EP0118437A1 - Method of on site charging of distributor magnet - Google Patents

Method of on site charging of distributor magnet

Info

Publication number
EP0118437A1
EP0118437A1 EP19820903092 EP82903092A EP0118437A1 EP 0118437 A1 EP0118437 A1 EP 0118437A1 EP 19820903092 EP19820903092 EP 19820903092 EP 82903092 A EP82903092 A EP 82903092A EP 0118437 A1 EP0118437 A1 EP 0118437A1
Authority
EP
European Patent Office
Prior art keywords
engine
sensor
distributor
magnetic
orienting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19820903092
Other languages
German (de)
French (fr)
Inventor
David H. Fox
Charles C. Kostan
Frank B. Casaceli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Werke GmbH
Ford France SA
Ford Motor Co Ltd
Ford Motor Co
Original Assignee
Ford Werke GmbH
Ford France SA
Ford Motor Co Ltd
Ford Motor Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Werke GmbH, Ford France SA, Ford Motor Co Ltd, Ford Motor Co filed Critical Ford Werke GmbH
Publication of EP0118437A1 publication Critical patent/EP0118437A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • F02P7/0677Mechanical arrangements

Definitions

  • This invention relates to a method for orienting a magnetic element for producing an electrical signal in synchronism with the periodic movement of a piston in an internal combustion engine.
  • U.S. patent 3,517,142 to Hans-Dieter Bastam et al teaches a typical mechanical connection where a signal generator assembly is mounted on a distributor shaft and cooperates with two pivotable contacts.
  • U.S. patent 4,235,213 to Jellissen teaches an ignition system housing to provide timing signals for an automotive ignition distributor system.
  • a housing is mounted on a swing arm. The housing is fixed in position and locked in place by screws engaged in the threaded central bores of the housing.
  • the housing is attached to the swing arm by having bosses positioned within the cavities.
  • a method of assembling a distributor includes integrally mounting a distributor rotor and shaft assembly directly to a camshaft, then positioning an uncharged magnet on the distributor shaft assembly and charging the magnet in place thereby insuring accurate engine initial timing.
  • the charging occurs after a known engine position is estab ⁇ lished.
  • Such in place charging of the magnet eliminates manufacturing tolerances that contribute to inaccuracies between the indicated and actual crankshaft positions.
  • Fig. 1 is a cross-section of a distributor mounted on an engine camshaft in accordance with an embodiment of this invention
  • FIG. 2 is an end view of an intermediate shaf which is coupled to the engine camshaft;
  • Fig. 3 is an end view of a magnet to be mounted o the intermediate shaft in accordance with an embodiment o this invention
  • Fig. 4 is an elevation view of a magnetic chargin tool for a distributor in accordance with an embodiment o this invention
  • Fig. 5 is a section view taken generally alon section line 5-5 of Fig. 4 and includes a portion of the distributor of Fig. 1 to show how the magnetic chargin tool mates with the distributor;
  • Fig. 6 is a top view of the rotor of a distributo in accordance with an embodiment of this invention.
  • Fig. 7 is a side view of an engine and a distributor " mounted thereon in accordance with an embodiment of this invention.
  • distributor 10 is directly mounted on a camshaft 20 of an engine 22.
  • An intermediate shaft 12 is mounted and oriented directly on camshaft 20 eliminating the need for any bearings.
  • a ring-like magnet 14 is positioned on intermediate shaft 12 to provide an indication of the rotational position of intermediate shaft 12, of camshaft 20 and therefore of the engine crankshaft. Magnetic poles are induced in magnet 14 after magnet 14 is positioned on intermediate shaft 12.
  • Such in place charging of magnet 14 (Fig. 5) permits accurate correlation between the rotational position of the magnetic poles on magnet 14 and the rotational position of the crankshaft in engine 22. As a result, it is possible to compensate for manufacturing tolerances which may otherwise contribute to inaccuracies.
  • Inter ediate shaft 12 is a generally hollow cylinder with decreasing diameter toward the end mounted on the outer diameter of camshaft 20.
  • a screw 34 in combina ⁇ tion with a washer 36 is attached to a mounting stud 30 and engages an insert 38 coupled to intermediate shaft 12 thereby securing intermediate shaft 12 to mounting stud 30.
  • Mounting stud 30 has a threaded portion 31 which screws into the central opening of camshaft 20.
  • Intermediate shaft 12 has a plurality of radial, circumferentially spaced openings at the end adjacent camshaft 20.
  • Insert 38 is a web that extends through the radial openings in intermediate shaft 12 and has integral circumferential ring-like portions both inside and outside intermediate shaft 12.
  • Intermediate shaft 12 is formed of a combination of powdered metal and plastic.
  • insert 38 is also formed of a plastic and powdered metal combination and formed in place by injection arcund intermediate shaft 12.
  • a lip seal 42 between insert 38 and engine head 24 acts as a seal to keep oil in passages 26 around camshaft 20 from leaking from engine 22.
  • a shoulder portion 64 of intermediate shaft 12 supports magnet 14 as shown in Fig. 2. Shoulder portion 64 has circumferential, outwardly facing teeth 66. Magnet 14 (Fig. 3) has circumferential, inwardly facing teeth 68 for engaging teeth 66.
  • the end of intermediate shaft 12 projecting away from engine 22 supports a rotor 46 (see Fig. 6).
  • Rotor 46 carries a staple-like electrode 48 and spring 50.
  • the mounting of spring 50 on rotor 46 is accomplished by a compression fit and uses no secondary mounting process such as a rivet or a heat stake.
  • Rotor 46 includes a clamp-like ledge 47 to hold down spring 50.
  • a back stop 49 acts in cooperation with ledge 47 to positively hold spring 50 to rotor 46.
  • Such a construction for attaching spring 50 provides a positive locking feature to electrode 48 thus
  • Staple-like electrode 48 reduces cost o manufacturing.
  • the wire drawn material minimizes materia costs and weight.
  • the staple form can be obtained b relatively low cost tooling.
  • the sharp pointed electrod design also reduces the generation of high levels of radi frequency interference.
  • Sensor 54 (Figs. 1 and 5) is coupled to a electronic engine control and provides crankshaft positio information.
  • Sensor 54 is a bipolar Hall-type device. Th bipolar feature results in a sensor that switches on an off by being subjected to a positive magnetic flux and negative magnetic flux after experiencing a zero flu condition at transitions between positive and negativ magnetic flux.
  • a positive magnetic flux is associated wit the passage of a north magnetic pole on magnet 14 and negative magnetic flux is associated with the passage of south magnetic pole on magnet 14.
  • a sensor holder 52 (Figs. 1, 5 and 7) is mounted on head 24 and supports bipolar Hall-type sensor 54 in proximity to magnet 14.
  • Sensor holder 52 includes charging tool locating holes 56 for receiving pins 72 positioning a charging tool 70 to charge magnet 14 (see Fig. 5). Accordingly, after magnet 14 is positioned on intermediate shaft 12, sensor holder 52 is mounted on head 24, and the engine position is determined to be in a known position (such as top dead center of cylinder one).
