EP0112782A1 - Heat exchange element and process for its manufacture - Google Patents
Heat exchange element and process for its manufacture Download PDFInfo
- Publication number
- EP0112782A1 EP0112782A1 EP83402524A EP83402524A EP0112782A1 EP 0112782 A1 EP0112782 A1 EP 0112782A1 EP 83402524 A EP83402524 A EP 83402524A EP 83402524 A EP83402524 A EP 83402524A EP 0112782 A1 EP0112782 A1 EP 0112782A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- brazing alloy
- coating
- metal
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
- F28F13/187—Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/04—Fastening; Joining by brazing
Definitions
- the present invention relates on the one hand to a heat exchange element provided on the surface with a coating increasing the exchange coefficient in the case where there is boiling and on the other hand to a process for producing this element. It relates in particular to tubes having a porous coating on the outside or inside.
- the heat exchange elements have a sealed wall separating the hot fluid and the cold fluid. Some of these elements have a surface layer used to increase the heat exchange coefficient.
- Certain elements suitable for heat exchange with a boiling liquid have a porous metallic coating (pores connected to each other) mono or multilayer, that is to say of thickness equal to or greater than the thickness of the metallic grains. constitutive. Thanks to this coating, the boiling remains of the nucleated type even if the temperature difference between the liquid and the heating wall is small and the number of cavities where the vapor bubbles are formed is high. The surface of the cavities is constantly supplied with a liquid film thanks to the surface tension forces.
- the object of the present invention is to provide an exchange element comprising a porous mono or multilayer surface coating having a particularly strong bond of the metal particles with one another and with the support.
- the heat exchange element according to the invention consists of a metal wall having a surface porous metal coating formed by a stack of particles of a structural metal linked by a brazing alloy. It is characterized in that the particles of the structural metal of this coating are substantially spherical and oxide-free particles which are obtained by atomization in a gas or by spraying with a rotating electrode.
- the manufacturing method according to the invention consists in carrying out on the metal wall, a deposit of structural metal particles and of a brazing alloy and then in baking at high temperature. so as to melt the brazing alloy. It is characterized by the fact that it consists in taking as structural metal particles, particles which are substantially spherical and free of oxides which are obtained by atomization in a gas or by spraying with a rotating electrode.
- the method consists in depositing the layer using a slip, containing in an aqueous solution of an organic binder, the particles of the structural metal and of the brazing alloy and then smoothing layer then dry the layer before cooking.
- the method consists in depositing the layer on an element of the tube type by running the slip on the tube and smoothing it while the latter rotates around its longitudinal axis, relatively displacing the pouring jet with respect to to the tube.
- the heat element has a sealed metal wall 1 which separates a hot liquid and a cold liquid.
- This metal wall has for example the shape of a tube.
- the metallic element has, on the surface, on the hot liquid side, a porous metallic coating 2.
- This porous coating consists of particles 21 of a structural metal connected to each other and to the wall 1 by a coating 22 of bond obtained by brazing with a brazing alloy. This coating forms, between the particles 21, pores 23 which are interconnected and open at the surface.
- the coating is formed, perpendicular to the surface of the wall, by a stack of metal particles.
- the outermost particles are not joined to the wall but joined to other particles closer to the wall.
- the particles of the coating structure metal are substantially spherical, have regular dimensions and are practically free. oxide pastes on their outer surface.
- the brazing alloy used to bond the particles of the structural metal melts at a temperature below the infusion temperature of the structural metal and the metal constituting the wall.
- a nickel-based pre-alloyed brazing powder can be taken for the brazing alloy, the composition of which is as follows: 0.08 X carbon - 0.7% silicon - 3.32 Z boron - 15 % chromium - less than 1 x iron - nickel balance.
- the coating according to the invention has much better adhesion than a coating obtained with water-sprayed powders.
- the method according to the invention has the following steps.
- an aqueous solution of an organic binder is prepared, which enters into the composition of a slip consisting of a suspension of structural metal powder and of a brazing alloy powder in said solution.
