermann disclose an apparatus and method in which coaxial gas jets are employed to reduce edge defects in rapidly quenched amorphous strips.
- U.S. Patent No. 4,177,856 and U.S. Patent No. 4,144,926 issued to H. Liebermann disclose a method and apparatus in which a Reynolds number parameter is controlled to reduce edge defects in rapidly quenched amorphous strip. Gas densities and thus Reynolds numbers, are regulated by the use of vacuum and by employing lower molecular weight gases.
- the invention provides an apparatus and method for efficiently casting smooth metal strip and substantially preventing the formation of gas pocket defects therein.
- the apparatus of the invention includes a moving chill body having a quench surface, and includes a nozzle means for depositing a stream of molten metal on a quenching region of the quench surface to form the strip.
- the nozzle means has an exit portion with a nozzle orifice.
- a depletion means supplies a reducing gas to a depletion region located adjacent to and upstream from the quenching region.
- the reducing gas operates to create an exothermic reduction reaction that provides a low density reducing atmosphere within the depletion region and substantially prevents formation of gas pockets in the strip.
- a chill body having a quench surface is moved at a selected speed, and a stream of molten metal is deposited on a quenching region of the quench surface to form the strip.
- Reducing gas is supplied to a depletion region located adjacent to and upstream from the quenching region. The reducing gas is reacted exothermically to lower the density thereof and to provide a low density reducing atmosphere within the depletion region.
- the invention further provides a metal strip composed of metastable material having at least 50 percent glassy structure and a thickness of less than about 15 micrometers in the as-cast state.
- the method and apparatus of the invention advantageously minimize the formation and entrapment of gas pockets against the quenched surface during the casting of the strip.
- the invention avoids the needs for complex vacuum casting apparatus and can be practiced in an ambient atmosphere.
- the exothermic reaction of the reducing gas in the depletion region surprisingly provides better and more uniform cooling and quenching of the molten metal.
- Heat resulting from the exothermically reacting gas provides a low density reducing atmosphere that inhibits the formation of gas pockets which operate to decrease contact between the molten metal and the quench surface.
- the more uniform quenching provides improved physical properties in the cast strip.
- the reduction of surface defects on the quenched surface side of the strip increases the packing factor of the material and decreases localized stress concentrations that can cause premature mechanical failure.
- the smoothness of the free surface side of the cast strip i.e. the side not in contact with the quench surface of the chill body
- This increased smoothness further increases the packing factor of the material.
- the more uniform quenching afforded by the low density reducing atmosphere provides a more consistent and uniform formation of the amorphous state.
- manufacture of strip composed of magnetic material the number and size of strip surface discontinuities is reduced, improving the magnetic properties of the strip.
- the present invention effectively minimizes gas pocket defects on the strip surface which contacts the quench surface, and produces strip having a smooth surface finish and uniform physical properties.
- Complex equipment and procedures associated with vacuum casting are eliminated.
- the invention efficiently casts ultra thin as well as extra thick metal strip directly from the melt at lower cost and with higher yield. Such ultra thin and extra thick strips are especially suited for use in such applications as magnetic devices and can be substituted for conventional materials with greater effectiveness and economy.
- a strip is a slender body the transverse dimensions of which are much smaller than its length.
- a strip includes wire, ribbon, sheet and the like of regular or irregular cross-section.
- the invention is suitable for casting metal strip composed of crystalline or amorphous metal and is particularly suited for producing metal strip which is rapidly solidified and quenched at a rate of at least about 10 4 °C/sec from a melt of molten metal.
- Such rapidly solidified strip has improved physical properties, such as improved tensile strength, ductility and magnetic properties.
- FIG. 1 shows a representative prior art device for rapidly casting continuous metal strip.
- Molten metal alloy contained in crucible 2 is heated by a heating element 3.
- Pressurization of the crucible with an inert gas forces a molten stream through a nozzle 4 at the base of the crucible and deposits the molten metal onto a moving chill body, such as rotatable casting wheel 1.
- Solidified moving strip 6, after its break-away point from the quench wheel is then routed onto a suitable winding means.
- Quench surface 5 is preferably a material having high thermal conductivity. Suitable materials include carbon steel, stainless steel and copper based alloys such as beryllium-copper. To achieve the quench rates of at least about 10 4o C per second, wheel 1 is internally cooled and rotated to provide a quench surface that advances at a speed ranging from about 100 - 4000 meters per minute. Preferably, the quench surface speed ranges from about 200 - 3000 meters per minute. Typically, the thickness of the cast strip ranges from 25 - 100 microns (micrometers).
- FIG. 2 shows a representative apparatus of the invention.
- a moving chill body such as endless casting belt 7, has a chilled casting quench surface 5.
- Nozzle means such as nozzle 4, deposits a stream of molten metal onto a quenching region 14 of quench surface 5 to form strip 6.
- Nozzle 4 has an orifice 22 located at exit portion 26.
- a depletion means including gas nozzle delivery means 8, and gas supply 12, supplies a reducing gas 24 from gas supply 12 to a depletion region 102 located adjacent to and upstream from quenching region 14. The reducing gas reacts exothermically within the depletion region 13, providing a low density reducing atmosphere therewithin.
- Nozzle 8 is suitably located to direct reducing gas 24 at and around depletion region 102, so that the reducing gas 24 substantially floods the depletion region 13.
- Valve 16 regulates the volume and velocity through nozzle 8.
- gas nozzle 8 is located upstream of quenching region 14 and is directed substantially normal to the direction of movement of the quench surface.
- gas nozzle 8 can be located coaxial with casting nozzle 4 as representatively shown in FIG. 3.
- low density reducing atmosphere means a reducing atmosphere having a gas density less than 1 gram per liter and preferably, having a gas density of of less than about 0.5 grams per liter.
- gas 24 is exothermically reacted to at least about 800 K, and more preferably, is exothermically reacted to at least about 1300 K.
- hotter reducing gases are preferred because they will have lower densities and will better minimize the formation and entrapment of gas pockets between quench surface 5 and the deposited molten metal.
- Entrapped gas pockets are undesirable because they produce ribbon surface defects that degrade the surface smoothness. In extreme cases, the gas pockets will cause perforations through strip 6.
- a very smooth surface finish is particularly important when winding magnetic metal strip to form magnetic cores because surface defects reduce the packing factor of the material.
- the packing factor is the volume fraction of the actual magnetic material in the wound core (the volume of magnetic material divided by the total core volume) and is often expressed in percent.
- a smooth surface without defects is also important in optimizing the magnetic properties of strip 6 and in minimizing localized stress concentrations that would otherwise reduce the mechanical strength of the strip.
- Gas pockets also insulate the deposited molten metal from quench surface 5 and reduce the quench rate in localized areas.
- the resultant, non-uniform quenching produces non-uniform physical properties in strip 6, such as non-uniform strength, ductility and magnetic properties.
- gas pockets can allow undesired crystallization in localized portions of the strip.
- the gas pockets and the local crystallizations produce discontinuities which inhibit mobility of magnetic domain walls, thereby degrading the magnetic properties of the material.
- the invention produces high quality metal strip with improved surface finish and improved physical properties.
- metal strip has been produced with packing factors of at least about 80%, and up to about 95%.
- the mechanism by which gas pockets are reduced can be more readily explained with reference to FIG. 6.
- the gas boundary layer velocity profile near quench surface 5 and upstream of melt puddle 18 is shown schematically at 20.
- the maximum gas boundary layer velocity occurs immediately adjacent to quench surface 5 (substrate) and is equal to the velocity of the moving quench surface.
- moving quench surface 5 ordinarily draws cool air from the ambient atmosphere into depletion region 13 and into quenching region 14, the region of the quench surface upon which molten metal is deposited. Because of the drafting of relatively cool air into the quenching region, the presence of the hot casting nozzle and the molten metal do not sufficiently heat the local atmosphere to significantly reduce the density thereof.
- Melt puddle 18 wets the substrate surface to an extent determined by various factors including the metal alloy composition, the substrate composition, and the presence of surface films.
- the pressure exerted by the gas boundary layer at the melt-substrate interface acts to locally separate the melt from the substrate and form entrained gas pockets which will appear as "lift-off" areas 44 on the ribbon underside.
- the stagnation pressure of the gas boundary layer pressure if the layer hit a rigid wall
- the boundary layer gas density is reduced by exothermically reacting a reducing gas. As the exothermic reaction of the reducing gas proceeds, heat provided by the reaction causes the density of the gas to diminish as the inverse of the absolute temperature. By exothermically reacting a reducing gas in depletion region 13 at the upstream side of the melt puddle 18, the size and the number of entrained gas pockets under the melt puddle can be substantially reduced.
- heat produced by the low density reducing gas atmosphere located proximate to quenching region 14 does not degrade the quenching of the molten metal. Rather, heat produced by the reduction reaction actually improves the uniformity of the quench rate by minimizing the presence of insulating, entrapped gas pockets, and thereby improves the quality of the cast strip.
- Suitable reducing gases include carbon monoxide gas and gas mixtures therewith.
- a reducing atmosphere minimizes the oxidation of strip 6.
- the reducing atmosphere starves quench surface 5 of oxygen and minimizes the oxidation thereof.
- the reduced oxidation improves the wettability of the quench surface and allows molten metal to be more uniformly deposited on quench surface 5.
- the reduced oxidation renders the quench surface much more resistant to thermally induced fatigue crack nucleation and growth.
- the reducing atmosphere also depletes oxygen from the region of nozzle 4 thereby reducing the clogging of nozzle orifice 22, particularly clogging due to oxide particulates.
- additional gas nozzle 32 may be employed to provide additional reducing gas atmospheres along selected portions of strip 6, as representatively shown in FIG. 2.
- FIG. 4 shows an embodiment of the invention wherein the reducing gas is capable of being ignited and burned to form a reducing flame atmosphere.
- Nozzle 4 deposits molten metal onto quench surface 5 of rotating casting wheel 1 to form strip 6.
- the depletion means in this embodiment is comprised of gas supply 12, gas nozzle 8 and ignition means 30.
- Valve 16 regulates the volume and velocity of gas delivered through gas nozzle 8, and a wiper brush 42 conditions quench surface 5 to help reduce oxidation thereon.
- ignition means 30 ignites the gas to produce a heated, low-density reducing atmosphere around depletion region 13 and around quench surface region 14 where molten metal is deposited.
- Suitable ignition means include spark ignition, hot filament, hot plates and the like.
- the hot casting nozzle serves as a suitable ignition means which automatically ignites the reducing gas upon contact therewith.
- the resultant flame atmosphere forms a flame plume 28 which begins upstream of quenching region 14 and consumes oxygen therefrom.
- unburned reducing gas within the plume reacts to reduce the oxides on quench surface 5, nozzle 4 and strip 6.
- the visibility of flame 28 allows easy optimization and control of the gas flow, and plume 28 is effectively drawn around the contour of wheel 1 by the wheel rotation to provide an extended reducing flame atmosphere.
- a hot reducing atmosphere is located around quenching surface 14 and for a discrete distant thereafter.
- the extended flame plume advantageously provides a non-oxidizing, protective atmosphere around strip 6 while it is cooling.
- additional gas nozzles 32 and ignition means 34 can be employed to provide additional reducing flame plumes 36 along selected portions of strip 6 to further protect the strip from oxidation.
- a further advantage provided by the hot, reducing flame plume is that the smoothness of the free surface side of the strip (the side not in contact with the quench surface) is significantly improved. Experiments have shown that the mean roughness of the rapidly solidified metal strip, as measured by standard techniques such as pack factor, is significantly reduced when the strip is produced in the reducing flame plume of the invention.
- the combustion product of the burned gas should not produce a liquid or solid phase which could precipitate onto quench surface 5 or nozzle 4.
- hydrogen gas has been unsatisfactory under ordinary conditions because the combustion product is water which condenses onto quench surface 5.
- the hydrogen flame plume does not adequately reduce the formation of gas pockets on the quench surface side of strip 6.
- the reducing gas 24 is preferably a gas that will not only burn and consume oxygen in a strongly exothermic reaction, but will also produce combustion products that will remain gaseous at casting conditions.
- Carbon monoxide (CO) gas is a preferred gas that satisfies the above criteria, and also provides a desireable, anhydrous, reducing atmosphere.
- a reducing flame atmosphere provides an efficient means for heating the atmosphere located proximate to melt puddle 18 to very high temperatures, in the order of 1300 - 1500 K. Such temperatures provide very low gas densities around the melt puddle 18. The high temperatures also increase the kinetics of the reduction reaction to further minimize the oxidation of quench surface 5, nozzle 4 and strip 6. The presence of a hot reducing flame at nozzle 4 also reduces thermal gradients therein which might crack the nozzle.
- the embodiment of the invention employing a reducing flame atmosphere more efficiently produces a heated, low-density reducing atmosphere around quench surface 5 which improves the smoothness of both sides of the cast strip and more effectively prevents oxidation of quench surface 5, strip 6 and casting nozzle 4.
- Rapid quenching employing conditions described heretofore can be used to obtain a metastable, homogeneous, ductile material.
- the metastable material may be glassy, in which case there is no long range order.
- X-ray diffraction patterns of glassy metal alloys show only a diffuse halo, similar to that observed for inorganic oxide glasses.
- Such glassy alloys must be at least 50% glassy to be sufficiently ductile to permit subsequent handling, such as stamping complex shape from ribbons of the alloys.
- the glassy metal alloys must be at least 80% glassy, and most preferably substantially (or totally) glassy, to attain superior ductility.
- the metastable phase may also be a solid solution of the constituent elements.
- such metastable, solid solution phases are not ordinarily produced under conventional processing techniques employed in the art of fabricating crystalline alloys.
- X-ray diffraction patterns of the solid solution alloys show the sharp diffraction peaks characteristic of crystalline alloys, with some broadening of the peaks due to desired fine-grained size of crystallites.
- Such metastable materials are also ductile when produced under the conditions described above.
- the material of the invention is advantageously produced in foil (or ribbon) form, and may be used in product applications as cast, whether the material is glassy or a solid solution.
- foils of glassy metal alloys may be heat treated to obtain a crystalline phase, preferably fine-grained, in order to promote longer die life when stamping of complex shapes is contemplated.
- the invention may optionally include a flexible hugger belt 38 which entrains strip 6 against quench surface 5 to prolong cooling contact therewith.
- the prolonged contact improves the quenching of strip 6 by providing a more uniform and prolonged cooling period for the strip.
- Guide wheels 40 position belt 38 in the desired hugging position along quench surface 5, and a drive means moves belt 38 such that the belt portion in hugging relation to quench surface 5 moves at a velocity substantially equal to the velocity of the quench surface.
- belt 38 overlaps the marginal portions of strip 6 to directly contact and frictionally engage quench surface 5. This frictional engagement provides the required driving means to move the belt.
- a further advantage of thin strip is that the strip experiences less bending stresses when wound to a given diameter. Excessive bending stresses will degrade the magnetic properties through the phenomenon of magneto- striction.
- the apparatus and method of the invention are particularly useful for forming very thin metal strip. Since the invention significantly reduces the size and depth of gas pocket defects, there is less chance that such a defect will be large enough to perforate the cast strip. As a result, very thin strip can be cast because there is less probability that a defect large enough to perforate the strip will form.
- the invention can be adapted to cast very thin metal strip, which as-cast, is less than about 15 micrometers thick.
- the cast strip has a thickness of 12 micrometers or less. More preferably, the cast strip thickness ranges from 7 to 12 micrometers.
- the thin metal strip has a width dimension which measures at least about 1.5 millimeters, and preferably measures at least about 10 mm.
- a forced-convection-cooled, casting wheel having a plain carbon steel substrate was used to prepare nickel-base and iron-base glassy metal ribbons.
- the casting wheel had an internal cooling structure similar to that described in U.S. Patent 4,307,771, a diameter of 38 cm and a width of 5 cm. It was rotated at a speed of 89U rpm, corresponding to a circumferential surface velocity of 18 m/s.
- the substrate was conditioned continuously during the run by an idling brush wheel inclined about 10° out of the casting direction.
- a nozzle having a slotted orifice of 0.4 millimeter width and 25 millimeter length defined by a first lip and a second lip each having a width of 1.5 millimeters (lips numbered in direction of rotation of the chill roll) was mounted perpendicular to the direction of movement of the peripheral surface of the casting wheel, such that the gap between the second lip and the gap between the first lip and the surface of the casting wheel was .20 millimeter.
- Nickel-base metal alloy having composition Ni 68 Cr 7 Fe 3 B 14 si 8 (subscripts in atomic percent) with a melting point of about 1000°C was supplied to the nozzle from a pressurized crucible, the metal within the crucible being maintained under pressure of about 3.5 psig (24 kPa) at temperature of 1300°C. Pressure was supplied by means of an argon blanket. The molten metal was expelled through the slotted orifice at the rate of 6.6 kilograms per minute. It solidified on the surface of the chill roll into a strip of 0.033 millimeter thickness having width of 2.54 cm. Upon examination using X-ray diffractometry, the strip was found to be amorphous in structure. The ribbon showed significant populations of entrapped air pockets in the underside. A dark oxidation track formed on the substrate surface during ribbon casting, limiting the ribbon substrate adhesion.
- Example 1 The procedure of Example 1 was repeated, employing the equipment, process conditions, metal and alloys used in Example 1 except that a carbon monoxide flame was directed at the ribbon casting track upstream of the melt puddle to reduce oxidation and promote ribbon- substrate adhesion.
- the combined actions of the flame and the conditioning brush reduced the substrate oxidation, increased adhesion and produced ribbon having good geometric uniformity.
- the best results were obtained when the distance between the carbon monoxide flame and the back of the melt puddle was less than about 2 cm ( ⁇ 1 inch).
- Tensile specimens cut from the strip in longitudinal and transverse direction exhibited equal tensile strength and elongation. The strip had isotropic tensile properties.
- Example 1 The procedure of Example 1 was repeated, employing the equipment, process conditions metal and alloy summarized in the Table I below to obtain the product described therein.
- the iron-base ribbon was annealed in an inert gas atmosphere for 2 hours at a temperature of 365°C in a field of 80 amperes/meter applied longitudinal of the ribbon length.
- FIG. 7A-B A photomicrograph showing the underside of the iron-base, amorphous ribbon is depicted in Figs. 7A-B. Note that the included air pockets shown are rather large and elongated.
- Example 3 The procedure of Example 3 was repeated employing the same equipment, process conditions and alloy except that a carbon monoxide flame was directed at the ribbon casting track upstream of the melt puddle to reduce oxidation and promote ribbon substrate adhesion.
- a photomicrograph showing the underside of the iron-base amorphous ribbon produced using the carbon monoxide flame is depicted in Figs. 8 A-B. Note the significant reduction in included air pockets on the underside of iron-base ribbon cast using the carbon monoxide flame as compared with those shown in Figs. 7A-B. Magnetic properties of the ferromagnetic ribbons as well as the pack factor thereof were also improved (see Table II below). Similar improvements in the underside of nickel-base amorphous ribbon have also been observed.
- Table I illustrates the advantages of the present invention.
- the ribbon cast in air (sample 1) was made by the casting procedure taught in U.S. Patent No. 4,142,571 to Narasimhan. Note the relatively low pack factor and magnetization loop squareness in both the as-cast and annealed states. Ribbons of various thicknesses made using the teachings of the present invention (samples 2-4) have much improved pack factors and magnetization loop squareness in both the as-cast and annealed states.
- Sample 5 illustrates ribbon properties which result from casting in a flame atmosphere that produces nongaseous combustion products (water, in this case). The occurrence of poor melt wetting in the manufacture of sample 5 has resulted in the inferior properties measured.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
- This application is a continuation-in-part of U.S. Application Serial No. 483,473 filed April 11, 1983.
- The invention relates to the casting of metal strip directly from a melt, and more particularly to the rapid solidification of metal directly from a melt to form substantially continuous metal strip.
- U.S. Patent No. 4,142,571 issued to M. Narasimhan discloses a conventional apparatus and method for rapidly quenching a stream of molten metal to form continuous metal strip. The metal can be cast in an inert atmosphere or a partial vacuum. U.S. Patent No. 3,862,658 issued to J. Bedell and U.S. Patent No. 4,202,404 issued to C. Carlson disclose flexible belts employed to prolong contact of cast metal filament with a quench surface.
- The casting of very smooth strip has been difficult with conventional devices because gas pockets entrapped between the quench surface and the molten metal during quenching form gas pocket defects. These defects, along with other factors, cause considerable roughness on the quench surface side as well as the opposite, free surface side of the cast strip. In some cases, the surface defects actually extend through the strip, forming perforations therein.