  • Sensor holder 52 also supports distributor cap 58 in proximity to spring 50 and electrode 48 so that a firing voltage can be supplied through a central electrode 60 to spring 50 and distributed through electrode 48 to a plurality of spark plug associated electrodes 62 (Fig. 1).
  • Charging tool 70 (Figs 4 and 5) is generally circular with a protruding handle 74.
  • a circular pilot 76 extends along the axis of charging tool 70 ' for engaging the central opening of intermediate shaft 12.
  • a pair of pins 72 extend parallel to pilot 76 for engaging locating holes 56.
  • a partially hollow cylindrical portion 78 extends around pilot 76 along the outside of intermediate shaft 12 to magnet 14.
  • An undulating conductor bus bar 80 is supported by cylindrical portion 78 adjacent magnet 14. The undulations are, in sequence, axially upward, circumferential, axially downward, circumferential, axially upward, and so on.
  • the axial portions of bus bar 80 are spaced about 45° apart so that current flowing in bus bar 80 induces eight magnet poles in magnet 14.
  • Magnet 14 is mounted on intermediate shaft 12 as an uncharged injection molded plastic magnet containing oriented magnetic dipoles.
  • the engine crankshaft is positioned to a known positon (relative to top dead center of cylinder number one) and a magnetizing fixture is located relative to sensor 54 and magnet 14. At this point, torque can be applied to camshaft 20 to take up any timing belt looseness and the magnet 14 is magnetized.
  • Ring-like magnet 14 is magnetized relative to a known engine position so that the 45° north and south poles are generated alternately over the outer diameter of the magnetic in a location such that the sensor switches at a prescribed point relative to the known engine position.
  • bipolar Hall-type sensor 54 is potted in the plastic base which is mounted directly to the engine head to assure a positive known location in relation to the rotation of the magnet.
  • the crankshaft can be located at 35° after top dead center (ATDC) so that charg ⁇ ing conductors can be equally spaced around sensor. This will result in a signal being generated at 10° before top dead center (BTDC) by the sensor during engine operation.
  • X £ NA Sensor 54 is triggered by a low magnetic flu level, such as plus and minus 50 gauss around a zero flu transition point, and its sensitivity to air gap size temperature and run-out variation is minimal.
  • the maximu amplitude of magnetic flux at the pole face i approximately 900 gauss.
  • Sensor holder 52 also contains pole piece 55 (Fig. 1) adjacent sensor 54 to focus th magnetic flux from magnet 14 thereby concentrating the flu to improve the accuracy of sensor 54.
  • pole piece 55 Fig. 1
  • the particular configura tion of the sensor holder may be varied from that describe herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Un procédé d'assemblage d'un distributeur (10) comprend le montage intégrant d'un anneau magnétisable (14) directement sur un arbre à cames (20) et la formation de pôles magnétiques sur l'anneau (14) lorsque le moteur se trouve en position connue. Un détecteur (54) possède une position connue par rapport aux pôles de l'anneau (14) et est utilisé pour donner des informations au sujet de la rotation du moteur.A method of assembling a distributor (10) comprises integrating mounting of a magnetizable ring (14) directly on a camshaft (20) and the formation of magnetic poles on the ring (14) when the engine found in known position. A detector (54) has a known position relative to the poles of the ring (14) and is used to give information about the rotation of the motor.

Description

METHOD OF ON SITE CHARGING OF DISTRIBUTOR MAGNET
This appl ication relates to commonly assigned copending application 82-6-II entitled "Distribu tor Construction and Signal Generator" , invented by F. B. Casaceli ; D. H. Fox and C. C. Kostan.
TECHNICAL FIELD
This invention relates to a method for orienting a magnetic element for producing an electrical signal in synchronism with the periodic movement of a piston in an internal combustion engine.
BACKGROUND ART
In machines having a cyclic operation, as in an internal combustion engine, certain operations or certain movements must be controlled or actuated in synchronism with the displacement or rotation of a part such as the crankshaft. For example, the occurrence of spark ignition, fuel injection, and movement of a valve, must be coordi¬ nated. One of the known difficulties is to mount a position sensor so that it has a fixed, known position with respect to a reference position of the moving engine. When an engine position is established so that the number one cylinder has a piston at top dead center, the distributor can be mounted on the engine so that the position sensor indicates the engine's position. However, such mounting is typically subject to a mechanical mounting error.
For example, U.S. patent 3,517,142 to Hans-Dieter Bastam et al teaches a typical mechanical connection where a signal generator assembly is mounted on a distributor shaft and cooperates with two pivotable contacts. U.S. patent 4,235,213 to Jellissen teaches an ignition system housing to provide timing signals for an automotive ignition distributor system. A housing is mounted on a swing arm. The housing is fixed in position and locked in place by screws engaged in the threaded central bores of the housing. The housing is attached to the swing arm by having bosses positioned within the cavities.
In the systems taught in both these patents, the errors inherent in such mechanical mountings of the signal generating circuit reduce the correlation between the actual position of the engine and the indicated position to the engine. These are some of the problems this invention overcomes.
DISCLOSURE OF INVENTION
In accordance with an embodient of this invention, a method of assembling a distributor includes integrally mounting a distributor rotor and shaft assembly directly to a camshaft, then positioning an uncharged magnet on the distributor shaft assembly and charging the magnet in place thereby insuring accurate engine initial timing. The charging occurs after a known engine position is estab¬ lished. Such in place charging of the magnet eliminates manufacturing tolerances that contribute to inaccuracies between the indicated and actual crankshaft positions.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a cross-section of a distributor mounted on an engine camshaft in accordance with an embodiment of this invention;
O ΛΆ Fig. 2 is an end view of an intermediate shaf which is coupled to the engine camshaft;
Fig. 3 is an end view of a magnet to be mounted o the intermediate shaft in accordance with an embodiment o this invention;
Fig. 4 is an elevation view of a magnetic chargin tool for a distributor in accordance with an embodiment o this invention;
Fig. 5 is a section view taken generally alon section line 5-5 of Fig. 4 and includes a portion of the distributor of Fig. 1 to show how the magnetic chargin tool mates with the distributor;
Fig. 6 is a top view of the rotor of a distributo in accordance with an embodiment of this invention; and Fig. 7 is a side view of an engine and a distributor "mounted thereon in accordance with an embodiment of this invention.
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to Figs. 1 and 7, distributor 10 is directly mounted on a camshaft 20 of an engine 22. An intermediate shaft 12 is mounted and oriented directly on camshaft 20 eliminating the need for any bearings. A ring-like magnet 14 is positioned on intermediate shaft 12 to provide an indication of the rotational position of intermediate shaft 12, of camshaft 20 and therefore of the engine crankshaft. Magnetic poles are induced in magnet 14 after magnet 14 is positioned on intermediate shaft 12. Such in place charging of magnet 14 (Fig. 5) permits accurate correlation between the rotational position of the magnetic poles on magnet 14 and the rotational position of the crankshaft in engine 22. As a result, it is possible to compensate for manufacturing tolerances which may otherwise contribute to inaccuracies. Inter ediate shaft 12 is a generally hollow cylinder with decreasing diameter toward the end mounted on the outer diameter of camshaft 20. A screw 34 in combina¬ tion with a washer 36 is attached to a mounting stud 30 and engages an insert 38 coupled to intermediate shaft 12 thereby securing intermediate shaft 12 to mounting stud 30. Mounting stud 30 has a threaded portion 31 which screws into the central opening of camshaft 20. Intermediate shaft 12 has a plurality of radial, circumferentially spaced openings at the end adjacent camshaft 20. Insert 38 is a web that extends through the radial openings in intermediate shaft 12 and has integral circumferential ring-like portions both inside and outside intermediate shaft 12. Intermediate shaft 12 is formed of a combination of powdered metal and plastic. Similarly, insert 38 is also formed of a plastic and powdered metal combination and formed in place by injection arcund intermediate shaft 12.
A lip seal 42 between insert 38 and engine head 24 acts as a seal to keep oil in passages 26 around camshaft 20 from leaking from engine 22. A shoulder portion 64 of intermediate shaft 12 supports magnet 14 as shown in Fig. 2. Shoulder portion 64 has circumferential, outwardly facing teeth 66. Magnet 14 (Fig. 3) has circumferential, inwardly facing teeth 68 for engaging teeth 66. The end of intermediate shaft 12 projecting away from engine 22 supports a rotor 46 (see Fig. 6). Rotor 46 carries a staple-like electrode 48 and spring 50. The mounting of spring 50 on rotor 46 is accomplished by a compression fit and uses no secondary mounting process such as a rivet or a heat stake. Rotor 46 includes a clamp-like ledge 47 to hold down spring 50. A back stop 49 acts in cooperation with ledge 47 to positively hold spring 50 to rotor 46. Such a construction for attaching spring 50 provides a positive locking feature to electrode 48 thus
-^JRE
OMPI . V.'h-
^ .tfNA insuring a positive, electrically conductive path betwee the two pieces. Staple-like electrode 48 reduces cost o manufacturing. The wire drawn material minimizes materia costs and weight. The staple form can be obtained b relatively low cost tooling. The sharp pointed electrod design also reduces the generation of high levels of radi frequency interference.
Sensor 54 (Figs. 1 and 5) is coupled to a electronic engine control and provides crankshaft positio information. Sensor 54 is a bipolar Hall-type device. Th bipolar feature results in a sensor that switches on an off by being subjected to a positive magnetic flux and negative magnetic flux after experiencing a zero flu condition at transitions between positive and negativ magnetic flux. A positive magnetic flux is associated wit the passage of a north magnetic pole on magnet 14 and negative magnetic flux is associated with the passage of south magnetic pole on magnet 14.
A sensor holder 52 (Figs. 1, 5 and 7) is mounted on head 24 and supports bipolar Hall-type sensor 54 in proximity to magnet 14. Sensor holder 52 includes charging tool locating holes 56 for receiving pins 72 positioning a charging tool 70 to charge magnet 14 (see Fig. 5). Accordingly, after magnet 14 is positioned on intermediate shaft 12, sensor holder 52 is mounted on head 24, and the engine position is determined to be in a known position (such as top dead center of cylinder one). Sensor holder 52 also supports distributor cap 58 in proximity to spring 50 and electrode 48 so that a firing voltage can be supplied through a central electrode 60 to spring 50 and distributed through electrode 48 to a plurality of spark plug associated electrodes 62 (Fig. 1). Charging tool 70 (Figs 4 and 5) is generally circular with a protruding handle 74. A circular pilot 76 extends along the axis of charging tool 70' for engaging the central opening of intermediate shaft 12.. A pair of pins 72 extend parallel to pilot 76 for engaging locating holes 56. A partially hollow cylindrical portion 78 extends around pilot 76 along the outside of intermediate shaft 12 to magnet 14. An undulating conductor bus bar 80 is supported by cylindrical portion 78 adjacent magnet 14. The undulations are, in sequence, axially upward, circumferential, axially downward, circumferential, axially upward, and so on. The axial portions of bus bar 80 are spaced about 45° apart so that current flowing in bus bar 80 induces eight magnet poles in magnet 14. Magnet 14 is mounted on intermediate shaft 12 as an uncharged injection molded plastic magnet containing oriented magnetic dipoles. The engine crankshaft is positioned to a known positon (relative to top dead center of cylinder number one) and a magnetizing fixture is located relative to sensor 54 and magnet 14. At this point, torque can be applied to camshaft 20 to take up any timing belt looseness and the magnet 14 is magnetized.
Ring-like magnet 14 is magnetized relative to a known engine position so that the 45° north and south poles are generated alternately over the outer diameter of the magnetic in a location such that the sensor switches at a prescribed point relative to the known engine position. Advantageously, bipolar Hall-type sensor 54 is potted in the plastic base which is mounted directly to the engine head to assure a positive known location in relation to the rotation of the magnet. For example, the crankshaft can be located at 35° after top dead center (ATDC) so that charg¬ ing conductors can be equally spaced around sensor. This will result in a signal being generated at 10° before top dead center (BTDC) by the sensor during engine operation.
"g JR C *.'7 VIF
X £ NA Sensor 54 is triggered by a low magnetic flu level, such as plus and minus 50 gauss around a zero flu transition point, and its sensitivity to air gap size temperature and run-out variation is minimal. The maximu amplitude of magnetic flux at the pole face i approximately 900 gauss. Sensor holder 52 also contains pole piece 55 (Fig. 1) adjacent sensor 54 to focus th magnetic flux from magnet 14 thereby concentrating the flu to improve the accuracy of sensor 54. Various modifications and variations will no doub occur to those skilled in the various arts to which thi invention pertains. For example, the particular configura tion of the sensor holder may be varied from that describe herein. These and all other variations which basicall rely on the teachings through which this disclosure ha advanced the art are properly considered within the scop of this invention.

Claims

We claim:
1. A method for orienting a distributor on an internal combustion engine so as to produce an electrical signal in synchronism with the periodic movement of an engine part, said method comprising the steps of: coupling a magnetizable material to the camshaft of the internal combustion engine; establishing a sensor reference point on the engine, said reference point being stationary with respect to the engine block; positioning the pistons of the engine and the coupled magnetizable material in a known position, with respect to said reference point; and inducing magnetic poles in said magnetizable material so that said magnetic poles have a known rotational relationship to said reference point.
2. A method for orienting a distributor on an internal combustion engine as recited in claim 1 wherein said step of coupling a magnetizable material to the camshaft includes: attaching an intermediate shaft means with a supporting ledge adjacent circumferential positioning teeth and a generally axial pilot opening to the camshaft; and orienting the magnetizable material by placing a ring-like magnetizable material with generally circumferential inwardly facing positioning teeth adjacent the supporting ledge so that the magnetizable material is rotationally secured with respect to the intermediate shaft.
OMPI yjesy, WIFO
^KNAT
3. A method for orienting a distributor on a internal combustion engine as recited in claim 1 wherei said step of establishing a sensor reference on the engin includes the steps of: mounting a sensor holder means on the engine bloc to provide a holder for a magnetic pole sensor and a holder for a charging tool for inducing magnetic poles in th magnetic material; and positioning a sensor means in said sensor holder means for detecting the passage of magnetic poles adjacent the sensor means.
4. A method for orienting a distributor on an internal combustion engine as recited in claim 3 wherein the step of inducing magnetic poles includes the steps of: placing a conductor means adjacent the magnetic material so that a current path of alternating direction exists adjacent said magnetic material; and applying current to the conductor means to induce magnetic poles of alternating polarity in the magnetic material.
5. A method of orienting a distributor on an internal combustion engine as recited in claim 4 wherein the steps of placing a conductor means adjacent the magnetic material includes the steps of: positioning radially the conductor means by inserting a pilot extending from the conductor means into the axial pilot opening of the intermediate shaft means; and positioning rotationally the conductor means by inserting a pin means, spaced from the pilot means, extending from the conductor means into the holder for the charging tool of the sensor holder means.
6. A method of orienting a distributor on an internal combustion engine as recited in claim 5 wherein the step of placing a conductor means adjacent the magnetic material includes: having the current path of alternating direction extend axially toward the engine for a distance greater than the axial thickness of the magnetic material, circumferentially for about 45° around the magnetic material and axially away from the engine for a distance greater than the axial thickness of the magnetic material, circumferentially for an additional 45° around the magnetic material, in a repetitive sequence until the total circumferential travel is about 360°.
7. A method of orienting a distributor on an internal combustion engine as recited in claim 6 further comprising: positioning a rotor means on the intermediate shaft means for rotating with the intermediate shaft means and delivering a firing voltage to the spark plugs; and rotationally orienting the rotor means by positioning it on the intermediate shaft when the magnetizable material has a known orientation with respect to the sensor reference point and the rotor means.
8. A method for assembling a distributor on an internal combustion engine for producing an electrical signal in synchronism with the periodic movement of an engine part, said method comprising the steps of: coupling a support shaft to the camshaft of the engine; coupling a sensor to the engine block; coupling a ring-like material adapted for being magnetized to the support shaft; positioning the engine and coupled camshaft an support shaft in a known position; coupling a magnetic charging tool for magnetizin material to the sensor so that there is a known relatio between said charging tool and said ring-like magnetizabl material; and magnetizing the ring-like material to form plurality of magnetic poles.
OM
EP19820903092 1982-08-27 1982-08-27 Method of on site charging of distributor magnet Withdrawn EP0118437A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1982/001168 WO1984001000A1 (en) 1982-08-27 1982-08-27 Method of on site charging of distributor magnet

Publications (1)

Publication Number Publication Date
EP0118437A1 true EP0118437A1 (en) 1984-09-19

Family

ID=22168162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820903092 Withdrawn EP0118437A1 (en) 1982-08-27 1982-08-27 Method of on site charging of distributor magnet

Country Status (3)

Country Link
EP (1) EP0118437A1 (en)
JP (1) JPS59501470A (en)
WO (1) WO1984001000A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308341A (en) * 1964-02-10 1967-03-07 Motorola Inc Transistorized ignition system utilizing a magnetically actuated reed switch
GB1222404A (en) * 1968-09-27 1971-02-10 Vauxhall Motors Ltd Internal combustion engine ignition systems
FR2345755A1 (en) * 1976-02-04 1977-10-21 Thomson Csf SYSTEM USING A MAGNETOSENSITIVE ELEMENT TO GENERATE AN ELECTRICAL SIGNAL IN SYNCHRONISM WITH THE PERIODIC MOVEMENT OF A PART, AND APPLICATION TO INTERNAL COMBUSTION ENGINES
US4155340A (en) * 1977-03-28 1979-05-22 Gulf & Western Manufacturing Company Solid state ignition system
US4165726A (en) * 1977-10-05 1979-08-28 Chrysler Corporation Low mass breakerless ignition distributor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8401000A1 *

Also Published As

Publication number Publication date
WO1984001000A1 (en) 1984-03-15
JPS59501470A (en) 1984-08-16

Similar Documents

Publication Publication Date Title
US3906920A (en) Ignition apparatus and system
US3910243A (en) Electronic spark timing advance and emission control system
CA1076194A (en) Signal generating mechanism
US3254247A (en) Breakerless distributor
US4459968A (en) Ignition system
CA1208996A (en) Distributor construction and signal generator
US4116175A (en) Internal combustion engine ignition spark timing system modulated by cylinder combustion pressure
US4093906A (en) Permanent magnet pulse generator and method of forming and assembly
GB2024322A (en) Apparatus for detecting angular position of engine crankshaft
US3822686A (en) Auto ignition system
EP0217026B1 (en) Ignition distributor - hall effect sensor switching system and method
US3916863A (en) Electrical signal generating device for use in combustion engines
US4485796A (en) Ignition distributor voltage generator
US4434754A (en) Method of on site charging of distributor magnet
EP0118437A1 (en) Method of on site charging of distributor magnet
US4345553A (en) Multiple step advance with magnetic trigger rotor
US6752134B1 (en) Ignition arrangement
EP0116542B1 (en) Distributor construction and signal generator
US4887572A (en) Signal generating rotor of a distributor for an internal combustion engine and a method of producing the same
US5094219A (en) Distributor with ignition coil
US4071792A (en) Engine ignition timing signal generator having a reduced number of permanent magnets
US20130032128A1 (en) Motorcycle ignition
CA1072160A (en) Conventional-to-electronic conversion means for an ignition distributor
JPS599097Y2 (en) Pulse generator for internal combustion engine ignition system
JPS6033351Y2 (en) Engine ignition signal generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19840731

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FOX, DAVID, H.

Inventor name: CASACELI, FRANK, B.

Inventor name: KOSTAN, CHARLES, C.