- This binder is for information purposes constituted by an aqueous solution of methylcellulose obtained by dissolving the methylcellulose in hot water. This binder influences the viscosity of the slip and gives a raw cohesion to the layer deposited on the wall.
- the slip is prepared by mixing the various constituents.
- a bartotine containing by weight 64% of powder of structural metal of the stainless steel type, 16% of powder of brazing alloy of the type defined above and 20% of aqueous aqueous solution of methylcellulose.
- the particle size of the brazing powder is less than 110 microns and the particle size of the structural metal powder less than 200 microns.
- the wall intended to receive the coating is previously roughened and cleaned.
- a layer of slip is then deposited in one go on the wall, for example by running a slip of slip.
- the slip layer is smoothed using a scraper which makes it possible to calibrate the thickness of the deposit, for information between 200 and 300 microns.
- a scraper which makes it possible to calibrate the thickness of the deposit, for information between 200 and 300 microns.
- a tube marked 1 Figure 3
- it is rotated under a hopper 3 containing the slip.
- the jet of slip which flows from the hopper forms a layer which is smoothed by the scraper 4 as it is deposited.
- the hopper and the scraper are moved longitudinally relative to the tube.
- the deposit is then hardened by a drying operation.
- the wall coated with the deposited green layer is then fired in two phases under a protected atmosphere.
- the purpose of the first so-called preheating phase is to decompose the organic agent. This preheating is carried out at a temperature of the order of 400 ° C.
- the second cooking phase proper is carried out at a higher temperature allowing the brazing alloy to be melted. It is carried out at a temperature of the order of 1065 ° C. in the case where the brazing alloy has the composition defined above.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
La présente invention se rapporte d'une part à un élément d'échange de chaleur pourvu en surface d'un revêtement augmentant le coefficient d'échange dans le cas où il y a ébullition et d'autre part à un procédé de réalisation de cet élément. Elle se rapporte en particulier aux tubes présentant à l'extérieur ou à l'intérieur un revêtement poreux.The present invention relates on the one hand to a heat exchange element provided on the surface with a coating increasing the exchange coefficient in the case where there is boiling and on the other hand to a process for producing this element. It relates in particular to tubes having a porous coating on the outside or inside.
Les éléments d'échange de chaleur comportent une paroi étanche séparant le fluide chaud et le fluide froid. Certains de ces éléments comportent une couche superficielle servant à augmenter le coefficient d'échange de chaleur.The heat exchange elements have a sealed wall separating the hot fluid and the cold fluid. Some of these elements have a surface layer used to increase the heat exchange coefficient.
Certains éléments appropriés aux échanges de chaleur avec un liquide à l'ébullition comportent superficiellement un revêtement métallique poreux (pores reliés entre eux) mono ou multicouches c'est-à-dire d'épaisseur égale ou supérieure à l'épaisseur propre des grains métalliques constitutifs. Grâce à ce revêtement, l'ébullition reste du type nucléé même si l'écart de température entre le liquide et la paroi chauffante est faible et le nombre de cavités où se forment les bulles de vapeur est élevé. La surface des cavités est constamment alimentée par un film liquide grâce aux forces de tension superficielle.Certain elements suitable for heat exchange with a boiling liquid have a porous metallic coating (pores connected to each other) mono or multilayer, that is to say of thickness equal to or greater than the thickness of the metallic grains. constitutive. Thanks to this coating, the boiling remains of the nucleated type even if the temperature difference between the liquid and the heating wall is small and the number of cavities where the vapor bubbles are formed is high. The surface of the cavities is constantly supplied with a liquid film thanks to the surface tension forces.
Parmi les procédés pour obtenir ces revêtements poreux superficiels, certains font appel soit au frittage de particules métalliques .soit encore au brasage de particules métalliques à l'aide d'un alliage de brasage.Among the methods for obtaining these surface porous coatings, some use either the sintering of metal particles. Or even the brazing of metal particles using a brazing alloy.
La présente invention a pour but de fournir un élément d'échange comprenant un revêtement superficiel poreux mono ou multicouches présentant une liaison particulièrement forte des particules métalliques entre elles et avec le support.The object of the present invention is to provide an exchange element comprising a porous mono or multilayer surface coating having a particularly strong bond of the metal particles with one another and with the support.
L'élément d'échange de chaleur selon l'invention est constitué par une paroi métallique présentant superficiellement un revêtement métallique poreux formé par un empilage de particules d'un métal de structure liées par un alliage de brasage. Il est caractérisé par le fait que les particules du métal de structure de ce revêtement sont des particules sensiblement sphériques et exemptes d'oxydes qui sont obtenues par atomisation dans un gaz ou par pulvérisation d'une électrode tournante.The heat exchange element according to the invention consists of a metal wall having a surface porous metal coating formed by a stack of particles of a structural metal linked by a brazing alloy. It is characterized in that the particles of the structural metal of this coating are substantially spherical and oxide-free particles which are obtained by atomization in a gas or by spraying with a rotating electrode.
Le procédé de fabrication selon l'invention consiste à exécuter sur la paroi métallique, un dépôt de particules de métal de structure et d'un alliage de brasage puis à effectuer une cuisson à haute température de manière à faire fondre l'alliage de brasage. Il est caractérisé par le fait qu'il consiste à prendre comme particules du métal de structure,des particules sensiblement sphériques et exempte d'oxydes qui sont obtenues par atomisation dans un gaz ou par pulvérisation d'une électrode tournante.The manufacturing method according to the invention consists in carrying out on the metal wall, a deposit of structural metal particles and of a brazing alloy and then in baking at high temperature. so as to melt the brazing alloy. It is characterized by the fact that it consists in taking as structural metal particles, particles which are substantially spherical and free of oxides which are obtained by atomization in a gas or by spraying with a rotating electrode.
Selon une caractéristique, le procédé consiste à effectuer le dépôt de la couche à l'aide d'une barbotine, contenant dans une solution acqueuse d'un liant organique, les particules du métal de structure et de l'alliage de brasage puis à lisser la couche puis à sécher la couche avant cuisson.According to one characteristic, the method consists in depositing the layer using a slip, containing in an aqueous solution of an organic binder, the particles of the structural metal and of the brazing alloy and then smoothing layer then dry the layer before cooking.
Selon une autre caractéristique le procédé consiste à déposer la couche sur un élément du type tube en faisant couler la barbotine sur le tube et en la lissant pendant que celui-ci tourne autour de son axe longitudinal, en déplaçant relativement le jet de coulée par rapport au tube.According to another characteristic, the method consists in depositing the layer on an element of the tube type by running the slip on the tube and smoothing it while the latter rotates around its longitudinal axis, relatively displacing the pouring jet with respect to to the tube.
D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description suivante qui se réfère aux dessins annexés sur lesquels :
- - la figure 1 représente une coupe d'un élément d'échange selon l'invention.
- - la figure 2 est un schéma illustrant les différentes étapes du procédé selon l'invention.
- - la figure 3 est un schéma illustrant l'opération de dépôt qui est effectuée dans le procédé selon l'invention.
- - Figure 1 shows a section of an exchange element according to the invention.
- - Figure 2 is a diagram illustrating the different steps of the method according to the invention.
- - Figure 3 is a diagram illustrating the deposition operation which is carried out in the method according to the invention.
En se référant à la figure 1, l'élément de chaleur comporte une paroi métallique étanche 1 qui sépare un liquide chaud et un liquide froid. Cette paroi métallique a par exemple la forme d'un tube.Referring to Figure 1, the heat element has a sealed metal wall 1 which separates a hot liquid and a cold liquid. This metal wall has for example the shape of a tube.
L'élément métallique présente, en surface, du côté du liquide chaud un revêtement métallique poreux 2. Ce revêtement poreux est constitué par des particules 21 d'un métal de structure reliées les unes aux autres et à la paroi 1 par un enrobage 22 de liaison obtenu par brasage avec un alliage de brasage. Ce revêtement forme, entre les particules 21, des pores 23 qui sont reliés entre eux et débouchent en surface.The metallic element has, on the surface, on the hot liquid side, a porous
Le revêtement est formé, perpendiculairement à la surface de la paroi, par un empilage de particules métalliques. Dans le cas où le revêtement est multicouches, les particules les plus extérieures ne sont pas accolées à la paroi mais accolées à d'autres particules plus proches de la paroi.The coating is formed, perpendicular to the surface of the wall, by a stack of metal particles. In the case where the coating is multilayer, the outermost particles are not joined to the wall but joined to other particles closer to the wall.
Les particules du métal de structure du revêtement sont sensiblement sphériques, ont des dimensions régulières et sont pratiquement exemptes d'oxydes sur leur surface extérieure. On prendra à cet effet des poudres obtenues par un procédé de fabrication de poudres par atomisation dans un gaz tel que le décrivent le brevet français 2 255 122 et le certificat d'addition 2 366 077 ou par pulvérisation d'électrode tournante tel que le décrit le brevet français 2 253 591.The particles of the coating structure metal are substantially spherical, have regular dimensions and are practically free. oxide pastes on their outer surface. For this purpose, take powders obtained by a powder manufacturing process by atomization in a gas as described in
L'alliage de brasage servant à la liaison des particules du métal de structure fond à une température inférieure à la température d'infusion du métal de structure et du métal constituant la paroi.The brazing alloy used to bond the particles of the structural metal melts at a temperature below the infusion temperature of the structural metal and the metal constituting the wall.
A titre indicatif on peut prendre pour l'alliage de brasage une poudre de brasage préalliée à base de nickel dont la composition est la suivante : 0,08 X de carbone - 0,7 % de silicium - 3,32 Z de bore - 15 % de chrome - moins de 1 x de fer - solde de nickel.As an indication, a nickel-based pre-alloyed brazing powder can be taken for the brazing alloy, the composition of which is as follows: 0.08 X carbon - 0.7% silicon - 3.32 Z boron - 15 % chromium - less than 1 x iron - nickel balance.
Le revêtement conforme à l'invention présente une bien meilleure adhérence qu'un revêtement obtenu avec des poudres atomisées à l'eau.The coating according to the invention has much better adhesion than a coating obtained with water-sprayed powders.
En se référant à la figure 2, le procédé selon l'invention présente les étapes suivantes.Referring to Figure 2, the method according to the invention has the following steps.
On prépare tout d'abord une solution acqueuse d'un liant organique qui entre dans la composition d'une barbotine constituée d'une suspension de poudre de métal de structure et d'une poudre d'alliage de brasage dans ladite solution.First of all, an aqueous solution of an organic binder is prepared, which enters into the composition of a slip consisting of a suspension of structural metal powder and of a brazing alloy powder in said solution.
Ce liant est à titre indicatif constitué par une solution acqueuse de méthylcellulose obtenue en dissolvant le méthylcellulose dans de l'eau chaude. Ce liant influe sur la viscosité de la barbotine et donne une cohésion en cru à la couche déposée sur la paroi.This binder is for information purposes constituted by an aqueous solution of methylcellulose obtained by dissolving the methylcellulose in hot water. This binder influences the viscosity of the slip and gives a raw cohesion to the layer deposited on the wall.
On prépare la barbotine en mélangeant les différents constituants. A titre indicatif on peut préparer par exemple une bartotine contenant en poids 64 % de poudre de métal de structure du type acier inoxydable, 16 % de poudre d'alliage de brasage du type défini ci-dessus et 20 % de solution acqueuse de méthylcellulose. La granulométrie de la poudre de brasage est inférieure à 110 microns et la granulométrie de la poudre de métal de structure inférieure à 200 microns.The slip is prepared by mixing the various constituents. As an indication, it is possible to prepare, for example, a bartotine containing by weight 64% of powder of structural metal of the stainless steel type, 16% of powder of brazing alloy of the type defined above and 20% of aqueous aqueous solution of methylcellulose. The particle size of the brazing powder is less than 110 microns and the particle size of the structural metal powder less than 200 microns.
La paroi destinée à recevoir le revêtement est préalablement rendue rugueuse et nettoyée.The wall intended to receive the coating is previously roughened and cleaned.
On dépose ensuite en une seule fois une couche de barbotine sur la paroi par exemple en faisant couler un jet de barbotine. La couche de barbotine est lissée à l'aide d'un racloir qui permet de calibrer l'épaisseur du dépôt comprise à titre indicatif entre 200 et 300 microns. Dans le cas d'un tube repéré 1 (figure 3), celui-ci est entrainé en rotation sous une trémie 3 contenant la barbotine. Le jet de barbotine qui s'écoule de la trémie forme une couche qui est lissée par le racloir 4 au fur et à mesure du dépôt. La trémie et le racloir sont animés longitudinalement d'un mouvement relatif par rapport au tube.A layer of slip is then deposited in one go on the wall, for example by running a slip of slip. The slip layer is smoothed using a scraper which makes it possible to calibrate the thickness of the deposit, for information between 200 and 300 microns. In the case of a tube marked 1 (Figure 3), it is rotated under a
On durcit ensuite le dépôt par une opération de séchage.The deposit is then hardened by a drying operation.
La paroi revêtue de la couche crue déposée subit ensuite une cuisson en deux phases sous atmosphère protégée. La première phase dite de préchauffage a pour but de décomposer l'agent organique. Ce préchauffage est effectué à une température de l'ordre de 400° C. La deuxième phase de cuisson proprement dite est effectuée à une température plus élevée permettant de fondre l'alliage de brasage. Elle est effectuée à une température de l'ordre de 1065° C dans le cas où l'alliage de brasage a la composition définie ci-dessus.The wall coated with the deposited green layer is then fired in two phases under a protected atmosphere. The purpose of the first so-called preheating phase is to decompose the organic agent. This preheating is carried out at a temperature of the order of 400 ° C. The second cooking phase proper is carried out at a higher temperature allowing the brazing alloy to be melted. It is carried out at a temperature of the order of 1065 ° C. in the case where the brazing alloy has the composition defined above.
Il est bien entendu que l'on peut sans sortir du cadre de l'invention imaginer des variantes et des perfectionnements de détails et de même envisager l'emploi de moyens équivalents.It is understood that it is possible, without departing from the scope of the invention, to imagine variants and refinements of details and even to envisage the use of equivalent means.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8221739A FR2538527B1 (en) | 1982-12-24 | 1982-12-24 | HEAT EXCHANGE ELEMENT AND METHOD FOR PRODUCING THE SAME |
FR8221739 | 1982-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0112782A1 true EP0112782A1 (en) | 1984-07-04 |
Family
ID=9280492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83402524A Withdrawn EP0112782A1 (en) | 1982-12-24 | 1983-12-23 | Heat exchange element and process for its manufacture |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0112782A1 (en) |
FR (1) | FR2538527B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0338920A2 (en) * | 1988-04-20 | 1989-10-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Joule-Thomson cooler with porous mass heat exchanger |
EP0357380A2 (en) * | 1988-08-31 | 1990-03-07 | De Beers Industrial Diamond Division (Proprietary) Limited | Manufacture of abrasive products |
GB2241249A (en) * | 1990-02-10 | 1991-08-28 | Star Refrigeration | Heat transfer surface |
EP1050663A2 (en) * | 1999-05-03 | 2000-11-08 | General Electric Company | Article having protuberances for creating turbulent flow and method for providing protuberances on an article |
WO2003095926A1 (en) * | 2002-05-07 | 2003-11-20 | Modine Manufacturing Company | Evaporative hydrophilic surface for a heat exchanger, method of making the same and composition therefor |
US6994152B2 (en) * | 2003-06-26 | 2006-02-07 | Thermal Corp. | Brazed wick for a heat transfer device |
US7677300B2 (en) | 2003-05-30 | 2010-03-16 | Uop Llc | Method for making brazed heat exchanger and apparatus |
US8991480B2 (en) | 2010-12-15 | 2015-03-31 | Uop Llc | Fabrication method for making brazed heat exchanger with enhanced parting sheets |
CN115074721A (en) * | 2022-07-28 | 2022-09-20 | 山东正诺新能源装备研究院有限公司 | Preparation process of high-flux tube porous coating |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1331780A (en) * | 1969-10-10 | 1973-09-26 | Union Carbide Corp | Porous metallic layer and formation |
DE2218489A1 (en) * | 1972-04-17 | 1973-10-31 | Wmf Wuerttemberg Metallwaren | Evaporator pipe mfr - with an outer, metal coating of fibres bonded to pipe surface |
FR2253591A1 (en) * | 1973-12-07 | 1975-07-04 | Creusot Loire | |
FR2255122A1 (en) * | 1973-12-20 | 1975-07-18 | Creusot Loire | |
FR2364423A1 (en) * | 1976-09-09 | 1978-04-07 | Union Carbide Corp | HEAT EXCHANGE METHOD AND DEVICE |
FR2364085A1 (en) * | 1976-09-09 | 1978-04-07 | Union Carbide Corp | PROCESS FOR MAKING HEAT EXCHANGE DEVICES |
US4291758A (en) * | 1978-10-31 | 1981-09-29 | Mitsubishi Denki Kabushiki Kaisha | Preparation of boiling heat transfer surface |
-
1982
- 1982-12-24 FR FR8221739A patent/FR2538527B1/en not_active Expired
-
1983
- 1983-12-23 EP EP83402524A patent/EP0112782A1/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1331780A (en) * | 1969-10-10 | 1973-09-26 | Union Carbide Corp | Porous metallic layer and formation |
DE2218489A1 (en) * | 1972-04-17 | 1973-10-31 | Wmf Wuerttemberg Metallwaren | Evaporator pipe mfr - with an outer, metal coating of fibres bonded to pipe surface |
FR2253591A1 (en) * | 1973-12-07 | 1975-07-04 | Creusot Loire | |
FR2255122A1 (en) * | 1973-12-20 | 1975-07-18 | Creusot Loire | |
FR2364423A1 (en) * | 1976-09-09 | 1978-04-07 | Union Carbide Corp | HEAT EXCHANGE METHOD AND DEVICE |
FR2364085A1 (en) * | 1976-09-09 | 1978-04-07 | Union Carbide Corp | PROCESS FOR MAKING HEAT EXCHANGE DEVICES |
US4291758A (en) * | 1978-10-31 | 1981-09-29 | Mitsubishi Denki Kabushiki Kaisha | Preparation of boiling heat transfer surface |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2630535A1 (en) * | 1988-04-20 | 1989-10-27 | Air Liquide | POROUS MASS FOR HEAT EXCHANGER AND ITS APPLICATION TO JOULE-THOMSON COOLER |
EP0338920A3 (en) * | 1988-04-20 | 1990-11-14 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Porous mass for heat exchanger and its application in a joule-thomson cooler |
EP0338920A2 (en) * | 1988-04-20 | 1989-10-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Joule-Thomson cooler with porous mass heat exchanger |
EP0357380A2 (en) * | 1988-08-31 | 1990-03-07 | De Beers Industrial Diamond Division (Proprietary) Limited | Manufacture of abrasive products |
EP0357380A3 (en) * | 1988-08-31 | 1991-07-24 | De Beers Industrial Diamond Division (Proprietary) Limited | Manufacture of abrasive products |
GB2241249A (en) * | 1990-02-10 | 1991-08-28 | Star Refrigeration | Heat transfer surface |
EP1050663A3 (en) * | 1999-05-03 | 2004-01-07 | General Electric Company | Article having protuberances for creating turbulent flow and method for providing protuberances on an article |
EP1050663A2 (en) * | 1999-05-03 | 2000-11-08 | General Electric Company | Article having protuberances for creating turbulent flow and method for providing protuberances on an article |
US6598781B2 (en) * | 1999-05-03 | 2003-07-29 | General Electric Company | Article having turbulation and method of providing turbulation on an article |
WO2003095926A1 (en) * | 2002-05-07 | 2003-11-20 | Modine Manufacturing Company | Evaporative hydrophilic surface for a heat exchanger, method of making the same and composition therefor |
CN100365373C (en) * | 2002-05-07 | 2008-01-30 | 穆丹制造公司 | Evaporative hydrophilic surface for a heat exchanger, method of making the same and composition therefor |
US7677300B2 (en) | 2003-05-30 | 2010-03-16 | Uop Llc | Method for making brazed heat exchanger and apparatus |
US6994152B2 (en) * | 2003-06-26 | 2006-02-07 | Thermal Corp. | Brazed wick for a heat transfer device |
US7137443B2 (en) | 2003-06-26 | 2006-11-21 | Thermal Corp. | Brazed wick for a heat transfer device and method of making same |
US8991480B2 (en) | 2010-12-15 | 2015-03-31 | Uop Llc | Fabrication method for making brazed heat exchanger with enhanced parting sheets |
CN115074721A (en) * | 2022-07-28 | 2022-09-20 | 山东正诺新能源装备研究院有限公司 | Preparation process of high-flux tube porous coating |
CN115074721B (en) * | 2022-07-28 | 2022-11-04 | 山东正诺新能源装备研究院有限公司 | Preparation process of high-flux tube porous coating |
Also Published As
Publication number | Publication date |
---|---|
FR2538527B1 (en) | 1987-06-19 |
FR2538527A1 (en) | 1984-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2547833C (en) | Aluminium alloy strip for welding | |
EP0904881B1 (en) | Assembling or build-up diffusion brazing method of titanium aluminide workpieces | |
CA2967168C (en) | Method for manufacturing a part for a turbomachine | |
RU2210478C2 (en) | Method for making hollow metallic objects | |
EP0075497A1 (en) | Diffusion brazing of superalloy workpieces | |
FR2486148A1 (en) | COMPOSITE INSULATION FOR COMPONENTS OF MOTORS AND METHOD FOR MANUFACTURING THE SAME | |
JPH06228769A (en) | Film coating method and metal or ceramic body coated by said method | |
EP1846588B1 (en) | Method for preparing by thermal spraying a silicon- and zirconium-based target | |
EP3354769A1 (en) | Method for manufacturing parts made by powder metallurgy comprising the application of a coating | |
EP2540437B1 (en) | Method for manufacturing a device comprising brazed joints made from metal oxalate | |
EP0112782A1 (en) | Heat exchange element and process for its manufacture | |
EP1440045B1 (en) | Metallization and/or brazing method, using a silicon alloy, for oxide ceramic parts which are non-wettable by said alloy | |
FR2685227A1 (en) | IMPROVEMENT OF HOT WORK SUITABILITY BY USE OF COATING DEPOSITED BY THERMAL SPRAYING. | |
EP0519054A1 (en) | Method of obtaining cast composite cylinder heads | |
EP0711262B1 (en) | Process and composition for assembling part made of ceramic and refractory alloy | |
FR2645938A1 (en) | TRANSFER TUBE | |
EP1909996B1 (en) | Method of producing and joining superalloy balls by means of brazing and objects produced with such joints | |
EP0605585B1 (en) | Method for making a composite part with an antiabrasion surface, and parts obtained by such method | |
EP0670190B1 (en) | Foundry mould and process for making it | |
WO2016066771A1 (en) | Corrosion-resistant heat exchanger matrix and method of manufacturing such a matrix | |
EP0515239B1 (en) | Method of making a metallic coating on a ceramic composite SiC/SiC | |
EP0339065B1 (en) | Process for manufacturing layers | |
FR2736850A1 (en) | FOUNDRY MOLD AND METHOD OF MAKING SUCH A MOLD | |
BE537666A (en) | ||
FR2702496A1 (en) | Process for the removal of porosity from a sprayed coat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE GB NL |
|
17P | Request for examination filed |
Effective date: 19841219 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19860409 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: RAISSON, GERARD |