- U.S. Patent No. 4,154,283 to R. Ray et al. discloses that vacuum casting of metal strip reduces the formation of gas pocket defects. The vacuum casting system taught by Ray et al. requires specialized chambers and pumps to produce a low pressure casting atomosphere. In addition, auxiliary means are required to continuously transport the cast strip out of the vacuum chamber. Further, in such a vacuum casting system, the strip tends to weld excessively to the quench surface instead of breaking away as typically happens when casting in an ambient atmosphere.
- U.S. Patent No. 4,301,855 issued to H. Suzuki et al. discloses an apparatus for casting metal ribbon wherein the molten metal is poured from a heated nozzle onto the outer peripheral surface of a rotary roll. A cover encloses the roll surface upstream of the nozzle to provide a chamber, the atmosphere of which is evacuated by a vacuum pump. A heater in the cover heats the roll surface upstream from the nozzle to remove dew droplets and gases from the roll surface. The vacuum chamber lowers the density of the moving gas layer next to the casting roll surface, thereby decreasing formation of air pocket depressions in the cast ribbon. The heater helps drive off moisture and adhered gases from the roll surface to further decrease formation of air pocket depressions.
- The apparatus disclosed by Suzuki et al. does not pour metal onto the casting surface until that surface has exited the vacuum chamber. By this procedure, complications involved in removing a rapidly advancing ribbon from the vacuum chamber are avoided. The ribbon is actually cast in the open atmosphere, offsetting any potential improvement in ribbon quality.
- U.S. Patent No. 3,861,450 to Mobley, et al. discloses a method and apparatus for making metal filament. A disk-like, heat-extracting member rotates to dip an edge surface thereof into a molten pool, and a non-oxidizing gas is introduced at a critical process region where the moving surface enters the melt. This non-oxidizing gas can be a reducing gas, the combustion of which in the atmosphere yields reducing or non-oxidizing combustion products at the critical process region. In a particular embodiment, a cover composed of carbon or graphite encloses a portion of the disk and reacts with the oxygen adjacent the cover to produce non-oxidizing carbon monoxide and carbon dioxide gases which can then surround the disk portion and the entry region of the melt.
- The introduction of non-oxidizing gas, as taught by Mobley, et al., disrupts and replaces an adherent layer of oxidizing gas with the non-oxidizing gas. The controlled introduction of non-oxidizing gas also provides a barrier to prevent particulate solid materials on the melt surface from collecting at the critical process region where the rotating disk would drag the impurities into the melt to the point of initial filament solidification. Finally, the exclusion of oxidizing gas and floating contaminants from the critical region increases the stability of the filament release point from the rotating disk by decreasing the adhesion therebetween and promoting spontaneous release.
- Mobley, et al., however, address only the problem of oxidation at the disk surface and in the melt. The flowing stream of non-oxidizing gas taught by Mobley, et al. is still drawn into the molten pool by the viscous drag of the rotating wheel and can separate the melt from the disk edge to momentarily disturb filament formation. The particular advantage provided by Mobley, et al., is that the non-oxidizing gas decreases the oxidation at the actual point of filament formation within the melt pool. Thus, Mobley, et al. fail to minimize the entrainment of gas that could separate and insulate the disk surface from the melt.
- U.S. Patent No. 4,282,921 and U.S. Patent No. 4,262,734 issued to H. Liebermann disclose an apparatus and method in which coaxial gas jets are employed to reduce edge defects in rapidly quenched amorphous strips. U.S. Patent No. 4,177,856 and U.S. Patent No. 4,144,926 issued to H. Liebermann disclose a method and apparatus in which a Reynolds number parameter is controlled to reduce edge defects in rapidly quenched amorphous strip. Gas densities and thus Reynolds numbers, are regulated by the use of vacuum and by employing lower molecular weight gases.
- Conventional methods, however, have been unable to adequately reduce surface defects in cast metal strip caused by the entrapment of gas pockets. Vacuum casting procedures have afforded some success, but when using vacuum casting, excessive welding of the cast strip to the quench surface and the difficultly of removing the cast strip from the vacuum chamber have resulted in lower yields and increased production costs. As a result, conventional methods have been unable to provide a commercially acceptable process that efficiently produces smooth strip with consistent quality and uniform cross-section.
- The invention provides an apparatus and method for efficiently casting smooth metal strip and substantially preventing the formation of gas pocket defects therein. The apparatus of the invention includes a moving chill body having a quench surface, and includes a nozzle means for depositing a stream of molten metal on a quenching region of the quench surface to form the strip. The nozzle means has an exit portion with a nozzle orifice. A depletion means supplies a reducing gas to a depletion region located adjacent to and upstream from the quenching region. The reducing gas operates to create an exothermic reduction reaction that provides a low density reducing atmosphere within the depletion region and substantially prevents formation of gas pockets in the strip.
- In accordance with the invention there is also provided a method for casting continous metal strip. A chill body having a quench surface is moved at a selected speed, and a stream of molten metal is deposited on a quenching region of the quench surface to form the strip. Reducing gas is supplied to a depletion region located adjacent to and upstream from the quenching region. The reducing gas is reacted exothermically to lower the density thereof and to provide a low density reducing atmosphere within the depletion region.
- The invention further provides a metal strip composed of metastable material having at least 50 percent glassy structure and a thickness of less than about 15 micrometers in the as-cast state.
- The method and apparatus of the invention advantageously minimize the formation and entrapment of gas pockets against the quenched surface during the casting of the strip. As a result, the invention avoids the needs for complex vacuum casting apparatus and can be practiced in an ambient atmosphere. The exothermic reaction of the reducing gas in the depletion region surprisingly provides better and more uniform cooling and quenching of the molten metal. Heat resulting from the exothermically reacting gas provides a low density reducing atmosphere that inhibits the formation of gas pockets which operate to decrease contact between the molten metal and the quench surface. The more uniform quenching, in turn, provides improved physical properties in the cast strip. In particular, the reduction of surface defects on the quenched surface side of the strip increases the packing factor of the material and decreases localized stress concentrations that can cause premature mechanical failure. The smoothness of the free surface side of the cast strip (i.e. the side not in contact with the quench surface of the chill body) is also improved by the method and apparatus of the invention. This increased smoothness further increases the packing factor of the material. In production of amorphous metal strip, the more uniform quenching afforded by the low density reducing atmosphere provides a more consistent and uniform formation of the amorphous state. In manufacture of strip composed of magnetic material, the number and size of strip surface discontinuities is reduced, improving the magnetic properties of the strip.
- Surface defects due to entrapped gas pockets are reduced, and there is much less chance for a gas pocket to perforate the strip. Surprisingly, very thin strips (less than about 15 micrometers in thickness) have been produced. These very thin strips are highly desirable in various applications. For example, in magnetic devices, such as inductors, reactors and high frequency electromagnetic devices, thin magnetic material substantially reduces power losses therein. In brazing, the use of thinner brazing foils substantially improves the strength of the brazed joints.
- Moreover, the reduction of entrapped gas pockets markedly increases the heat conductive contact between the molten metal and the quench surface. Thicker strips of rapidly solidified metal can be produced. , Such thicker strip is desireable because it can be more easily substituted for materials conventionally used in existing commercial applications. These thick strip components can, surprisingly, be provided by rapid solidification in a single quenching step in much less time with decreased cost.
- Thus, the present invention effectively minimizes gas pocket defects on the strip surface which contacts the quench surface, and produces strip having a smooth surface finish and uniform physical properties. Complex equipment and procedures associated with vacuum casting are eliminated. The invention efficiently casts ultra thin as well as extra thick metal strip directly from the melt at lower cost and with higher yield. Such ultra thin and extra thick strips are especially suited for use in such applications as magnetic devices and can be substituted for conventional materials with greater effectiveness and economy.
- The invention will be more fully understood and further advantages will become apparent when reference is made to the following detailed description of the preferred embodiment of the invention and the accompanying drawings in which:
- FIG. 1 shows a representative prior art apparatus for rapidly casting metal strip;
- FIG. 2 shows a schematic representation of a embodiment of the invention which employs an endless casting belt;
- FIG. 3 shows an embodiment of the invention which employs a gas delivery means located coaxial with a casting nozzle;
- FIG. 4 shows an embodiment of the invention which employs a rotatable casting wheel;
- FIG. 5 shows an embodiment of the invention which employs a flexible hugger belt to prolong contact of the cast strip with the quench surface;
- FIG. 6 shows a gas velocity profile at the quench surface portion on which molten metal is deposited;
- FIGS. 7 A-B show photographs of the quench surface side of strip cast in air on a beryllium copper substrate; and
- FIGS. 8 A-B show photographs of the quench surface side of a strip cast in a carbon monoxide reducing flame on a beryllium copper substrate.
- For the purposes of the present invention and as used in the specification and claims, a strip is a slender body the transverse dimensions of which are much smaller than its length. Thus, a strip includes wire, ribbon, sheet and the like of regular or irregular cross-section.
- The invention is suitable for casting metal strip composed of crystalline or amorphous metal and is particularly suited for producing metal strip which is rapidly solidified and quenched at a rate of at least about 104°C/sec from a melt of molten metal. Such rapidly solidified strip has improved physical properties, such as improved tensile strength, ductility and magnetic properties.
- FIG. 1 shows a representative prior art device for rapidly casting continuous metal strip. Molten metal alloy contained in crucible 2 is heated by a
heating element 3. Pressurization of the crucible with an inert gas forces a molten stream through anozzle 4 at the base of the crucible and deposits the molten metal onto a moving chill body, such asrotatable casting wheel 1. Solidified movingstrip 6, after its break-away point from the quench wheel is then routed onto a suitable winding means. - Quench surface 5 (substrate) is preferably a material having high thermal conductivity. Suitable materials include carbon steel, stainless steel and copper based alloys such as beryllium-copper. To achieve the quench rates of at least about 104oC per second,
wheel 1 is internally cooled and rotated to provide a quench surface that advances at a speed ranging from about 100 - 4000 meters per minute. Preferably, the quench surface speed ranges from about 200 - 3000 meters per minute. Typically, the thickness of the cast strip ranges from 25 - 100 microns (micrometers). - FIG. 2 shows a representative apparatus of the invention. A moving chill body, such as
endless casting belt 7, has a chilled casting quenchsurface 5. Nozzle means, such asnozzle 4, deposits a stream of molten metal onto a quenchingregion 14 of quenchsurface 5 to formstrip 6.Nozzle 4 has anorifice 22 located atexit portion 26. A depletion means, including gas nozzle delivery means 8, andgas supply 12, supplies a reducinggas 24 fromgas supply 12 to a depletion region 102 located adjacent to and upstream from quenchingregion 14. The reducing gas reacts exothermically within thedepletion region 13, providing a low density reducing atmosphere therewithin.Nozzle 8 is suitably located to direct reducinggas 24 at and around depletion region 102, so that the reducinggas 24 substantially floods thedepletion region 13.Valve 16 regulates the volume and velocity throughnozzle 8. As shown in FIG. 2,gas nozzle 8 is located upstream of quenchingregion 14 and is directed substantially normal to the direction of movement of the quench surface. Optionally,gas nozzle 8 can be located coaxial with castingnozzle 4 as representatively shown in FIG. 3. - The term low density reducing atmosphere, as used in the specification and claims hereof, means a reducing atmosphere having a gas density less than 1 gram per liter and preferably, having a gas density of of less than about 0.5 grams per liter.
- To obtain the desired low density reducing atmosphere,
gas 24 is exothermically reacted to at least about 800 K, and more preferably, is exothermically reacted to at least about 1300 K. In general, hotter reducing gases are preferred because they will have lower densities and will better minimize the formation and entrapment of gas pockets between quenchsurface 5 and the deposited molten metal. - Entrapped gas pockets are undesirable because they produce ribbon surface defects that degrade the surface smoothness. In extreme cases, the gas pockets will cause perforations through
strip 6. A very smooth surface finish is particularly important when winding magnetic metal strip to form magnetic cores because surface defects reduce the packing factor of the material. The packing factor is the volume fraction of the actual magnetic material in the wound core (the volume of magnetic material divided by the total core volume) and is often expressed in percent. A smooth surface without defects is also important in optimizing the magnetic properties ofstrip 6 and in minimizing localized stress concentrations that would otherwise reduce the mechanical strength of the strip. - Gas pockets also insulate the deposited molten metal from quench
surface 5 and reduce the quench rate in localized areas. The resultant, non-uniform quenching produces non-uniform physical properties instrip 6, such as non-uniform strength, ductility and magnetic properties. - For example, when casting amorphous metal strip, gas pockets can allow undesired crystallization in localized portions of the strip. The gas pockets and the local crystallizations produce discontinuities which inhibit mobility of magnetic domain walls, thereby degrading the magnetic properties of the material.
- Thus, by reducing the entrapment of gas pockets, the invention produces high quality metal strip with improved surface finish and improved physical properties. For example, metal strip has been produced with packing factors of at least about 80%, and up to about 95%.
- The mechanism by which gas pockets are reduced can be more readily explained with reference to FIG. 6. The gas boundary layer velocity profile near quench
surface 5 and upstream ofmelt puddle 18 is shown schematically at 20. The maximum gas boundary layer velocity occurs immediately adjacent to quench surface 5 (substrate) and is equal to the velocity of the moving quench surface. Thus, moving quenchsurface 5 ordinarily draws cool air from the ambient atmosphere intodepletion region 13 and into quenchingregion 14, the region of the quench surface upon which molten metal is deposited. Because of the drafting of relatively cool air into the quenching region, the presence of the hot casting nozzle and the molten metal do not sufficiently heat the local atmosphere to significantly reduce the density thereof. -
Melt puddle 18 wets the substrate surface to an extent determined by various factors including the metal alloy composition, the substrate composition, and the presence of surface films. The pressure exerted by the gas boundary layer at the melt-substrate interface, however, acts to locally separate the melt from the substrate and form entrained gas pockets which will appear as "lift-off"areas 44 on the ribbon underside. The stagnation pressure of the gas boundary layer (pressure if the layer hit a rigid wall) is given by the formula Ps= 1/2 p v2 where: p = gas density, v = substrate velocity. Therefore, the reduction of gas boundary layer density or substrate velocity are important in the reduction of the size and the number of gas pockets entrained under the molten metal puddle. For example, removal of the gas boundary layer by casting in vacuum can totally eliminate the lift-off areas in the strip underside. Alternatively, a low density gas in the boundary layer could be employed. The selection of a low molecular weight gas (such as helium) is one way to reduce boundary layer gas density. However, the variety of low molecular weight gases which can be safely and economically used in this fashion is quite limited. The invention provides an economical, safe means for reducing the boundary layer gas density. In accordance with the invention, the boundary layer gas density is reduced by exothermically reacting a reducing gas. As the exothermic reaction of the reducing gas proceeds, heat provided by the reaction causes the density of the gas to diminish as the inverse of the absolute temperature. By exothermically reacting a reducing gas indepletion region 13 at the upstream side of themelt puddle 18, the size and the number of entrained gas pockets under the melt puddle can be substantially reduced. - It is important, however, to regulate pertinent factors, such as the composition of the hot, low-density atmosphere, and the parameters of quench
surface 5, to substantially prevent the formation of any solid or liquid matter which could precipitate onto quenchsurface 5. Such precipitate, if entrained between the melt puddle and quench surface, could produce surface defects and degrade the strip quality. - Surprisingly, heat produced by the low density reducing gas atmosphere located proximate to quenching
region 14 does not degrade the quenching of the molten metal. Rather, heat produced by the reduction reaction actually improves the uniformity of the quench rate by minimizing the presence of insulating, entrapped gas pockets, and thereby improves the quality of the cast strip. Suitable reducing gases include carbon monoxide gas and gas mixtures therewith. - The presence of a reducing atmosphere at quench
surface 5 has distinct advantages. In particular, a reducing atmosphere minimizes the oxidation ofstrip 6. In addition, the reducing atmosphere starves quenchsurface 5 of oxygen and minimizes the oxidation thereof. The reduced oxidation improves the wettability of the quench surface and allows molten metal to be more uniformly deposited on quenchsurface 5. In the case of a copper base materials in quenchsurface 5, the reduced oxidation renders the quench surface much more resistant to thermally induced fatigue crack nucleation and growth. The reducing atmosphere also depletes oxygen from the region ofnozzle 4 thereby reducing the clogging ofnozzle orifice 22, particularly clogging due to oxide particulates. Optionally,additional gas nozzle 32 may be employed to provide additional reducing gas atmospheres along selected portions ofstrip 6, as representatively shown in FIG. 2. - FIG. 4 shows an embodiment of the invention wherein the reducing gas is capable of being ignited and burned to form a reducing flame atmosphere.
Nozzle 4 deposits molten metal onto quenchsurface 5 ofrotating casting wheel 1 to formstrip 6. The depletion means in this embodiment is comprised ofgas supply 12,gas nozzle 8 and ignition means 30.Valve 16 regulates the volume and velocity of gas delivered throughgas nozzle 8, and awiper brush 42 conditions quenchsurface 5 to help reduce oxidation thereon. Aftergas 24 has mixed with sufficient oxygen, ignition means 30 ignites the gas to produce a heated, low-density reducing atmosphere arounddepletion region 13 and around quenchsurface region 14 where molten metal is deposited. Suitable ignition means include spark ignition, hot filament, hot plates and the like. For example, in the embodiment shown in FIG. 4, the hot casting nozzle serves as a suitable ignition means which automatically ignites the reducing gas upon contact therewith. - The resultant flame atmosphere forms a
flame plume 28 which begins upstream of quenchingregion 14 and consumes oxygen therefrom. In addition, unburned reducing gas within the plume reacts to reduce the oxides on quenchsurface 5,nozzle 4 andstrip 6. The visibility offlame 28 allows easy optimization and control of the gas flow, andplume 28 is effectively drawn around the contour ofwheel 1 by the wheel rotation to provide an extended reducing flame atmosphere. As a result, a hot reducing atmosphere is located around quenchingsurface 14 and for a discrete distant thereafter. The extended flame plume advantageously provides a non-oxidizing, protective atmosphere aroundstrip 6 while it is cooling. Optionally,additional gas nozzles 32 and ignition means 34 can be employed to provide additional reducingflame plumes 36 along selected portions ofstrip 6 to further protect the strip from oxidation. A further advantage provided by the hot, reducing flame plume is that the smoothness of the free surface side of the strip (the side not in contact with the quench surface) is significantly improved. Experiments have shown that the mean roughness of the rapidly solidified metal strip, as measured by standard techniques such as pack factor, is significantly reduced when the strip is produced in the reducing flame plume of the invention. - Proper selection of the reducing gas is important. The combustion product of the burned gas should not produce a liquid or solid phase which could precipitate onto quench
surface 5 ornozzle 4. For example, hydrogen gas has been unsatisfactory under ordinary conditions because the combustion product is water which condenses onto quenchsurface 5. As a result, the hydrogen flame plume does not adequately reduce the formation of gas pockets on the quench surface side ofstrip 6. - Therefore, the reducing
gas 24 is preferably a gas that will not only burn and consume oxygen in a strongly exothermic reaction, but will also produce combustion products that will remain gaseous at casting conditions. Carbon monoxide (CO) gas is a preferred gas that satisfies the above criteria, and also provides a desireable, anhydrous, reducing atmosphere. - A reducing flame atmosphere provides an efficient means for heating the atmosphere located proximate to melt
puddle 18 to very high temperatures, in the order of 1300 - 1500 K. Such temperatures provide very low gas densities around themelt puddle 18. The high temperatures also increase the kinetics of the reduction reaction to further minimize the oxidation of quenchsurface 5,nozzle 4 andstrip 6. The presence of a hot reducing flame atnozzle 4 also reduces thermal gradients therein which might crack the nozzle. - Thus, the embodiment of the invention employing a reducing flame atmosphere more efficiently produces a heated, low-density reducing atmosphere around quench
surface 5 which improves the smoothness of both sides of the cast strip and more effectively prevents oxidation of quenchsurface 5,strip 6 and castingnozzle 4. - Rapid quenching employing conditions described heretofore can be used to obtain a metastable, homogeneous, ductile material. The metastable material may be glassy, in which case there is no long range order. X-ray diffraction patterns of glassy metal alloys show only a diffuse halo, similar to that observed for inorganic oxide glasses. Such glassy alloys must be at least 50% glassy to be sufficiently ductile to permit subsequent handling, such as stamping complex shape from ribbons of the alloys. Preferably, the glassy metal alloys must be at least 80% glassy, and most preferably substantially (or totally) glassy, to attain superior ductility.
- The metastable phase may also be a solid solution of the constituent elements. In the case of the alloys of the invention, such metastable, solid solution phases are not ordinarily produced under conventional processing techniques employed in the art of fabricating crystalline alloys. X-ray diffraction patterns of the solid solution alloys show the sharp diffraction peaks characteristic of crystalline alloys, with some broadening of the peaks due to desired fine-grained size of crystallites. Such metastable materials are also ductile when produced under the conditions described above.
- The material of the invention is advantageously produced in foil (or ribbon) form, and may be used in product applications as cast, whether the material is glassy or a solid solution. Alternatively, foils of glassy metal alloys may be heat treated to obtain a crystalline phase, preferably fine-grained, in order to promote longer die life when stamping of complex shapes is contemplated.
- As shown in FIG. 5, the invention may optionally include a
flexible hugger belt 38 which entrainsstrip 6 against quenchsurface 5 to prolong cooling contact therewith. The prolonged contact improves the quenching ofstrip 6 by providing a more uniform and prolonged cooling period for the strip.Guide wheels 40position belt 38 in the desired hugging position along quenchsurface 5, and a drive means moves belt 38 such that the belt portion in hugging relation to quenchsurface 5 moves at a velocity substantially equal to the velocity of the quench surface. Preferably,belt 38 overlaps the marginal portions ofstrip 6 to directly contact and frictionally engage quenchsurface 5. This frictional engagement provides the required driving means to move the belt. - Considerable effort has been expended to develop devices and procedures for forming thicker strips of rapidly solidified metal because such strip can more easily be used as a direct substitute for materials presently employed in existing commercial applications. Since the present invention significantly improves the contact between the stream of molten metal and the chilled quench surface, there is improved heat transport away from the molten metal. The improved heat transport, in turn, provides a more uniform and more rapid solidification of the molten metal to produce a higher quality thick strip, i.e. strip having a thickness ranging from about 15 micrometers to as high as about 70 micrometers and more.
- Similarly, considerable effort has been expended to form thinner strips of rapidly solidified metal. Very thin metal strip, less than about 15 microns and preferably about 8 microns in thickness, is highly desirable in various commercial applications. In brazing applications, for example, the filler metals used in brazed joint normaly have inferior mechanical properties compared to the base metals. To optimize the mechanical properties of a brazed assembly, the brazed joint is made very thin. Thus, when filler material in foil form is placed directly in the joint area prior to the brazing operation, the joint strength can be optimized by using a very thin brazing foil.
- In magnetic applications with high frequency electronics (over 10 kHz), power losses in magnetic devices are proportional to the thickness (t) of the magnetic materials. In other magnetic applications such as saturable reactors, power losses are proportional to the thickness dimension of the magnetic material raised to the second power (t2) when the material is saturated rapidly. Thus, thin ribbon decreases the power losses in the reactor. In addition, thin ribbon requires less time to saturate; as a result, shorter and sharper output pulses can be obtained from the reactor. Also, thin ribbons decrease the induced voltage per lamination and therefore, require less insulation between the laminations.
- In inductors for linear induction accelerators, losses are again related to t2, and the thinner ribbon will reduce power losses. Also, thin ribbon saturates more easily and rapidly and can be used to produce shorter pulse accelerators. In addition, the thinner ribbon will require reduced insulation between the laminations.
- A further advantage of thin strip is that the strip experiences less bending stresses when wound to a given diameter. Excessive bending stresses will degrade the magnetic properties through the phenomenon of magneto- striction.
- The apparatus and method of the invention are particularly useful for forming very thin metal strip. Since the invention significantly reduces the size and depth of gas pocket defects, there is less chance that such a defect will be large enough to perforate the cast strip. As a result, very thin strip can be cast because there is less probability that a defect large enough to perforate the strip will form. Thus, the invention can be adapted to cast very thin metal strip, which as-cast, is less than about 15 micrometers thick. Preferably, the cast strip has a thickness of 12 micrometers or less. More preferably, the cast strip thickness ranges from 7 to 12 micrometers. In addition, the thin metal strip has a width dimension which measures at least about 1.5 millimeters, and preferably measures at least about 10 mm.
- A forced-convection-cooled, casting wheel having a plain carbon steel substrate was used to prepare nickel-base and iron-base glassy metal ribbons. The casting wheel had an internal cooling structure similar to that described in U.S. Patent 4,307,771, a diameter of 38 cm and a width of 5 cm. It was rotated at a speed of 89U rpm, corresponding to a circumferential surface velocity of 18 m/s. The substrate was conditioned continuously during the run by an idling brush wheel inclined about 10° out of the casting direction. A nozzle having a slotted orifice of 0.4 millimeter width and 25 millimeter length defined by a first lip and a second lip each having a width of 1.5 millimeters (lips numbered in direction of rotation of the chill roll) was mounted perpendicular to the direction of movement of the peripheral surface of the casting wheel, such that the gap between the second lip and the gap between the first lip and the surface of the casting wheel was .20 millimeter. Nickel-base metal alloy having composition Ni68Cr7Fe3B14si8 (subscripts in atomic percent) with a melting point of about 1000°C was supplied to the nozzle from a pressurized crucible, the metal within the crucible being maintained under pressure of about 3.5 psig (24 kPa) at temperature of 1300°C. Pressure was supplied by means of an argon blanket. The molten metal was expelled through the slotted orifice at the rate of 6.6 kilograms per minute. It solidified on the surface of the chill roll into a strip of 0.033 millimeter thickness having width of 2.54 cm. Upon examination using X-ray diffractometry, the strip was found to be amorphous in structure. The ribbon showed significant populations of entrapped air pockets in the underside. A dark oxidation track formed on the substrate surface during ribbon casting, limiting the ribbon substrate adhesion.
- The procedure of Example 1 was repeated, employing the equipment, process conditions, metal and alloys used in Example 1 except that a carbon monoxide flame was directed at the ribbon casting track upstream of the melt puddle to reduce oxidation and promote ribbon- substrate adhesion. The combined actions of the flame and the conditioning brush reduced the substrate oxidation, increased adhesion and produced ribbon having good geometric uniformity. The best results were obtained when the distance between the carbon monoxide flame and the back of the melt puddle was less than about 2 cm (<1 inch). Tensile specimens cut from the strip in longitudinal and transverse direction exhibited equal tensile strength and elongation. The strip had isotropic tensile properties.
-
- The iron-base ribbon was annealed in an inert gas atmosphere for 2 hours at a temperature of 365°C in a field of 80 amperes/meter applied longitudinal of the ribbon length.
- A photomicrograph showing the underside of the iron-base, amorphous ribbon is depicted in Figs. 7A-B. Note that the included air pockets shown are rather large and elongated.
- The procedure of Example 3 was repeated employing the same equipment, process conditions and alloy except that a carbon monoxide flame was directed at the ribbon casting track upstream of the melt puddle to reduce oxidation and promote ribbon substrate adhesion. A photomicrograph showing the underside of the iron-base amorphous ribbon produced using the carbon monoxide flame is depicted in Figs. 8 A-B. Note the significant reduction in included air pockets on the underside of iron-base ribbon cast using the carbon monoxide flame as compared with those shown in Figs. 7A-B. Magnetic properties of the ferromagnetic ribbons as well as the pack factor thereof were also improved (see Table II below). Similar improvements in the underside of nickel-base amorphous ribbon have also been observed.
- Thus, experiments have shown remarkable improvement of ribbon surface smoothness, luster, and ductility over material cast in a conventional manner. While the intrinsic wetting of a copper substrate by ferrous melts may not be as great as the wetting of an iron-based substrate, the use of a carbon monoxide flame enhances melt-copper substrate wetting to the point where a copper substrate is a viable material for the production of high quality, defect-free strip. Such a defect-free casting capability allows the production of very thin ribbon (on the order of about 7 micrometers thick). Additionally, the improved melt-substrate contact caused by carbon monoxide flame-assisted casting improves overall quench rate and enables the production of a given ribbon composition at a thickness greater than usual.
-
- Table I illustrates the advantages of the present invention. The ribbon cast in air (sample 1) was made by the casting procedure taught in U.S. Patent No. 4,142,571 to Narasimhan. Note the relatively low pack factor and magnetization loop squareness in both the as-cast and annealed states. Ribbons of various thicknesses made using the teachings of the present invention (samples 2-4) have much improved pack factors and magnetization loop squareness in both the as-cast and annealed states.
Sample 5 illustrates ribbon properties which result from casting in a flame atmosphere that produces nongaseous combustion products (water, in this case). The occurrence of poor melt wetting in the manufacture ofsample 5 has resulted in the inferior properties measured. - Having thus described the invention in rather full detail, it will be understood that such detail need not be strictly adhered to but that various changes and modifications may suggest themselves to one skilled in the art, all falling within the scope of the invention as defined by the subjoined claims.
Claims (10)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48347383A | 1983-04-11 | 1983-04-11 | |
US483473 | 1983-04-11 | ||
US49092283A | 1983-05-02 | 1983-05-02 | |
US490922 | 1983-05-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0121683A1 true EP0121683A1 (en) | 1984-10-17 |
EP0121683B1 EP0121683B1 (en) | 1989-04-26 |
Family
ID=27047660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19840101458 Expired EP0121683B1 (en) | 1983-04-11 | 1984-02-13 | Casting in an exothermic reduction atmosphere |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0121683B1 (en) |
AU (1) | AU2402084A (en) |
CA (1) | CA1214619A (en) |
DE (1) | DE3477894D1 (en) |
HK (1) | HK10191A (en) |
SG (1) | SG10191G (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB519977A (en) * | 1938-08-22 | 1940-04-11 | Joseph Marcel Merle | Improvements in or relating to a method of making flat metallic products |
LU69059A1 (en) * | 1973-04-06 | 1974-02-22 | ||
US3895673A (en) * | 1974-07-31 | 1975-07-22 | Jones & Laughlin Steel Corp | Gas cover for casting machine |
GB1526192A (en) * | 1975-09-19 | 1978-09-27 | British Steel Corp | Continuous casting of metal strip |
US4177856A (en) * | 1978-08-28 | 1979-12-11 | General Electric Company | Critical gas boundary layer Reynolds number for enhanced processing of wide glassy alloy ribbons |
-
1984
- 1984-02-02 AU AU24020/84A patent/AU2402084A/en not_active Abandoned
- 1984-02-13 EP EP19840101458 patent/EP0121683B1/en not_active Expired
- 1984-02-13 DE DE8484101458T patent/DE3477894D1/en not_active Expired
- 1984-03-27 CA CA000450621A patent/CA1214619A/en not_active Expired
-
1991
- 1991-01-31 HK HK10191A patent/HK10191A/en not_active IP Right Cessation
- 1991-02-19 SG SG10191A patent/SG10191G/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB519977A (en) * | 1938-08-22 | 1940-04-11 | Joseph Marcel Merle | Improvements in or relating to a method of making flat metallic products |
LU69059A1 (en) * | 1973-04-06 | 1974-02-22 | ||
US3895673A (en) * | 1974-07-31 | 1975-07-22 | Jones & Laughlin Steel Corp | Gas cover for casting machine |
GB1526192A (en) * | 1975-09-19 | 1978-09-27 | British Steel Corp | Continuous casting of metal strip |
US4177856A (en) * | 1978-08-28 | 1979-12-11 | General Electric Company | Critical gas boundary layer Reynolds number for enhanced processing of wide glassy alloy ribbons |
Also Published As
Publication number | Publication date |
---|---|
SG10191G (en) | 1991-04-05 |
CA1214619A (en) | 1986-12-02 |
AU2402084A (en) | 1984-10-18 |
EP0121683B1 (en) | 1989-04-26 |
HK10191A (en) | 1991-02-08 |
DE3477894D1 (en) | 1989-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4588015A (en) | Casting in an exothermic reducing flame atmosphere | |
US4789022A (en) | Process for continuous casting of metal ribbon | |
JP3955822B2 (en) | Apparatus and method for casting amorphous metal alloy in adjustable low density atmosphere | |
US4409296A (en) | Rapidly cast alloy strip having dissimilar portions | |
US4676298A (en) | Casting in a low density atmosphere | |
US4485839A (en) | Rapidly cast alloy strip having dissimilar portions | |
EP0050397B1 (en) | Cast metallic strip and method and apparatus for producing same | |
US5043029A (en) | Casting in a exothermic reduction atmosphere | |
US4869312A (en) | Casting in an exothermic reduction atmosphere | |
US4664176A (en) | Casting in a thermally-induced low density atmosphere | |
EP0124688B1 (en) | Casting in a low density atmosphere | |
US4665970A (en) | Method of producing a metallic member having a unidirectionally solidified structure | |
KR960003714B1 (en) | Method and apparatus for manufacturing a thin metal strip by quenching and solidification | |
EP0124684B1 (en) | Casting in a thermally-induced, low density atmosphere | |
EP0121683B1 (en) | Casting in an exothermic reduction atmosphere | |
Liebermann | Manufacture of amorphous alloy ribbons | |
JPH0242019B2 (en) | ||
CA1268923A (en) | Casting in a thermally-induced, low density atmosphere | |
Wood | Direct casting of sheet by chill block techniques | |
JP3157641B2 (en) | Steel continuous casting equipment | |
JPS5950956A (en) | Device for producing light-gage strip of crystalline metal | |
JPS6261759A (en) | Method and installation for producing thin ingot of high-carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19850329 |
|
17Q | First examination report despatched |
Effective date: 19860912 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3477894 Country of ref document: DE Date of ref document: 19890601 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 84101458.2 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20001222 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010313 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020228 |
|
BERE | Be: lapsed |
Owner name: ALLIED CORP. Effective date: 20020228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020901 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030106 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030204 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20030205 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030228 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030319 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040212 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040212 Ref country code: CH Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20040212 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |