EP0116423A1 - Residue treatment - Google Patents
Residue treatment Download PDFInfo
- Publication number
- EP0116423A1 EP0116423A1 EP84300445A EP84300445A EP0116423A1 EP 0116423 A1 EP0116423 A1 EP 0116423A1 EP 84300445 A EP84300445 A EP 84300445A EP 84300445 A EP84300445 A EP 84300445A EP 0116423 A1 EP0116423 A1 EP 0116423A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cyanide
- acetone cyanohydrin
- micro
- weight
- organism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 claims abstract description 43
- MWFMGBPGAXYFAR-UHFFFAOYSA-N 2-hydroxy-2-methylpropanenitrile Chemical group CC(C)(O)C#N MWFMGBPGAXYFAR-UHFFFAOYSA-N 0.000 claims abstract description 36
- 244000005700 microbiome Species 0.000 claims abstract description 18
- 238000006731 degradation reaction Methods 0.000 claims abstract description 10
- 108700023223 Cyanide hydratases Proteins 0.000 claims abstract description 8
- 230000015556 catabolic process Effects 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 230000002538 fungal effect Effects 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 239000011369 resultant mixture Substances 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 abstract description 18
- 238000010790 dilution Methods 0.000 abstract description 4
- 239000012895 dilution Substances 0.000 abstract description 4
- 230000004048 modification Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 239000007864 aqueous solution Substances 0.000 abstract 1
- 230000000593 degrading effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 241000233866 Fungi Species 0.000 description 6
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 241000233732 Fusarium verticillioides Species 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- -1 0.05 to 5 Chemical compound 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000371633 Bipolaris sorghicola Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000000855 fungicidal effect Effects 0.000 description 2
- 239000000417 fungicide Substances 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- 241000228438 Bipolaris maydis Species 0.000 description 1
- 241000121260 Bipolaris victoriae Species 0.000 description 1
- 241000228439 Bipolaris zeicola Species 0.000 description 1
- 241001620302 Glomerella <beetle> Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000308375 Graminicola Species 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 241001022799 Microdochium sorghi Species 0.000 description 1
- 241000865904 Mycoleptodiscus terrestris Species 0.000 description 1
- 244000309515 Periconia circinata Species 0.000 description 1
- 241001503951 Phoma Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241001076353 Stemphylium loti Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D3/00—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
- A62D3/02—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by biological methods, i.e. processes using enzymes or microorganisms
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D3/00—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
- A62D3/30—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
- A62D3/35—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents by hydrolysis
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D2101/00—Harmful chemical substances made harmless, or less harmful, by effecting chemical change
- A62D2101/20—Organic substances
- A62D2101/26—Organic substances containing nitrogen or phosphorus
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D2101/00—Harmful chemical substances made harmless, or less harmful, by effecting chemical change
- A62D2101/20—Organic substances
- A62D2101/28—Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D2203/00—Aspects of processes for making harmful chemical substances harmless, or less harmful, by effecting chemical change in the substances
- A62D2203/02—Combined processes involving two or more distinct steps covered by groups A62D3/10 - A62D3/40
Definitions
- This invention relates to the treatment of residues and in particular to the treatment of residual quantities of acetone cyanohydrin remaining in tanks or other containers.
- Acetone cyanohydrin which is used in the manufacture of methacrylic acid esters, is often transported in bulk, for example by road, rail, or ship, tanker. After discharge of the acetone cyanohydrin from the tank, generally a small residual amount thereof remains in the tank. It is often necessary to dispose of this residual amount of acetone cyanohydrin before the tank can be returned for refilling or for use with another material.
- Acetone cyanohydrin not only is itself toxic but readily decomposes, especially in conditions that are not highly acidic, to acetone and hydrogen cyanide which presents an-even greater toxicity hazard.
- acetone cyanohydrin is usually stabilised by a small amount of a suitable acid, e.g. sulphuric acid.
- the residue is usually treated with an excess of an aqueous alkali to produce the corresponding cyanide and acetone, and then the cyanide is decomposed by treatment with, e.g. hypochlorite.
- hypochlorite treatment represents a considerable expense.
- the treatment may be performed inside the original tank, but frequently this is not convenient because of the corrosive nature of hypochlorite: the transfer of the residues to a suitable treatment tank may itself present a hazard. It is generally required that the effluent contains less than 10 ppm (by weight) of cyanide ions, and often a concentration of less than 1 ppm is required.
