EP0119999A1 - System zur kontrolle des ein- und ausgangs von geldstücken - Google Patents

System zur kontrolle des ein- und ausgangs von geldstücken

Info

Publication number
EP0119999A1
EP0119999A1 EP19820903219 EP82903219A EP0119999A1 EP 0119999 A1 EP0119999 A1 EP 0119999A1 EP 19820903219 EP19820903219 EP 19820903219 EP 82903219 A EP82903219 A EP 82903219A EP 0119999 A1 EP0119999 A1 EP 0119999A1
Authority
EP
European Patent Office
Prior art keywords
phase
cyclical
signals
pulse train
power distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19820903219
Other languages
English (en)
French (fr)
Inventor
Kenneth L. Clements
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cybex International Ltd
Cybex International Inc
Original Assignee
Cybex International Ltd
Cybex International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cybex International Ltd, Cybex International Inc filed Critical Cybex International Ltd
Publication of EP0119999A1 publication Critical patent/EP0119999A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5408Methods of transmitting or receiving signals via power distribution lines using protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5445Local network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5458Monitor sensor; Alarm systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5491Systems for power line communications using filtering and bypassing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5495Systems for power line communications having measurements and testing channel

Definitions

  • the present invention relates generally to comput ⁇ erized data communications systems, and more specifically to a computer system for monitoring a plurality of remote elec ⁇ trically operated devices such as slot machines wherein the data bus incorporates the electrical power lines supplying the remote devices.
  • Communication may occur between any two devices, but in the preferred embodiment, communication is initiated by the central computer which sequentially polls individual sensor modules within the slot machines on a regular cyclical basis.
  • Each slot machine sensor module is assigned a serial number for identification purposes.
  • the polling signal includes a preamble of pure carrier frequency, followed by the serial number of the device being polled, followed by the data (or instructions) defining the message content.
  • Each data link has its own clock for generating a pulse train at a frequency very close to the common carrier frequency, and includes means for bringing its own carrier frequency pulse train approximately into a predetermined phase relationship with the carrier train that is appearing on the power lines. This is typically done by stepping the phase by 90° incre ⁇ ments until the local clock is in proper phase.
  • serial number portion of the message begins, all data links are synchronized with the carrier in order to be able to interpret the serial number.
  • each device ascertains whether the message is destined for it, and if so, receives and acts on the message.
  • the message from the main computer requests the transmission from the remote sensor of some data. If the transmission from the remote sensor occurs substantially immediately, the central computer is already synchronized with the sensor.
  • the electrical power distribution lines represent an extremely noisy environment and thus an unlikely medium for messages where error free data transmission is a prerequisite.
  • the noise on the electrical lines arises from the various device drawing electrical power such as motors with arcing brushes and solid state control units characterized by extremely sharp changes in current conduction. While some potential sources of electrical interference may be filtered, sharp pulses contain power at virtually all frequencies, and canno be filtered.
  • each data link has means for changing (for example, halving) the carrier frequency if it is determined that messages at the original frequency are not getting through without error. This capability lowers the probability that data transmission is totally interfered with.
  • the electromechanical signals regarding the state of the slot machine are monitored by a plurality of opto/isolators assemblies. While an electrical connection i made to sense the electrical signals originating in the machine, the connection is one-way; while the sensor module can respond to the AC signals, it cannot influence them. Th passage of a coin through the machine is monitored by a plur
  • Fig. 2 is a block diagram of the communication system utilizing the electrical power distribution lines
  • Figs. 7A and 7B taken together, form a circuit schematic of the communications processor; and Fig. 8 is a diagram illustrating the system message format.
  • DETAILED DESCRIPTION OF THE INVENTION Overview provides a computer ⁇ ized monitoring system which uses the power lines that pro ⁇ vide electrical power to the monitored devices as the physi ⁇ cal data communications medium of the computer data bus.
  • the description that follows will be with reference to monitoring a plurality of slot machines in a casino.
  • Fig. 1 is a schematic block diagram showing a typical power distribution system for a hypothetical casino.
  • Each of reels 199 is pro ⁇ vided with marker such as a contrasting dot 225 at a prede ⁇ termined position, preferably near an edge of the cylindrical surface of reel 199.
  • the basic purpose of the circuitry is to use dot 225 as a reference and to count the number of symbols passing after the dot in order to gain a precise indication of the reel position.
  • a 700 Hz signal is inter ⁇ mittently generated at phototransistor 227b during the per- iods that light is being reflected.
  • the signals from photo ⁇ transistor 227b are passed through 700 Hz band pass circuitry 235, and thence to 700 Hz detection circuitry 240.
  • Circuitry 235 is characterized by a gain of 5 and value of 3 to amplify and filter the signals in order to provide a clean 700 Hz signal during those intervals when light is being reflected.
  • Detection circuitry 240 tuned to the same 700 Hz frequency provides an output signal pulse for each picture that goes by sensor 227. These pulses are passed to a 5-bit counter 245 which provides a numeric representation of the position of reel 199.
  • Communication processor 67 comprises a microproces- sor 260 which is coupled to central computer data link 70 in the same manner that microcomputer 85 is coupled to slot machine data link 87.
  • Microprocessor 260 communicates to a universal synchronous/asynchronous receiver and transmitter (hereinafter USART) 262.
  • USART 262 transmits signals on lines 265 and 267 to the LED (input) side of an opto/isolator 270, and receives signals on lines 272 and 273 from the phototransistor (output) side of an opto/isolator 274.
  • Group Poll 1 (2 bit times) for each of 16 machines
  • Command type 8 is requests the return of a 24-bit counter representative of the number of coins that have gone into the safe.
  • Command type 9 requests the return of a 16-bit counter representative of the number of coins that were paid out on the last cycle.
  • Command type 11 requests the return of a 24-bit data check code which is the sum of the number of coins in, the number of coins out, the number of coins in the hopper, and the number of coins in the safe. It is used to detect that one of these quantities changed since the last time the machine was interrogated.
  • Command type 12 instructs microcomputer 85 to select the alternate carrier frequency from whenever it may be at the time, and, when it gets to that other carrier fre ⁇ quency, to return the status register.
  • Command type 13 instructs microcomputer 85 to clea the error code and return the status, but this will only occur if the previous command to the particular microcompute
  • OMPI VT O was a type 3 command to return the error code. Otherwise th response to the command is merely to return the status register but not to clear the error code.
  • Command type 14 requests return of the 24-bit cycl number of the last cycle on which an error occurred.
  • the present inven ⁇ tion provides a computerized monitoring and communications system that is characterized by simplicity and reliability while providing high data transfer rates under highly inhos ⁇ pitable conditions. While the above provides a full and complete disclosure of the preferred embodiments of the invention, various modifications, alternate constructions, and equivalents may be employed without departing from the true spirit and scope of the invention. For example, the system is clearly applicable to remote devices other than slot machines. Therefore, the above description and illus ⁇ trations should not be construed as limiting the scope of th invention which is defined by the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Pipeline Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Small-Scale Networks (AREA)
EP19820903219 1982-09-27 1982-09-27 System zur kontrolle des ein- und ausgangs von geldstücken Withdrawn EP0119999A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1982/001334 WO1984001482A1 (en) 1982-09-27 1982-09-27 Cash flow monitoring system

Publications (1)

Publication Number Publication Date
EP0119999A1 true EP0119999A1 (de) 1984-10-03

Family

ID=22168229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820903219 Withdrawn EP0119999A1 (de) 1982-09-27 1982-09-27 System zur kontrolle des ein- und ausgangs von geldstücken

Country Status (5)

Country Link
EP (1) EP0119999A1 (de)
JP (1) JPS59501808A (de)
AU (1) AU555336B2 (de)
GB (1) GB2140659B (de)
WO (1) WO1984001482A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU579363B2 (en) * 1984-04-17 1988-11-24 Electricity Trust Of South Australia, The A Bi-Directional Multi-Frequency Ripple Control System
GB2227453B (en) * 1988-12-30 1993-03-31 Alcatel Business Systems Franking system
GB8912276D0 (en) * 1989-05-27 1989-07-12 Allen John Data communication apparatus
US5218552A (en) * 1990-07-30 1993-06-08 Smart House, L.P. Control apparatus for use in a dwelling
GB9415594D0 (en) * 1994-08-02 1994-09-21 Ptf Consultants Ltd Improvements in and relating to remote monitoring and signalling
CN115865683B (zh) * 2023-03-02 2023-05-23 山东创安交通预警工程有限公司 智慧社区设备管理系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1512857A (en) * 1974-09-13 1978-06-01 Bally Mfg Corp Monitoring system for use with amusement game devices
US4311986A (en) * 1978-09-13 1982-01-19 The Bendix Corporation Single line multiplexing system for sensors and actuators
US4300126A (en) * 1980-04-11 1981-11-10 General Electric Co. Method and apparatus, for power line communications using zero crossing load interruption

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8401482A1 *

Also Published As

Publication number Publication date
GB8412482D0 (en) 1984-06-20
GB2140659A (en) 1984-11-28
AU555336B2 (en) 1986-09-18
JPS59501808A (ja) 1984-10-25
GB2140659B (en) 1986-03-05
WO1984001482A1 (en) 1984-04-12
AU9050482A (en) 1984-04-24

Similar Documents

Publication Publication Date Title
US4357605A (en) Cash flow monitoring system
US4446458A (en) Monitoring and control system
CA1157924A (en) Information reporting multiplex system
US5452344A (en) Communication over power lines
US4130874A (en) Load management terminal having plural selectable address formats for a power line communication system
CA1203596A (en) Utility usage data and event data acquisition system
US4286305A (en) Electronic security device and method
US4707852A (en) Utility usage data and event data acquisition system
US3927404A (en) Time division multiple access communication system for status monitoring
US3868640A (en) Interrogation of remote stations via automatic dialler
US4614945A (en) Automatic/remote RF instrument reading method and apparatus
US5729212A (en) Gaming device providing high security communications with a remote station
RU2100846C1 (ru) Автономная система считывания и записи данных
US6144927A (en) Data transmission device for a motor vehicle, comprising a pulse generator and a monitoring unit, as well as a pulse generator for the monitoring unit
US4289931A (en) Security identification system using pulse code modulation
CA1180412A (en) Alarm data concentration and gathering system
US5089809A (en) Remote indication of appliance status
AU555336B2 (en) Cash flow monitoring system
GB2135487A (en) Remote signalling apparatus
US4107656A (en) Data communication receiver and transfer apparatus
US3952285A (en) Security polling transponder system
CA1262271A (en) Method and device for data transmission over several parallel lines, in particular optical fiber
US2168460A (en) Signaling system
EP0051325B1 (de) Fernsteuersystem
US3846794A (en) Alarm retransmission system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19840829

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CLEMENTS, KENNETH, L.