- cyanide degradation can more conveniently be carried out biologically. It is known that the enzyme cyanide hydratase (otherwise termed formamide hydrolyase) which can be induced in certain micro-organisms, particularly fungi, can degrade cyanide, even at relatively high cyanide ion concentrations.
- cyanide-containing solution Because of volume limitations, it is generally necessary to perform the treatment of the cyanide-containing solution at relatively high cyanide ion concentrations, e.g. containing 0.1 to 2% by weight of cyanide ions. Such solutions will also have a relatively high acetone concentration: thus a solution containing 1% by weight of cyanide ions will also contain about 2.2% by weight of acetone.
- acetone is a powerful solvent for micro-organism cell constituents.
- a process for the treatment of acetone cyanohydrin residues comprising adding sufficient water and alkali to the residues to give a solution containing between 0.1 and 2% by weight of cyanide ions and having a pH within the range 6 to 10, adding to the solution a culture containing a cgauiae-degrading micro-organism, in which the enzyme cyanide hydratase has been induced, in an amount of at least 0.005 g of micro-organism (dry weight) per g of cyanide ions, and maintaining the resultant mixture at between 5 and 35°C until the cyanide ion concentration is below 10 ppm by weight.
- Micro-organisms that may be used include Stemphylium loti, e.g. ATCC 11718; Mycoleptodiscus terrestris, e.g. CBS 231.53; Fusarium moniliforme, e.g. No. 3104.SA.49a available from the Canadian Department of Agriaulture, Culture Collection, Ottawa, and which has also been deposited as CBS 161.82; Helminthosporium sorghicola, otherwise known as Drechslera sorghicola, e.g. CBS 249.49; Periconia circinata, e.g. CBS 263.37; and Glomerella tucamanensis, e.g. CBS 132.37. (ATCC No.
- H. maydis, H. carbonum, H. victoriae, and Phoma H. maydis, H. carbonum, H. victoriae, and Phoma.
- Fungi can be made to grow in two distinct forms, namely a ball or pellet form or in a mycelial form where the fungal cells are diffuse filamentous strands dispersed in the growth medium. It is desirable, though not essential, that the fungus is grown in the mycelial, as opposed to ball or pellet, form since, with the fungus in pellet or ball form, diffusion into, and out of the fungal pellet or ball, may be restricted, thereby preventing efficient utilisation of the active enzyme within the ball or pellet.
- the preferred carbon sources are carbohydrates, particularly glucose.
- the enzyme cyanide hydratase may be induced by adding to the culture a low concentration of cyanide ions, e.g. 0.05 to 5, preferably 0.1 to 1 mM per gram of cells (dry weight) and continuing culturing for 1 to 24, preferably about 12 hours, at 20 to 40°C.
- a low concentration of cyanide ions e.g. 0.05 to 5, preferably 0.1 to 1 mM per gram of cells (dry weight) and continuing culturing for 1 to 24, preferably about 12 hours, at 20 to 40°C.
- the culture may then be concentrated if desired in readiness for use.
- the micro-organism may be harvested and stored, e.g. by freeze drying.
- the acetone cyanohydrin treatment process comprises a first step involving dilution and pH modification in order to convert the acetone cyanohydrin to cyanide and acetone, and then a biological degradation step.
- the dilution and pH modification may conveniently be performed by adding a dilute aqueous alkali, for example sodium hydroxide, to the acetone cyanohydrin residue: where residues remain in several tanks it may be convenient to wash all the residues into a single tank wherein the treatment process is performed.
- the aqueous alkali may be added as such or the acetone cyanohydrin first diluted with water and then solid, or more concentrated, alkali added to give the requisite pH.
- the water used may be mains water or sea water if a supply thereof is available. However the degradation process may take longer if sea water is utilised.
- the cyanide degradation process should be carried out at a pH between 6 and 10, preferably between 7 and 9, and in particular at about pH 8. We have found that there is some buffering action so that a pH of about 8 can be achieved even with a significant excess of alkali.
- the acetone cyanohydrin residues normally comprise in excess of 95% by weight acetone cyanohydrin and should be diluted with the aqueous alkali so that the solution contains 0.1 to 2% by weight of cyanide ions. This corresponds approximately to dilution of the acetone cyanohydrin by at least 15 times its volume.
- the acetone cyanohydrin is diluted until the solution contains 0.1 to 1% by weight (1000 - 10,000 ppm, i.e. approx. 40 - 400 mM) of cyanide ions.
- the culture, in which the cyanide hydratase has been induced, is then added, e.g. as a slurry or as dried cells.
- the amount of culture should be at least 0.005 g of micro-organism dry weight per g of cyanide ions. This corresponds approximately to at least 1.5 g of micro-organism dry weight per litre of acetone cyanohydrin residue. If smaller amounts of the culture are employed, we have found that there will probably be insufficient cyanide degradation even if the mixture is left for 24 hours or more.
- the amount of culture is at least 0.02 g of micro-organism dry weight per g of cyanide ions.
- the mixture After adding the culture, the mixture is left for sufficient time for the cyanide ions to be degraded to the desired level, below 10, preferably below 1 ppm.
- the mixture is agitated during the cyanide degradation, e.g. by sparging with compressed air.
- the time taken for the cyanide degradation will depend on the proportion of cells to cyanide ions, the desired degree of treatment, the pH, the temperature, and, as mentioned hereinbefore, the type of water employed.
- the temperature employed may range between 5 and 35°C and is preferably between 10 and 30°C, and in particular is above 20 0 C. If necessary the mixture can be heated, for example by injecting steam to achieve the desired temperature, prior to addition of the culture.
- fungicide As an insurance against release of biologically active spores upon discharge of the aqueous mixture.
- fungicide is not necessary.
- the invention is of particular utility in the cleaning of vessels used to transport acetone cyanohydrin: after discharge of the bulk of the transported acetone cyanohydrin, the acetone cyanohydrin residues in the vessel are treated by the method described hereinbefore and then the aqueous mixture having a cyanide ion concentration below 10 ppm by weight is discharged.
- the aqueous mixture can be discharged, depending on local regulations into waterways, e.g. rivers or the sea, or into a conventional sewage treatment plant. Discharge of the diluted acetone cyanohydrin residues before microbiological degradation of the cyanide ions into a conventional sewage treatment plant would not normally be possible since the latter can not normally tolerate influents containing such large concentrations of cyanide.
- Fusarium moniliforme (CBS 161.82) was aerobically grown in an aqueous nutrient medium containing, per litre
- the trace element solution had the following composition, per litre
- the cultivation was conducted at 28°C and pH 5.5 to give a culture containing 20 g/l of cells.
- the pH was then raised to 7.8 and cyanide bydratase induced by adding 0.2 m moles of cyanide ions (as acetone cyanohydrin) per gram of cell dry weight and incubating at 28°C for 12 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Business, Economics & Management (AREA)
- General Health & Medical Sciences (AREA)
- Emergency Management (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Fire-Extinguishing Compositions (AREA)
Abstract
Description
- This invention relates to the treatment of residues and in particular to the treatment of residual quantities of acetone cyanohydrin remaining in tanks or other containers.
- Acetone cyanohydrin, which is used in the manufacture of methacrylic acid esters, is often transported in bulk, for example by road, rail, or ship, tanker. After discharge of the acetone cyanohydrin from the tank, generally a small residual amount thereof remains in the tank. It is often necessary to dispose of this residual amount of acetone cyanohydrin before the tank can be returned for refilling or for use with another material.
- Acetone cyanohydrin not only is itself toxic but readily decomposes, especially in conditions that are not highly acidic, to acetone and hydrogen cyanide which presents an-even greater toxicity hazard. To reduce the hazard, acetone cyanohydrin is usually stabilised by a small amount of a suitable acid, e.g. sulphuric acid.
- To render the acetone cyanohydrin residues safe for disposal the residue is usually treated with an excess of an aqueous alkali to produce the corresponding cyanide and acetone, and then the cyanide is decomposed by treatment with, e.g. hypochlorite. Such hypochlorite treatment represents a considerable expense. The treatment may be performed inside the original tank, but frequently this is not convenient because of the corrosive nature of hypochlorite: the transfer of the residues to a suitable treatment tank may itself present a hazard. It is generally required that the effluent contains less than 10 ppm (by weight) of cyanide ions, and often a concentration of less than 1 ppm is required.
- We have found that the cyanide degradation can more conveniently be carried out biologically. It is known that the enzyme cyanide hydratase (otherwise termed formamide hydrolyase) which can be induced in certain micro-organisms, particularly fungi, can degrade cyanide, even at relatively high cyanide ion concentrations.
- Because of volume limitations, it is generally necessary to perform the treatment of the cyanide-containing solution at relatively high cyanide ion concentrations, e.g. containing 0.1 to 2% by weight of cyanide ions. Such solutions will also have a relatively high acetone concentration: thus a solution containing 1% by weight of cyanide ions will also contain about 2.2% by weight of acetone.
- It is surprising however that, when treating such high concentrations of cyanide derived from acetone cyanohydrin decomposition, the acetone does not affect the activity of the micro-organism: acetone is a powerful solvent for micro-organism cell constituents.
- According to the present invention we provide a process for the treatment of acetone cyanohydrin residues comprising adding sufficient water and alkali to the residues to give a solution containing between 0.1 and 2% by weight of cyanide ions and having a pH within the range 6 to 10, adding to the solution a culture containing a cgauiae-degrading micro-organism, in which the enzyme cyanide hydratase has been induced, in an amount of at least 0.005 g of micro-organism (dry weight) per g of cyanide ions, and maintaining the resultant mixture at between 5 and 35°C until the cyanide ion concentration is below 10 ppm by weight.
- Micro-organisms that may be used include Stemphylium loti, e.g. ATCC 11718; Mycoleptodiscus terrestris, e.g. CBS 231.53; Fusarium moniliforme, e.g. No. 3104.SA.49a available from the Canadian Department of Agriaulture, Culture Collection, Ottawa, and which has also been deposited as CBS 161.82; Helminthosporium sorghicola, otherwise known as Drechslera sorghicola, e.g. CBS 249.49; Periconia circinata, e.g. CBS 263.37; and Glomerella tucamanensis, e.g. CBS 132.37. (ATCC No. refers to the number designated by the American Type Culture Collection, 12301 Park Lawn Drive, Rockville, Maryland 20852, USA, while CBS No. refers to the number designated by the Central Bureau Voor Schimmelcultures, Baarn, Netherlands). Other fungi that may be used and which have been described in the literature as producing the enzyme include Collectotrichum graminicola, Gloeocercospora sorghi, Helminthosphorium turcicum,
- Fungi can be made to grow in two distinct forms, namely a ball or pellet form or in a mycelial form where the fungal cells are diffuse filamentous strands dispersed in the growth medium. It is desirable, though not essential, that the fungus is grown in the mycelial, as opposed to ball or pellet, form since, with the fungus in pellet or ball form, diffusion into, and out of the fungal pellet or ball, may be restricted, thereby preventing efficient utilisation of the active enzyme within the ball or pellet.
- Often when growing fungi, the ball or pellet form is obtained: however adjustment of the growth conditions, particularly the following parameters:
- pH,
- nitrogen source (nature and amount),
- carbon source (nature and amount),
- amount of phosphorus source,
- will enable the mycelial form to be obtained. Thus with any particular micro-organism, simple experimentation varying the above parameters will enable the mycelial form to be obtained.
- The preferred carbon sources are carbohydrates, particularly glucose.
- When the desired concentration of micro-organism has been achieved, the enzyme cyanide hydratase may be induced by adding to the culture a low concentration of cyanide ions, e.g. 0.05 to 5, preferably 0.1 to 1 mM per gram of cells (dry weight) and continuing culturing for 1 to 24, preferably about 12 hours, at 20 to 40°C.
- The culture may then be concentrated if desired in readiness for use. Alternatively the micro-organism may be harvested and stored, e.g. by freeze drying.
- The acetone cyanohydrin treatment process comprises a first step involving dilution and pH modification in order to convert the acetone cyanohydrin to cyanide and acetone, and then a biological degradation step.
- The dilution and pH modification may conveniently be performed by adding a dilute aqueous alkali, for example sodium hydroxide, to the acetone cyanohydrin residue: where residues remain in several tanks it may be convenient to wash all the residues into a single tank wherein the treatment process is performed. The aqueous alkali may be added as such or the acetone cyanohydrin first diluted with water and then solid, or more concentrated, alkali added to give the requisite pH. In such a case the water used may be mains water or sea water if a supply thereof is available. However the degradation process may take longer if sea water is utilised.
- The cyanide degradation process should be carried out at a pH between 6 and 10, preferably between 7 and 9, and in particular at about pH 8. We have found that there is some buffering action so that a pH of about 8 can be achieved even with a significant excess of alkali.
- The amount of water and alkali required will of course depend on the amount of acetone cyanohydrin residue present: the acetone cyanohydrin residues normally comprise in excess of 95% by weight acetone cyanohydrin and should be diluted with the aqueous alkali so that the solution contains 0.1 to 2% by weight of cyanide ions. This corresponds approximately to dilution of the acetone cyanohydrin by at least 15 times its volume. Preferably the acetone cyanohydrin is diluted until the solution contains 0.1 to 1% by weight (1000 - 10,000 ppm, i.e. approx. 40 - 400 mM) of cyanide ions.
- The culture, in which the cyanide hydratase has been induced, is then added, e.g. as a slurry or as dried cells. The amount of culture should be at least 0.005 g of micro-organism dry weight per g of cyanide ions. This corresponds approximately to at least 1.5 g of micro-organism dry weight per litre of acetone cyanohydrin residue. If smaller amounts of the culture are employed, we have found that there will probably be insufficient cyanide degradation even if the mixture is left for 24 hours or more. Preferably the amount of culture is at least 0.02 g of micro-organism dry weight per g of cyanide ions.
- After adding the culture, the mixture is left for sufficient time for the cyanide ions to be degraded to the desired level, below 10, preferably below 1 ppm. Preferably the mixture is agitated during the cyanide degradation, e.g. by sparging with compressed air. The time taken for the cyanide degradation will depend on the proportion of cells to cyanide ions, the desired degree of treatment, the pH, the temperature, and, as mentioned hereinbefore, the type of water employed.
- The temperature employed may range between 5 and 35°C and is preferably between 10 and 30°C, and in particular is above 200C. If necessary the mixture can be heated, for example by injecting steam to achieve the desired temperature, prior to addition of the culture.
- After treatment in some cases it may be desirable to add a fungicide as an insurance against release of biologically active spores upon discharge of the aqueous mixture. However generally the addition of such a fungicide is not necessary.
- The invention is of particular utility in the cleaning of vessels used to transport acetone cyanohydrin: after discharge of the bulk of the transported acetone cyanohydrin, the acetone cyanohydrin residues in the vessel are treated by the method described hereinbefore and then the aqueous mixture having a cyanide ion concentration below 10 ppm by weight is discharged. The aqueous mixture can be discharged, depending on local regulations into waterways, e.g. rivers or the sea, or into a conventional sewage treatment plant. Discharge of the diluted acetone cyanohydrin residues before microbiological degradation of the cyanide ions into a conventional sewage treatment plant would not normally be possible since the latter can not normally tolerate influents containing such large concentrations of cyanide.
- The invention is illustrated by the following examples.
-
- The cultivation was conducted at 28°C and pH 5.5 to give a culture containing 20 g/l of cells. The pH was then raised to 7.8 and cyanide bydratase induced by adding 0.2 m moles of cyanide ions (as acetone cyanohydrin) per gram of cell dry weight and incubating at 28°C for 12 hours.
- To simulate the treatment of a typical quantity of acetone cyanohydrin residue in a tank after discharge of acetone cysnohydrin therefrom, 1.15 ml of commercial grade acetone cyanohydrin (containing 98.6% by weight of acetone cyanohydrin and stabilised with 0.12% by weight of sulphuric acid) was charged to a 500 ml flask at ambient temperature (200C). The acetone cyanohydrin was diluted by adding 50 ml of water. 3.5 M sodium hydroxide solution was then added until the pH was 7.8. The resultant solution contained 0.8% by weight of cyanide ions. 1 ml of the Fusarium moniliforme culture in which cyanide hydratase had been induced was then added and the mixture gently agitated. After 6 hours the cyanide ion concentration was less than 1 ppm by weight.
- 250 litres of tap water was charged to a mild steel vessel of nominal 400 litres capacity. The water, pH 6.8, was heated to 20°C. 6370 g of commercial grade acetone cyanohydrin (as used in Example 1) was then charged to the vessel. The pH was then 5.2. The solution was stirred while 180 ml of 10 N sodium hydroxide solution was added to raise the pH to 7.8.
- A slurry containing 45 g of Fusarium moniliforme (CBS 181.82) in which cyanide bydratase had been induced as described in Example 1 was then added.
- At intervals 500 ml samples were removed from the top and bottom of the vessel for analysis.
-
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8303818 | 1983-02-11 | ||
GB838303818A GB8303818D0 (en) | 1983-02-11 | 1983-02-11 | Residue treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0116423A1 true EP0116423A1 (en) | 1984-08-22 |
EP0116423B1 EP0116423B1 (en) | 1986-07-30 |
Family
ID=10537832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19840300445 Expired EP0116423B1 (en) | 1983-02-11 | 1984-01-25 | Residue treatment |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0116423B1 (en) |
JP (1) | JPS59155272A (en) |
DE (1) | DE3460363D1 (en) |
GB (1) | GB8303818D0 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894341A (en) * | 1986-02-19 | 1990-01-16 | Imperial Chemical Industries Plc | Production of cyanide hydratase |
US5219750A (en) * | 1986-02-19 | 1993-06-15 | Imperial Chemical Industries Plc | Production of cyanide hydratase |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2299275A1 (en) * | 1975-01-31 | 1976-08-27 | Degussa | Detoxifying cyanides and nitriles in waste waters - using peroxide cpds. in presence of iodine or iodides, and opt. silver ions |
EP0061249A1 (en) * | 1981-03-20 | 1982-09-29 | Imperial Chemical Industries Plc | Effluent treatment |
-
1983
- 1983-02-11 GB GB838303818A patent/GB8303818D0/en active Pending
-
1984
- 1984-01-25 EP EP19840300445 patent/EP0116423B1/en not_active Expired
- 1984-01-25 DE DE8484300445T patent/DE3460363D1/en not_active Expired
- 1984-02-09 JP JP2272384A patent/JPS59155272A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2299275A1 (en) * | 1975-01-31 | 1976-08-27 | Degussa | Detoxifying cyanides and nitriles in waste waters - using peroxide cpds. in presence of iodine or iodides, and opt. silver ions |
EP0061249A1 (en) * | 1981-03-20 | 1982-09-29 | Imperial Chemical Industries Plc | Effluent treatment |
Non-Patent Citations (2)
Title |
---|
CHEMICAL ABSTRACTS, vol. 82, no. 12, 24th March 1975, page 247, no. 76801a, Columbus, Ohio, US * |
S. PATAI: "The chemistry of functional groups", Z. RAPPOPORT: "The chemistry of the cyano group", 1970, Interscience, London, GB * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894341A (en) * | 1986-02-19 | 1990-01-16 | Imperial Chemical Industries Plc | Production of cyanide hydratase |
US5219750A (en) * | 1986-02-19 | 1993-06-15 | Imperial Chemical Industries Plc | Production of cyanide hydratase |
Also Published As
Publication number | Publication date |
---|---|
EP0116423B1 (en) | 1986-07-30 |
JPS59155272A (en) | 1984-09-04 |
DE3460363D1 (en) | 1986-09-04 |
GB8303818D0 (en) | 1983-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6083394A (en) | Composition and method for dehalogenation and degradation of halogenated organic contaminants | |
US5618427A (en) | Composition and method for degradation of nitroaromatic contaminants | |
EP0061249B1 (en) | Effluent treatment | |
EP0417185A1 (en) | A process for removing nitrogen compounds from raw water. | |
JPH06114397A (en) | Bottom material/water quality improving method and improving agent set used thwerefor | |
Siller et al. | Degradation of cyanide in agroindustrial or industrial wastewater in an acidification reactor or in a single-step methane reactor by bacteria enriched from soil and peels of cassava | |
CA1055864A (en) | Method for rendering bacteria dormant and the product produced thereby | |
EP0116423B1 (en) | Residue treatment | |
EP1042236A1 (en) | A method of preparing a microbial culture for wastewater treatment | |
Mavinic et al. | Fate of nitrogen in aerobic sludge digestion | |
US3145166A (en) | Disposal of toxic chemical wastes having a high concentration of cyanide ion | |
NO812721L (en) | IMPROVED ANAEROBIC AND AEROBIC DECOMPOSITION OF WASTE AND BIOMASS BY USING LACTOBACILLUS CULTURE ADDITIVES | |
CN110980960A (en) | Oil-removing microbial inoculum and sludge treatment technology using same | |
Lane | Removal of peel oil from citrus peel press liquors before anaerobic digestion | |
JPS6242678B2 (en) | ||
EP1079946A1 (en) | Decontamination of soil contaminated with pcb | |
KR100215735B1 (en) | Method for purifying water in aquaculture | |
US6033899A (en) | Compost decontamination of soil contaminated with PCP using aerobic and anaerobic microorganisms | |
Schlungbaum et al. | Nutrient turnover at the sediment/water interface in shallow eutrophic coastal waters | |
EP0520239B1 (en) | Detoxication of vegetation liquors | |
WO1999059743A1 (en) | Decontamination of soil contaminated with hcb | |
CA2212819C (en) | Composition and method for degradation of nitroaromatic contaminants | |
Brockett | Nitrogenous compounds in facultative oxidation pond sediments | |
JPH01262998A (en) | Deodorant | |
Rudolfs et al. | Rag, Rope, and Jute Wastes from Specialty Paper Mills: IV. Anaerobic Digestion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19850111 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3460363 Country of ref document: DE Date of ref document: 19860904 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19881230 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19890125 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19890131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19890131 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19900125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19900801 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19901002 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |