EP0111615B1 - Heat transfer system, especially for a process gas - Google Patents

Heat transfer system, especially for a process gas Download PDF

Info

Publication number
EP0111615B1
EP0111615B1 EP83100230A EP83100230A EP0111615B1 EP 0111615 B1 EP0111615 B1 EP 0111615B1 EP 83100230 A EP83100230 A EP 83100230A EP 83100230 A EP83100230 A EP 83100230A EP 0111615 B1 EP0111615 B1 EP 0111615B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
channel
exchanger system
heating surface
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83100230A
Other languages
German (de)
French (fr)
Other versions
EP0111615A1 (en
Inventor
Wolfgang Ruzek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0111615A1 publication Critical patent/EP0111615A1/en
Application granted granted Critical
Publication of EP0111615B1 publication Critical patent/EP0111615B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/007Control systems for waste heat boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/005Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having bent portions or being assembled from bent tubes or being tubes having a toroidal configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems

Definitions

  • the invention relates to a heat exchanger system according to the preamble of claim 1.
  • Such a system is known from CH-PS-375 030, in which the channels are annular spaces which are delimited by concentrically interposed partition walls and through which the hot gas coming from a nuclear reactor flows in series.
  • this system is for gases that can be very dirty, such as. B. process gas from coal gasification plants, not very suitable, since the heat exchanger surfaces have to be cleaned frequently and these are not easily accessible in the known system.
  • the frequency of such cleaning increases with the temperature of the hot gases, because the higher the gas temperature, the greater the deterioration in heat dissipation due to deposits on the heating surfaces.
  • this object is achieved by the features of the characterizing part of claim 1.
  • the particular advantage is achieved that if the heat transfer changes due to deposits on the heat exchanger surfaces, by adjusting the throttle element, the proportional heat transfer at the various heat exchanger surfaces can be varied. By adjusting the supply of the secondary medium, its temperatures can be influenced differently. In the system according to the invention, there is also good accessibility to the heat exchanger surfaces during cleaning and, if necessary, repair work.
  • the features of claim 2 lead to a solution with a minimum of unused space.
  • the pressure vessel is therefore small and relatively light, which is expressed in a low price, easier transportability and easier and faster assembly.
  • Claim 4 makes the invention advantageous in terms of price, since the snake tubes can be produced very easily and the suspension of the tubes does not require any special suspension means.
  • the embodiment according to claim 5 enables the heat exchanger surface accommodated in the other branch duct to be arranged in cocurrent and / or in countercurrent. This results in a particularly high heat transfer and in the event of a leak, the affected pipes can be easily blinded without this leading to hot strands in the primary medium.
  • Claim 6 leads to a simple, relatively small throttle body, which is in a moderate temperature range and can be operated with a very simple drive.
  • the wall of the pressure vessel is protected from excessive temperatures in a simple manner.
  • Claim 9 shows means which allow to influence the final temperature of the primary gas.
  • the solution according to claim 10 has the advantages that in the highest temperature range the heat transfer on the primary side is reduced due to the reduced gas velocity and, conversely, the heat transfer on the secondary side is increased by the higher medium velocity, both of which lead to a reduction in the tube wall temperature. Moreover, this solution allows a cross flow in the branching area without a high pressure drop occurring.
  • the features of claim 11 allow an impairment of the heat transfer due to deposits on the evaporator heating surface to be corrected in a simple manner.
  • the snake tubes can be packed together to form a compact ring bundle that can easily be hung from the outermost tubes, as claimed in claim 13.
  • a tubular lower part 2 with claws 3 is placed on a foundation 4 of a cylindrical pressure vessel 1.
  • the lower part 2 is connected at its lower end to a gas inlet line, not shown.
  • a little gas outlet nozzle 5 is arranged laterally a little above its lower end.
  • the lower part 2 has a flange 6, on which sits a cover 7, which forms the upper part of the pressure vessel 1.
  • a cylindrical partition 14 is tightly connected, which is connected at its lower end to the wall of the lower part 2 via a tight but easily releasable connection 16.
  • Extending within the circular cylinder formed by the chuck 10 with a small radial distance from the chuck 10 is an outer channel wall 20, which forms a tube section and ends below the ring plate 12.
  • a middle channel wall 22 Arranged within the cylindrical surface formed by the outer channel wall 20 is a middle channel wall 22, which ends at approximately the same height as the outer channel wall 20. Above, the middle channel wall 22 carries a sheet metal cone 23 with a valve seat 24. A throttle element acts with the valve seat 24 25 together in the form of a poppet valve which is actuated by a servo motor 26.
  • An inner channel wall 28 is provided within the middle channel wall 22, which is also circular cylindrical and is closed at the top with a hollow elk cone 27.
  • the channel wall 28 extends downward beyond the middle channel wall 22 far into the region of the partition wall 14.
  • this channel section bifurcates into two branch channels 32 and 34, of which the inner channel 32 as "the one branch channel 32 and the outer channel 32 as” the other branch channel 34 are designated and which are separated from one another by the central channel wall 22.
  • a single coil heating surface 36 which is connected as an evaporator, extends over the entire height of the annular section formed by the channel section 30 and the annular space formed by a branch channel 32.
  • the coil heating surface 36 consists of thirty-six involute tube sheets 38 which are each formed from a tube with vertically directed legs. Such a tube sheet 38 is particularly highlighted in FIGS. 2 and 3 and drawn in an unwound manner in FIG. 4.
  • a vertical leg 51 lying on an outermost tube cylinder 50 (FIG. 3) is connected via an inclined section 52 to a leg 54 lying on an innermost tube cylinder 53.
  • the leg 54 is connected at the top via a manifold to a leg 55 which is connected at the bottom via a manifold to a further leg 56.
  • a leg 57 finally leads vertically upwards, where it, together with the leg 51, penetrates the sheet metal cone 23 via a sealing part (not shown) and leads to the pressure vessel cover 7, which the tube legs 51 and 57 pierce through known sealing sleeves .
  • the legs 51 and 57 are then connected to a distributor 58 and a collector 59 together with the corresponding legs of the remaining thirty-five tube sheets 38.
  • the tube legs are spaced apart from one another by cams, not shown in the drawing, attached to the legs or by ribs running all around at different heights.
  • the tube sheets 38 are layered on the inner channel wall 28, bent into involute surfaces and pressed together radially with tension belts (not shown) which extend over the circumference of the coil heating surface 36.
  • the heating surface bundle formed in this way is tightly encased in the region of one branch duct 32 with a wire mesh and then with the central duct wall 22 welded together from two half-shells.
  • the outermost pipe limbs 51 rest against the partition 14, which is thereby cooled during operation.
  • a wire mesh made of highly heat-resistant material or an insulation, which reduces the heat transfer to the partition 14 can also be provided here, optionally in several layers. Means for improving the heat transfer can be provided on the outside of the partition wall 14.
  • the heat exchanger surface in the other branch duct 34 is in the form of a helical heating surface 62, which consists of ninety-two helically wound tubes 64, which form five tube cylinders.
  • the pipes 64 are connected to manifolds 75, 75 'via connecting pipes 72 which penetrate the wall of the lower part 2.
  • each pipe 64 is connected via a pipe bend 65 to one of ninety-two riser pipes 66, which run vertically in the annular channel formed between the lining 10 and the outer channel wall 20.
  • the risers exit the above-mentioned ring channel in a practically gas-tight passage and emerge laterally through the wall of the lower part 2 from the pressure vessel 1 via temperature compensation nozzles - known under the name “thermosleeves”.
  • the risers are connected to two collectors 70, 70 '.
  • the tubes 64 of the Helissen heating surface are held in perforated support plates 61 which are arranged within the branch channel 34 in three planes offset by 120 ° from one another and running through the vertical axis of the pressure vessel 1.
  • the upper ends of the support plates are fastened laterally to the wall of the lower part 2 and have 62 bores 63 over the height region of the Helissen heating surface. the tubes 64 are wound into these bores.
  • two diametrically offset circular openings 80 are provided in the ring plate 12, below which a valve cone 82 is arranged coaxially to the associated opening 80 on each valve rod 81.
  • Each valve rod 81 is guided in arms 83 fastened to the partition wall 14 and coupled to a fork lever 84 with an elongated hole via a connecting pin (not shown in the drawing).
  • the fork lever 84 sits on a shaft 85 which is rotatably supported in a sleeve 86.
  • the sleeve 86 is removably attached to a suitably arranged pressure vessel connector 87.
  • the shaft 85 penetrates a flat cover 88 with a stuffing box 89. It can be rotated from the outside to adjust the height of the valve cone 82.
  • the gas outlet nozzle 5 is lined with a feed plate 92 which forms an inlet nozzle and which leads into a static mixer 93.
  • the partition wall 14, the connection 16 and the lowermost section of the lower part 2 are protected from excessive temperatures by a brick lining 46, which may not contain cooling pipes.
  • the collector 59 is connected via a saturated steam line 45 to a separator 46, the steam outlet line 47 leading to the distributors 75 and 75 ', while separated water is discharged via an outlet connection 48 attached to the bottom of the separator 46.
  • a further steam supply line 49 is connected to the distributors 75. 75 ', which comes, for example, from cooling devices or a boiler system.
  • the heat exchanger system according to FIGS. 1 to 4 functions as follows:
  • the pressure vessel 1 is supplied with a process gas of, for example, 1000 ° C. and 20 to 40 bar at its lower end.
  • This gas flows through the channel section 30, whereupon it is distributed to one branch channel 32 and the other branch channel 34 after cooling to approximately 800 ° C. in the height region of the lateral opening between the ring plate 12 and the lower edge of the central channel wall 22.
  • these branch channels there is further heat, the partial flow in branch channel 32 being cooled to, for example, 320 ° C. and that in the other branch channel to, for example, 380 ° C.
  • the two gas flows Downstream of the throttle member 25, the two gas flows combine, resulting in a mixing temperature of, for example, 350 ° C.
  • the combined gas flow then passes through the annular space 9, tempering the wall of the pressure vessel, into the annular space below the annular plate 12 and from there through the gas outlet connection 5 for further use.
  • the lining plate 92 optionally supported by additional guide plates, keeps such streaks away from the pressure-bearing wall.
  • the static mixer 93 then makes the gas temperature more uniform.
  • Preheated water is supplied to the heat exchanger system as a secondary medium via the distributor 58 and is fed into the coil heating surface 36 via the legs 51 serving as support tubes.
  • this coil heating surface serves as an evaporator; therefore, a steam water mixture flows into the collector 59 via the legs 57.
  • the steam water mixture is then separated in the separator 46; the water is excreted through the nozzle 48 and the saturated steam is fed via line 47 into the distributors 75, 75 '.
  • the heating surfaces in the channel section 30 and the two branch channels 32 and 34 are designed so large with regard to any heating surface contamination that initially it is possible to operate with the throttle element 25 open little and the openings 80 wide open. A lot of heat is emitted in the channel section 30, so that the branch channel 32 can be throttled accordingly. Since the inlet temperature in the other branch duct 34 is relatively low, there is no danger that the overheating of the steam will rise too high. In contrast, there is a relatively low mixing temperature of the gas mixture downstream of the two branch channels. By mixing a relatively large amount of hot gas over the Openings 80 raise the temperature of the gas emerging from the pressure vessel 1 to the desired level.
  • the cover 7 is lifted off to clean the heating surfaces, the central duct wall 22, which is suspended from the supporting legs 51, the coil heating surface 36 and the inner channel wall 28 are also pulled out.
  • the middle channel wall 22 can then be relatively easily detached from the cone 23 and separated into two shells so that they can be removed sideways.
  • the tube panels 38 can now be bent slightly outwards, in particular in the middle and lower part of the coil heating surface, so that they can be cleaned.
  • the helicopter bundle 62 can be inspected from the inside and also cleaned from there.
  • the partition wall 14 can easily be raised beyond the ring plate 12 or the middle channel wall 22 shortened or extended downwards.
  • branch point adjustable, for example by one or two ring slides or by a bypass provided in the central channel wall 22.
  • the invention is not limited to the illustrated embodiment.
  • the heat exchanger surfaces are shown in the simplest form. Of course, they can also be subdivided and the flow directions reversed in whole or in part.
  • more than one secondary medium can be involved in the heat transfer. If throttling elements in the pressure vessel are to be avoided, they can also be placed in connecting lines which serve to guide the gas outside the pressure vessel.
  • the quantity distribution of the secondary medium or the secondary media can also be changed under certain circumstances.
  • the invention is by no means bound to the exemplary embodiment shown; for example, pocket pipes or heat pipes can also be used.
  • the branching to the branch channels can be staggered at different temperatures or temperature ranges.
  • the merging of the branch streams can also be staggered.
  • the openings 80 can be connected to points of lower temperature, be it of one or the other branch channel. Depending on the boundary conditions, it can also be expedient to interchange the arrangement of the channels in the pressure vessel or to arrange them in some other way. In order to facilitate the blinding of individual pipes, in particular in the superheater pipe bundle, where higher temperatures occur, it may be expedient to connect the connecting pipes 72 according to CH-PS-384 602 to pipe plates.

Description

Die Erfindung betrifft ein Wärmeübertragersystem nach dem Oberbegriff des Anspruchs 1.The invention relates to a heat exchanger system according to the preamble of claim 1.

Aus der CH-PS-375 030 ist ein solches System bekannt, bei dem die Kanäle Ringräume sind, die durch konzentrisch ineinander gestülpte Trennwände begrenzt sind und vom heissen, aus einem Kernreaktor kommenden Gas in Serie durchströmt werden. Dieses System ist jedoch für Gase, die stark verschmutzt sein können, wie z. B. Prozessgas aus Kohlevergasungsanlagen, wenig geeignet, da die Wärmeübertragerflächen häufig gereinigt werden müssen und diese beim bekannten System nicht gut zugänglich sind. Die Häufigkeit solcher Reinigungen nimmt mit steigender Temperatur der heissen Gase zu, weil sich die Verschlechterung der Wärmeabfuhr infolge Ablagerungen auf den Heizflächen um so stärker auswirkt, je höher die Gastemperatur ist.Such a system is known from CH-PS-375 030, in which the channels are annular spaces which are delimited by concentrically interposed partition walls and through which the hot gas coming from a nuclear reactor flows in series. However, this system is for gases that can be very dirty, such as. B. process gas from coal gasification plants, not very suitable, since the heat exchanger surfaces have to be cleaned frequently and these are not easily accessible in the known system. The frequency of such cleaning increases with the temperature of the hot gases, because the higher the gas temperature, the greater the deterioration in heat dissipation due to deposits on the heating surfaces.

Es ist daher Aufgabe der Erfindung, das Wärmeübertragersystem der eingangs genannten Art so zu verbessern, dass es auch im Falle stark verschmutzter Gase von sehr hoher Temperatur die fühlbare Wärme auf wirtschaftliche und betriebsichere Weise abführen kann, und es sich ausserdem gut reinigen lässt.It is therefore an object of the invention to improve the heat transfer system of the type mentioned at the outset in such a way that, even in the case of heavily contaminated gases of very high temperature, the sensible heat can be dissipated in an economical and reliable manner, and it is also easy to clean.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Kennzeichens des Anspruchs 1 gelöst. Dabei wird der besondere Vorteil erzielt, dass bei einer Veränderung des Wärmeübergangs infolge Ablagerungen an den Wärmeübertragerflächen, durch Verstellen des Drosselorgans die anteilige Wärmeübertragung an den verschiedenen Wärmeübertragerflächen variiert werden kann. Durch Einstellen der Zufuhr des Sekundärmediums lassen sich dann dessen Temperaturen unterschiedlich beeinflussen. Beim erfindungsgemässen System ergibt sich ferner eine gute Zugänglichkeit der Wärmeübertragerflächen bei Reinigungssowie ggfs. Reparaturarbeiten.According to the invention, this object is achieved by the features of the characterizing part of claim 1. The particular advantage is achieved that if the heat transfer changes due to deposits on the heat exchanger surfaces, by adjusting the throttle element, the proportional heat transfer at the various heat exchanger surfaces can be varied. By adjusting the supply of the secondary medium, its temperatures can be influenced differently. In the system according to the invention, there is also good accessibility to the heat exchanger surfaces during cleaning and, if necessary, repair work.

Die Merkmale nach Anspruch 2 führen zu einer Lösung mit einem Minimum an nicht genütztem Raum. Das Druckgefäss wird daher klein und verhältnismässig leicht, was in einem günstigen Preis, in leichterer Transportierbarkeit und in einfacherer und schnellerer Montage sich ausdrückt.The features of claim 2 lead to a solution with a minimum of unused space. The pressure vessel is therefore small and relatively light, which is expressed in a low price, easier transportability and easier and faster assembly.

Die Merkmale nach Anspruch 3 führen zu einer Lösung, die wegen der leichten Ausbaubarkeit der höchstbeanspruchten Heizflächen besonders betriebsgünstig ist.The features of claim 3 lead to a solution that is particularly economical due to the ease of expansion of the highly stressed heating surfaces.

Anspruch 4 macht die Erfindung preislich vorteilhaft, da die Schlangenrohre sich sehr einfach herstellen lassen und die Aufhängung der Rohre keine besonderen Tragmittel erfordert.Claim 4 makes the invention advantageous in terms of price, since the snake tubes can be produced very easily and the suspension of the tubes does not require any special suspension means.

Die Ausgestaltung nach Anspruch 5 ermöglicht die im anderen Zweigkanal untergebrachte Wärmeübertragerfläche im Gleich-und/oder im Gegenstrom anzuordnen. Es ergibt sich ein besonders hoher Wärmeübergang und im Falle einer Leckage lassen sich betroffene Rohre leicht abblinden, ohne dass dies zu heissen Strähnen im Primärmedium führen würde.The embodiment according to claim 5 enables the heat exchanger surface accommodated in the other branch duct to be arranged in cocurrent and / or in countercurrent. This results in a particularly high heat transfer and in the event of a leak, the affected pipes can be easily blinded without this leading to hot strands in the primary medium.

Anspruch 6 führt zu einem einfachen, relativ kleinen Drosselorgan, das in einem Bereich mässiger Temperatur liegt und mit einem sehr einfachen Antrieb betätigt werden kann.Claim 6 leads to a simple, relatively small throttle body, which is in a moderate temperature range and can be operated with a very simple drive.

Die Merkmale nach Anspruch 7 ergeben konstruktive und betriebliche Vorteile, da sich die Einbauten des Druckgefässes konstruktiv günstig anordnen und im Bedarfsfall leicht ausbauen lassen.The features of claim 7 result in constructive and operational advantages, since the internals of the pressure vessel can be arranged in a structurally favorable manner and can be easily removed if necessary.

Durch Anspruch 8 wird die Wand des Druckgefässes auf einfache Weise vor zu hohen Temperaturen geschützt.By claim 8, the wall of the pressure vessel is protected from excessive temperatures in a simple manner.

Anspruch 9 zeigt Mittel, die gestatten, die Endtemperatur des primären Gases zu beeinflussen.Claim 9 shows means which allow to influence the final temperature of the primary gas.

Die Lösung nach Anspruch 10 bringt die Vorteile, dass im höchsten Temperaturbereich der primärseitige Wärmeübergang wegen erniedrigter Gasgeschwindigkeit verkleinert und, umgekehrt, der sekundärseitige Wärmeübergang durch höhere Mediumgeschwindigkeit erhöht wird, was beides zu einer Reduktion der Rohrwandtemperatur führt. Ueberdies gestattet diese Lösung eine Querströmung im Verzweigungsbereich, ohne dass ein hoher Druckabfall auftreten würde.The solution according to claim 10 has the advantages that in the highest temperature range the heat transfer on the primary side is reduced due to the reduced gas velocity and, conversely, the heat transfer on the secondary side is increased by the higher medium velocity, both of which lead to a reduction in the tube wall temperature. Moreover, this solution allows a cross flow in the branching area without a high pressure drop occurring.

Die Merkmale nach Anspruch 11 gestatten, eine Beeinträchtigung des Wärmeübergangs durch Ablagerungen auf der Verdampferheizfläche auf einfache Weise zu korrigieren.The features of claim 11 allow an impairment of the heat transfer due to deposits on the evaporator heating surface to be corrected in a simple manner.

Durch die Distanzierung mittels Nocken gemäss Anspruch 12 lassen sich die Schlangenrohre zu einem kompakten Ringbündel zusammenpacken, das sich leicht an den äussersten Rohren aufhängen lässt, wie dies in Anspruch 13 beansprucht wird.Due to the spacing by means of cams, the snake tubes can be packed together to form a compact ring bundle that can easily be hung from the outermost tubes, as claimed in claim 13.

Die Erfindung wird nun an Hand der Zeichnung an einem Ausführungsbeispiel näher erläutert. Es zeigen :

  • Figur 1 einen fragmentarischen, leicht schematisierten Vertikalschnitt durch ein Druckgefäss mit einem Wärmeübertragersystem nach der Erfindung,
  • Figur 2 einen Sektor eines Horizontalschnittes nach der Ebene II-II in Figur 1,
  • Figur 3 einen Sektor eines stufenförmig abgesetzten Horizontalschnittes im Bereich der Ebene 111-111 in Fig. 1 und
  • Figur 4 die Abwicklung einer Rohrtafel aus Schlangenrohren.
The invention will now be explained in more detail with reference to the drawing using an exemplary embodiment. Show it :
  • FIG. 1 shows a fragmentary, slightly schematic vertical section through a pressure vessel with a heat transfer system according to the invention,
  • FIG. 2 shows a sector of a horizontal section along the plane II-II in FIG. 1,
  • 3 shows a sector of a stepped horizontal section in the area of the plane 111-111 in FIGS. 1 and
  • Figure 4 shows the processing of a tube sheet from snake tubes.

In Figur 1 ist von einem zylindrischen Druckbehälter 1 ein rohrartiger Unterteil 2 mit Pratzen 3 auf einem Fundament 4 abgestellt. Das Unterteil 2 ist an seinem unteren Ende an eine nicht gezeichnete Gaseintrittsleitung angeschlossen. Wenig oberhalb seines unteren Endes ist seitlich ein Gasaustrittstutzen 5 angeordnet. An seinem oberen Ende weist das Unterteil 2 einen Flansch 6 auf, auf dem ein Deckel 7 sitzt, der das Oberteil des Druckgefässes 1 bildet.In Figure 1, a tubular lower part 2 with claws 3 is placed on a foundation 4 of a cylindrical pressure vessel 1. The lower part 2 is connected at its lower end to a gas inlet line, not shown. A little gas outlet nozzle 5 is arranged laterally a little above its lower end. At its upper end, the lower part 2 has a flange 6, on which sits a cover 7, which forms the upper part of the pressure vessel 1.

Ueber einen mittleren, ausgedehnten Höhenbereich des Unterteils 2 erstreckt sich mit geringem Abstand von der Innenwand des Unterteils 2, einen Ringraum 9 bildend, ein Futter 10, das unten an der Peripherie eines Ringbleches 12 endet und mit diesem dicht verbunden ist. An der inneren Kante des Ringbleches 12 ist eine zylindrische Trennwand 14 dicht angeschlossen, die an ihrem unteren Ende über eine dichte, aber leicht lösbare Verbindung 16 an der Wand des Unterteils 2 angeschlossen ist. Innerhalb des vom Futter 10 gebildeten Kreiszylinders erstreckt sich mit geringem radialem Abstand vom Futter 10 eine äussere Kanalwand 20, die einen Rohrabschnitt bildet und unten oberhalb des Ringbleches 12 endet. Innerhalb der von der äusseren Kanalwand 20 gebildeten Zylinderfläche ist eine mittlere Kanalwand 22 angeordnet, die unten etwa auf gleicher Höhe endet wie die äussere Kanalwand 20. Oben trägt die mittlere Kanalwand 22 einen Blechkonus 23 mit einem Ventilsitz 24. Mit dem Ventilsitz 24 wirkt ein Drosselorgan 25 in Form eines Tellerventils zusammen, das von einem Servomotor 26 aus betätigt wird.Extending over a central, extended height range of the lower part 2 at a small distance from the inner wall of the lower part 2, forming an annular space 9, is a lining 10 which ends at the bottom of the periphery of an annular plate 12 and is tightly connected to it. At the inner edge of the ring plate 12, a cylindrical partition 14 is tightly connected, which is connected at its lower end to the wall of the lower part 2 via a tight but easily releasable connection 16. Extending within the circular cylinder formed by the chuck 10 with a small radial distance from the chuck 10 is an outer channel wall 20, which forms a tube section and ends below the ring plate 12. Arranged within the cylindrical surface formed by the outer channel wall 20 is a middle channel wall 22, which ends at approximately the same height as the outer channel wall 20. Above, the middle channel wall 22 carries a sheet metal cone 23 with a valve seat 24. A throttle element acts with the valve seat 24 25 together in the form of a poppet valve which is actuated by a servo motor 26.

Innerhalb der mittleren Kanalwand 22 ist eine innere Kanalwand 28 vorgesehen, die ebenfalls kreiszylindrisch ausgebildet ist und oben mit einem hohlen Elechkegel 27 verschlossen ist. Die Kanalwand 28 erstreckt sich nach unten über die mittlere Kanalwand 22 hinaus bis weit in den Bereich der Trennwand 14 hinein.An inner channel wall 28 is provided within the middle channel wall 22, which is also circular cylindrical and is closed at the top with a hollow elk cone 27. The channel wall 28 extends downward beyond the middle channel wall 22 far into the region of the partition wall 14.

Der Ringbereich zwischen der Trennwand 14 und der inneren Kanalwand 28 bildet einen Kanalabschnitt 30. Oberhalb des Ringbleches 12 gabelt sich dieser Kanalabschnitt in zwei Zweigkanäle 32 und 34, von denen der innere Kanal 32 als « der eine Zweigkanal 32 und der äussere Kanal 32 als « der andere Zweigkanal 34 bezeichnet werden und die durch die mittlere Kanalwand 22 voneinander getrennt sind.The ring area between the partition 14 and the inner channel wall 28 forms a channel section 30. Above the ring plate 12, this channel section bifurcates into two branch channels 32 and 34, of which the inner channel 32 as "the one branch channel 32 and the outer channel 32 as" the other branch channel 34 are designated and which are separated from one another by the central channel wall 22.

Ueber die ganze Höhe des vom Kanalabschnitt 30 und des vom einen Zweigkanal 32 gebildeten Ringraums erstreckt sich eine einzige Schlangenheizfläche 36, die als Verdampfer geschaltet ist. Die Schlangenheizfläche 36 besteht aus sechsunddreissig evolventenförmig gekrümmten Rohrtafeln 38, die aus je einem Rohr mit vertikal gerichteten Schenkeln gebildet sind. Eine solche Rohrtafel 38 ist in Fig. 2 und 3 besonders hervorgehoben und in Fig. 4 abgewickelt gezeichnet. Ein auf einem äussersten Rohrzylinder 50 (Fig. 3) liegender vertikaler Schenkel 51 ist über einen Schrägabschnitt 52 mit einem auf einem innersten Rohrzylinder 53 liegenden Schenkel 54 verbunden. Der Schenkel 54 ist oben über einen Krümmer mit einem Schenkel 55 verbunden, der unten über einen Krümmer an einem weiteren Schenkel 56 angeschlossen ist. Nach mehrmaligem Hin- und Herführen des Rohres führt schliesslich ein Schenkel 57 vertikal nach oben, wo er zusammen mit dem Schenkel 51 über eine nicht näher dargestellte Dichtpartie den Blechkonus 23 durchdringt und zum Druckgefässdeckel 7 führt, den die Rohrschenkel 51 und 57 über bekannte Dichthülsen durchstossen. Zusammen mit den entsprechenden Schenkeln der übrigen fünfunddreissig Rohrtafeln 38 sind die Schenkel 51 und 57 sodann an einen Verteiler 58 bzw. einen Sammler 59 angeschlossen.A single coil heating surface 36, which is connected as an evaporator, extends over the entire height of the annular section formed by the channel section 30 and the annular space formed by a branch channel 32. The coil heating surface 36 consists of thirty-six involute tube sheets 38 which are each formed from a tube with vertically directed legs. Such a tube sheet 38 is particularly highlighted in FIGS. 2 and 3 and drawn in an unwound manner in FIG. 4. A vertical leg 51 lying on an outermost tube cylinder 50 (FIG. 3) is connected via an inclined section 52 to a leg 54 lying on an innermost tube cylinder 53. The leg 54 is connected at the top via a manifold to a leg 55 which is connected at the bottom via a manifold to a further leg 56. After the tube has been repeatedly moved back and forth, a leg 57 finally leads vertically upwards, where it, together with the leg 51, penetrates the sheet metal cone 23 via a sealing part (not shown) and leads to the pressure vessel cover 7, which the tube legs 51 and 57 pierce through known sealing sleeves . The legs 51 and 57 are then connected to a distributor 58 and a collector 59 together with the corresponding legs of the remaining thirty-five tube sheets 38.

Etwa auf der Höhe des unteren Endes der mittleren Kanalwand 22 sind alle Schenkel der Rohrtafeln 38 im Durchmesser abgesetzt, indem sie unterhalb dieser Stelle einen kleineren Durchmesser d (Fig. 3) und oberhalb dieser Stelle einen grösseren Durchmesser D (Fig. 2) aufweisen. Hierdurch wird die Strömungsgeschwindigkeit des Gases im Kanalabschnitt 30 herabgesetzt und gleichzeitig die Strömungsgeschwindigkeit des zu verdampfenden Mediums erhöht. Es wird daher der Wärmeübergang auf der Aussenseite der Rohre herabgesetzt und auf der Innenseite der Rohre erhöht, was beides zu einer tieferen Temperatur des Rohrmaterials führt. Darüberhinaus wird durch den kleineren Rohrdurchmesser der Strömungsquerschnitt für den aus dem Kanalabschnitt 30 in den anderen Zweigkanal 34 übertretenden Teilstrom des Gases vergrössert.Approximately at the level of the lower end of the middle channel wall 22, all the legs of the tube sheets 38 are offset in diameter by having a smaller diameter d below this point (FIG. 3) and a larger diameter D above this point (FIG. 2). As a result, the flow rate of the gas in the channel section 30 is reduced and at the same time the flow rate of the medium to be evaporated is increased. The heat transfer on the outside of the pipes is therefore reduced and increased on the inside of the pipes, both of which lead to a lower temperature of the pipe material. In addition, the smaller pipe diameter increases the flow cross section for the partial flow of the gas passing from the channel section 30 into the other branch channel 34.

Innerhalb der Rohrtafeln 38 und zwischen ihnen sind die Rohrschenkel durch auf den Schenkeln angebrachte, in der Zeichnung nicht dargestellte Nocken oder durch auf verschiedenen Höhen angeordnete, rundum laufende Rippen voneinander distanziert. Zwecks Herstellung der Schlangenheizfläche 36 werden die Rohrtafeln 38 an die innere Kanalwand 28 geschichtet, nach Evolventenflächen gebogen und mit nicht gezeichneten, über den Umfang der Schlangenheizfläche 36 sich erstreckende Spanngürtel radial zusammengepresst. Das so gebildete Heizflächenbündel wird im Bereich des einen Zweigkanals 32 mit einem Drahtgeflecht und anschliessend mit der aus zwei Halbschalen zusammengeschweissten, mittleren Kanalwand 22 dicht umhüllt. Im Bereich des Kanalabschnittes 30 liegen die äussersten Rohrschenkel 51 an der Trennwand 14 an, die dadurch im Betrieb gekühlt wird. Es kann aber auch hier, gegebenenfalls in mehreren Schichten, ein Drahtgeflecht aus hochhitzebeständigem Material oder eine Isolation vorgesehen sein, die den Wärmeübergang an die Trennwand 14 herabsetzt. Auf der Aussenseite der Trennwand 14 können Mittel zur Verbesserung des Wärmeübergangs vorgesehen sein.Within the tube sheets 38 and between them, the tube legs are spaced apart from one another by cams, not shown in the drawing, attached to the legs or by ribs running all around at different heights. In order to produce the coil heating surface 36, the tube sheets 38 are layered on the inner channel wall 28, bent into involute surfaces and pressed together radially with tension belts (not shown) which extend over the circumference of the coil heating surface 36. The heating surface bundle formed in this way is tightly encased in the region of one branch duct 32 with a wire mesh and then with the central duct wall 22 welded together from two half-shells. In the area of the channel section 30, the outermost pipe limbs 51 rest against the partition 14, which is thereby cooled during operation. However, a wire mesh made of highly heat-resistant material or an insulation, which reduces the heat transfer to the partition 14, can also be provided here, optionally in several layers. Means for improving the heat transfer can be provided on the outside of the partition wall 14.

Gemäss Fig. 2 hat die Wärmeübertragerfläche im anderen Zweigkanal 34 die Form einer Helissenheizfläche 62, die aus zweiundneunzig schraubenförmig gewundenen Rohren 64 besteht, die fünf Rohrzylinder bilden. An ihren oberen Enden sind die Rohre 64 über Verbindungsrohre 72, die die Wand des Unterteils 2 durchdringen, mit Verteilern 75, 75' verbunden. An seinem unteren Ende ist jedes Rohr 64 über einen Rohrkrümmer 65 mit einem von zweiundneunzig Steigrohren 66 verbunden, die in dem zwischen dem Futter 10 und der äusseren Kanalwand 20 gebildeten Ringkanal vertikal verlaufen. Ueber eine nicht näher dargestellte, praktisch gasdichte Durchtrittstelle verlassen die Steigrohre den genannten Ringkanal und treten seitlich über Temperaturausgleichstutzen - die unter dem Namen « Thermosleeves bekannt sind - durch die Wand des Unterteils 2 aus dem Druckgefäss 1 aus. Die Steigrohre sind an zwei Sammlern 70, 70' angeschlossen.2, the heat exchanger surface in the other branch duct 34 is in the form of a helical heating surface 62, which consists of ninety-two helically wound tubes 64, which form five tube cylinders. At their upper ends, the pipes 64 are connected to manifolds 75, 75 'via connecting pipes 72 which penetrate the wall of the lower part 2. At its lower end, each pipe 64 is connected via a pipe bend 65 to one of ninety-two riser pipes 66, which run vertically in the annular channel formed between the lining 10 and the outer channel wall 20. About a not shown The risers exit the above-mentioned ring channel in a practically gas-tight passage and emerge laterally through the wall of the lower part 2 from the pressure vessel 1 via temperature compensation nozzles - known under the name “thermosleeves”. The risers are connected to two collectors 70, 70 '.

Die Rohre 64 der Helissenheizfläche werden in gelochten Tragblechen 61 gehalten, die innerhalb des Zweigkanals 34 in drei um 120° gegeneinander versetzten, durch die vertikale Achse des Druckgefässes 1 verlaufenden Ebenen angeordnet sind. Die oberen Enden der Tragbleche sind seitlich an der Wand des Unterteils 2 befestigt und weisen über den Höhenbereich der Helissenheizfläche 62 Bohrungen 63 auf. in diese Bohrungen sind die Rohre 64 eingewunden.The tubes 64 of the Helissen heating surface are held in perforated support plates 61 which are arranged within the branch channel 34 in three planes offset by 120 ° from one another and running through the vertical axis of the pressure vessel 1. The upper ends of the support plates are fastened laterally to the wall of the lower part 2 and have 62 bores 63 over the height region of the Helissen heating surface. the tubes 64 are wound into these bores.

Gemäss Fig. 3 sind im Ringblech 12 zwei diametral gegeneinander versetzte, kreisförmige Oeffnungen 80 vorgesehen, unterhalb denen jeweils koaxial zur zugehörigen Oeffnung 80 auf je einer Ventilstange 81 ein Ventilkegel 82 angeordnet ist. Jede Ventilstange 81 ist in an der Trennwand 14 befestigten Armen 83 geführt und über einen in der Zeichnung nicht sichtbaren Verbindungsstift mit einem Gabelhebel 84 mit Langloch gekuppelt. Der Gabelhebel 84 sitzt auf einer Welle 85, die in einer Hülse 86 drehbar gelagert ist. Die Hülse 86 ist demontierbar an einem passend angeordneten Druckgefässstutzen 87 befestigt. Die Welle 85 durchdringt einen Flachdeckel 88 mit Stopfbüchse 89. Sie kann zum Einstellen der Höhenlage des Ventilkegels 82 von aussen gedreht werden.According to FIG. 3, two diametrically offset circular openings 80 are provided in the ring plate 12, below which a valve cone 82 is arranged coaxially to the associated opening 80 on each valve rod 81. Each valve rod 81 is guided in arms 83 fastened to the partition wall 14 and coupled to a fork lever 84 with an elongated hole via a connecting pin (not shown in the drawing). The fork lever 84 sits on a shaft 85 which is rotatably supported in a sleeve 86. The sleeve 86 is removably attached to a suitably arranged pressure vessel connector 87. The shaft 85 penetrates a flat cover 88 with a stuffing box 89. It can be rotated from the outside to adjust the height of the valve cone 82.

Der Gasaustrittstutzen 5 ist mit einem eine Eintrittsdüse bildenden Futterblech 92 ausgekleidet, das in einen statischen Mischer 93 führt.The gas outlet nozzle 5 is lined with a feed plate 92 which forms an inlet nozzle and which leads into a static mixer 93.

Im Höhenbereich unterhalb der Schlangenheizfläche 36 sind die Trennwand 14, die Verbindung 16 und der unterste Abschnitt des Unterteils 2 durch eine Ausmauerung 46, die nicht gezeichnete Kühlrohre enthalten kann, vor zu hohen Temperaturen geschützt.In the height range below the coil heating surface 36, the partition wall 14, the connection 16 and the lowermost section of the lower part 2 are protected from excessive temperatures by a brick lining 46, which may not contain cooling pipes.

Der Sammler 59 ist über eine Sattdampfleitung 45 mit einem Abscheider 46 verbunden, dessen Dampfaustrittleitung 47 zu den Verteilern 75 und 75' führt, während abgeschiedenes Wasser über einen am Grund des Abscheiders 46 angebrachten Ablassstutzen 48 abgegeben wird. An die Verteiler 75. 75' ist zusätzlich zur Sattdampfleitung 47 eine weitere Dampfzufuhrleitung 49 angeschlossen, die zum Beispiel von Kühleinrichtungen oder einer Kesselanlage herkommt.The collector 59 is connected via a saturated steam line 45 to a separator 46, the steam outlet line 47 leading to the distributors 75 and 75 ', while separated water is discharged via an outlet connection 48 attached to the bottom of the separator 46. In addition to the saturated steam line 47, a further steam supply line 49 is connected to the distributors 75. 75 ', which comes, for example, from cooling devices or a boiler system.

Das Wärmeübertragersystem nach den Fig. 1 bis 4 funktioniert wie folgt : Dem Druckbehälter 1 wird an seinem unteren Ende ein Prozessgas von beispielsweise 1 000 °C und 20 bis 40 bar zugeführt. Dieses Gas strömt durch den Kanalabschnitt 30, worauf es sich nach Kühlung auf etwa 800 °C im Höhenbereich der seitlichen Oeffnung zwischen dem Ringblech 12 und der Unterkante der mittleren Kanalwand 22 auf den einen Zweigkanal 32 und den anderen Zweigkanal 34 verteilt. In diesen Zweigkanälen gibt es weiter Wärme ab, wobei der Teilstrom im Zweigkanal 32 auf beispielsweise 320 °C und der im anderen Zweigkanal auf beispielsweise 380 °C abgekühlt werden.The heat exchanger system according to FIGS. 1 to 4 functions as follows: The pressure vessel 1 is supplied with a process gas of, for example, 1000 ° C. and 20 to 40 bar at its lower end. This gas flows through the channel section 30, whereupon it is distributed to one branch channel 32 and the other branch channel 34 after cooling to approximately 800 ° C. in the height region of the lateral opening between the ring plate 12 and the lower edge of the central channel wall 22. In these branch channels there is further heat, the partial flow in branch channel 32 being cooled to, for example, 320 ° C. and that in the other branch channel to, for example, 380 ° C.

Stromunterhalb des Drosselorgans 25 vereinigen sich die beiden Gasströme, wobei sich eine Mischtemperatur von beispielsweise 350 °C ergibt. Der vereinigte Gasstrom gelangt sodann durch den Ringraum 9, die Wand des Druckgefässes temperierend, in den Ringraum unterhalb des Ringbleches 12 und von dort durch den Gasaustrittstutzen 5 zur weiteren Verwendung.Downstream of the throttle member 25, the two gas flows combine, resulting in a mixing temperature of, for example, 350 ° C. The combined gas flow then passes through the annular space 9, tempering the wall of the pressure vessel, into the annular space below the annular plate 12 and from there through the gas outlet connection 5 for further use.

Ist die Temperatur des Gases am Austritt des Druckbehälters 1 zu tief, so wird diesem Gas durch die Oeffnungen 80 heisses Gas vom Ende des Kanalabschnitts 30 zugeführt. Das Dosieren dieser Gaszumischung geschieht durch Verdrehen der Welle 85, wodurch der Ventilkegel 82 mehr oder weniger hoch angehoben wird.If the temperature of the gas at the outlet of the pressure vessel 1 is too low, hot gas is supplied to this gas through the openings 80 from the end of the channel section 30. This gas admixing is metered by rotating the shaft 85, as a result of which the valve cone 82 is raised more or less high.

Damit die von den Oeffnungen 80 ausgehenden heissen Gasschlieren weder an der Wand des Unterteils 2 noch am Gasaustrittstutzen 5 heisse Stellen hervorrufen, hält das Futterblech 92, gegebenenfalls unterstützt durch zusätzliche Leitbleche, solche Schlieren von der drucktragenden Wand fern. Anschliessend wird durch den statischen Mischer 93 die Gastemperatur vergleichmässigt.So that the hot gas streaks emanating from the openings 80 neither cause hot spots on the wall of the lower part 2 nor on the gas outlet connection 5, the lining plate 92, optionally supported by additional guide plates, keeps such streaks away from the pressure-bearing wall. The static mixer 93 then makes the gas temperature more uniform.

Als Sekundärmedium wird dem Wärmeübertragersystem über den Verteiler 58 vorgewärmtes Wasser zugeführt, das über die als Tragrohre dienenden Schenkel 51 in die Schlangenheizfläche 36 eingespeist wird. Diese Schlangenheizfläche dient, wie schon erwähnt, als Verdampfer; es strömt deshalb über die Schenkel 57 ein Dampfwassergemisch in den Sammler 59. Das Dampfwassergemisch wird sodann im Abscheider 46 getrennt ; das Wasser wird über den Stutzen 48 ausgeschieden und der Sattdampf über die Leitung 47 in die Verteiler 75, 75' eingespeist.Preheated water is supplied to the heat exchanger system as a secondary medium via the distributor 58 and is fed into the coil heating surface 36 via the legs 51 serving as support tubes. As already mentioned, this coil heating surface serves as an evaporator; therefore, a steam water mixture flows into the collector 59 via the legs 57. The steam water mixture is then separated in the separator 46; the water is excreted through the nozzle 48 and the saturated steam is fed via line 47 into the distributors 75, 75 '.

In diese Verteiler 75, 75' kann über die Leitung 49 weiterer Sattdampf aus der im übrigen nicht dargestellten Anlage zugeführt werden. Der Sattdampf gelangt nun über die Verbindungsrohre 72, 72' in das Helissenrohrbündel 62, wo er im Kreuz-Gegenstrom zum heizenden Gas überhitzt wird. Der überhitzte Dampf verlässt über die Steigrohre 66 und die Kollektoren 70, 70' das Wärmeübertragersystem.Further saturated steam can be fed into these distributors 75, 75 'via line 49 from the system, which is not shown in the rest. The saturated steam now passes through the connecting pipes 72, 72 'into the helical pipe bundle 62, where it is overheated in cross-countercurrent to the heating gas. The superheated steam leaves the heat exchanger system via the risers 66 and the collectors 70, 70 '.

Die Heizflächen im Kanalabschnitt 30 und den beiden Zweigkanälen 32 und 34 sind im Hinblick auf eine etwaige Heizflächenverschmutzung so gross ausgelegt, dass zunächst mit wenig geöffnetem Drosselorgan 25 und weit offenen Oeffnungen 80 gefahren werden kann. Im Kanalabschnitt 30 wird viel Wärme abgegeben, sodass der Zweigkanal 32 entsprechend gedrosselt werden kann. Da die Eintrittstemperatur im andern Zweigkanal 34 verhältnismässig tief liegt, besteht keine Gefahr, dass die Ueberhitzung des Dampfes zu hoch steigt. Dagegen ergibt sich eine verhältnismässig tiefe Mischtemperatur des Gasgemisches stromunterhalb der beiden Zweigkanäle. Durch Zumischen einer verhältnismässig grossen Menge heissen Gases über die Oeffnungen 80 wird die Temperatur des aus dem Druckbehälter 1 austretenden Gases wieder auf die gewünschte Höhe angehoben.The heating surfaces in the channel section 30 and the two branch channels 32 and 34 are designed so large with regard to any heating surface contamination that initially it is possible to operate with the throttle element 25 open little and the openings 80 wide open. A lot of heat is emitted in the channel section 30, so that the branch channel 32 can be throttled accordingly. Since the inlet temperature in the other branch duct 34 is relatively low, there is no danger that the overheating of the steam will rise too high. In contrast, there is a relatively low mixing temperature of the gas mixture downstream of the two branch channels. By mixing a relatively large amount of hot gas over the Openings 80 raise the temperature of the gas emerging from the pressure vessel 1 to the desired level.

Sollten die Heizflächen verschmutzt werden, so geschieht dies in erster Linie im Kanalabschnitt 30. Damit nimmt die Schlangenheizfläche 36 in ihrem unteren Teil zu wenig Wärme auf, was durch ein weiteres Oeffnen des Drosselorgans 25 korrigiert werden kann. Da das Helissenbündel 62 stark überdimensioniert ist, besteht dabei wenig Gefahr, dass die gewünschte Ueberhitzungstemperatur nicht erreicht wird.Should the heating surfaces become soiled, this occurs primarily in the channel section 30. The coil heating surface 36 thus absorbs too little heat in its lower part, which can be corrected by opening the throttle member 25 further. Since the bundle of helicopters 62 is very oversized, there is little risk that the desired superheating temperature will not be reached.

Da im eben behandelten Falle verschmutzter Heizflächen die Mischtemperatur des Gases im Ringraum 9 höher liegt als im Fall sauberer Heizflächen, wird durch Anheben der Ventilkegel 82 die durch die Oeffnungen 80 strömende Gasmenge vermindert.Since the mixed temperature of the gas in the annular space 9 is higher than in the case of clean heating surfaces in the case of dirty heating surfaces just treated, lifting the valve cone 82 reduces the amount of gas flowing through the openings 80.

Schreitet die Verschmutzung der Heizflächen so stark fort, dass das Drosselorgan 25 voll geöffnet werden muss und die verlangten Temperaturen nicht mehr eingehalten werden können, so wird zur Reinigung der Heizflächen der Deckel 7 abgehoben, wobei die an den tragenden Schenkeln 51 hängende mittlere Kanalwand 22, die Schlangenheizfläche 36 und die innere Kanalwand 28 mit herausgezogen werden. Die mittlere Kanalwand 22 lässt sich dann verhältnismässig leicht vom Konus 23 lösen und in zwei Schalen auftrennen, so dass diese seitwärts entfernt werden können.If the heating surfaces become so dirty that the throttle element 25 has to be fully opened and the required temperatures can no longer be maintained, the cover 7 is lifted off to clean the heating surfaces, the central duct wall 22, which is suspended from the supporting legs 51, the coil heating surface 36 and the inner channel wall 28 are also pulled out. The middle channel wall 22 can then be relatively easily detached from the cone 23 and separated into two shells so that they can be removed sideways.

Nach Entfernen der die Schlangenheizfläche 36 umgebenden Spanngürtel lassen sich nun, insbesondere im mittleren und unteren Teil der Schlangenheizfläche, die Rohrtafeln 38 leicht nach aussen biegen, sodass sie gereinigt werden können. Das Helissenbündel 62 lässt sich von innen inspizieren und auch von dort aus reinigen.After removing the tensioning belt surrounding the coil heating surface 36, the tube panels 38 can now be bent slightly outwards, in particular in the middle and lower part of the coil heating surface, so that they can be cleaned. The helicopter bundle 62 can be inspected from the inside and also cleaned from there.

Sollte sich zeigen, dass bei der Auslegung des Systems die Verzweigungsstelle zu tief oder zu hoch gelegt wurde, so lässt sich leicht die Trennwand 14 über das Ringblech 12 hinaus erhöhen oder die mittlere Kanalwand 22 verkürzen oder nach unten verlängern.Should it become apparent that the branching point was set too low or too high in the design of the system, the partition wall 14 can easily be raised beyond the ring plate 12 or the middle channel wall 22 shortened or extended downwards.

Es ist auch denkbar, die Abzweigstelle einstellbar zu gestalten, beispielsweise durch einen oder zwei Ringschieber oder durch einen in der mittleren Kanalwand 22 vorgesehenen Bypass.It is also conceivable to make the branch point adjustable, for example by one or two ring slides or by a bypass provided in the central channel wall 22.

Die Erfindung beschränkt sich nicht auf das dargestellte Ausführungsbeispiel. So kann es beispielsweise auch vorteilhaft sein, die Kanäle 30, 32 und 34 mindestens teilweise als Membranwände, das heisst aus zu Wänden verschweissten Rohren, auszubilden.The invention is not limited to the illustrated embodiment. For example, it may also be advantageous to design the channels 30, 32 and 34 at least partially as membrane walls, that is to say from tubes welded to the walls.

Im Ausführungsbeispiel sind die Wärmeübertragerflächen in einfachster Form dargestellt. Selbstverständlich lassen sie sich auch unterteilen und ganz oder partiell die Strömungsrichtungen umkehren.In the exemplary embodiment, the heat exchanger surfaces are shown in the simplest form. Of course, they can also be subdivided and the flow directions reversed in whole or in part.

Schliesslich kann auch mehr als ein Sekundärmedium an der Wärmeübertragung beteiligt sein. Sollen Drosselorgane im Druckbehälter vermieden werden, so können diese auch in Verbindungsleitungen gelegt werden, die der Gasführung ausserhalb des Druckbehälters dienen.Finally, more than one secondary medium can be involved in the heat transfer. If throttling elements in the pressure vessel are to be avoided, they can also be placed in connecting lines which serve to guide the gas outside the pressure vessel.

Zur Verteilung der Wärmeübertragung auf verschiedene Heizflächen kann unter Umständen auch die Mengenverteilung des Sekundärmediums oder der Sekundärmedien verändert werden. Auch bezüglich der Art der Wärmeübertragerflächen ist die Erfindung durchaus nicht an das gezeichnete Ausführungsbeispiel gebunden ; so können beispielsweise auch Sackrohre oder Wärmerohre eingesetzt werden.To distribute the heat transfer to different heating surfaces, the quantity distribution of the secondary medium or the secondary media can also be changed under certain circumstances. Also with regard to the type of heat exchanger surfaces, the invention is by no means bound to the exemplary embodiment shown; for example, pocket pipes or heat pipes can also be used.

Die Verzweigung auf die Zweigkanäle kann bei verschiedenen Temperaturen oder Temperaturbereichen gestaffelt erfolgen. Auch das Zusammenführen der Zweigströme lässt sich staffeln.The branching to the branch channels can be staggered at different temperatures or temperature ranges. The merging of the branch streams can also be staggered.

Die Oeffnungen 80 können eintrittsseitig mit Stellen tieferer Temperatur, sei es des einen oder des anderen Zweigkanals, verbunden sein. Je nach den gestellten Randbedingungen kann es auch zweckmässig sein, die Anordnung der Kanäle im Druckgefäss zu vertauschen oder sonstwie anders anzuordnen. Um das Abblinden einzelner Rohre, insbesondere im Ueberhitzerrohrbündel, wo höhere Temperaturen auftreten, zu erleichtern, kann es zweckmässig sein, etwa die Verbindungsrohre 72 nach der CH-PS-384 602 an Rohrplatten anzuschliessen.On the inlet side, the openings 80 can be connected to points of lower temperature, be it of one or the other branch channel. Depending on the boundary conditions, it can also be expedient to interchange the arrangement of the channels in the pressure vessel or to arrange them in some other way. In order to facilitate the blinding of individual pipes, in particular in the superheater pipe bundle, where higher temperatures occur, it may be expedient to connect the connecting pipes 72 according to CH-PS-384 602 to pipe plates.

Um ein Ausbauen des Helissenbündels 62 zu erleichtern, kann es vorteilhaft sein, den Unterteil 2 des Druckgefässes unterhalb der Befestigungsstelle der Tragplatten 61 durch Zwischenflanschen zu unterteilen.In order to facilitate removal of the helicopter bundle 62, it can be advantageous to subdivide the lower part 2 of the pressure vessel below the attachment point of the support plates 61 by means of intermediate flanges.

Claims (13)

1. A heat exchanger system for removing sensible heat from a hot gas, preferably a process gas. by way of a number of heat exchanger surfaces (36, 62) arranged in channels, one such surface being an evaporator heating surface (36) and another such surface being a heat exchanger heating surface (62) in which a medium is heated. all the heat-exchanger surfaces (36, 62) being received in a single substantially cylindrical pressure vessel (1), characterised in that the channel (30) flowed through first by the hot gas is a part receiving the evaporator heating surface (36) and forks into two parallel branch channels (32, 34) which extend to a common mixing chamber and one (32) of which is in alignment with the channel part (30) ; a further heat-exchanger heating surface (38) is disposed in one or two branch channels (32.34) and transfers heat to the medium coming from the evaporator heating surface (36) ; the other heat-exchange heating surface (62) is disposed in the other branch channel ; and at least one of the two branch channels (32, 34) has an adjustable restrictor (25).
2. A heat exchanger system according to claim 1, characterised in that the channel part (30) and the two branch channels (32, 34) are ring channels coaxial of the pressure vessel (1).
3. A heat exchanger system according to claim 2, characterised in that the channel part (30) and the branch channel (32) in alignment therewith form an innermost ring channel.
4. A heat exchanger system according to claim 3 with a vertical-axis pressure vessel (1), characterised in that the evaporator heating surface (36) and the other heat-exchanger surface are in the form of a single coiled-tube heating surface extending over both the channel part (30) and also over the branch channel (32) in alignment therewith ; and the coiled tubes extend in the form of arms parallel to the pressure-vessel axis in involute tube banks (38).
5. A heat exchanger system according to claim 4; characterised in that the other heat exchange surface (62) in the other branch channel (34) is a helical heating surface.
6. A heat exchanger system according to any of claims 2-5, characterised in that restrictor (25) is a central mushroom valve and on the gas side is disposed downstream of the heat exchanger surface (36) in the branch channel (32) in alignment with the part (30) and also spans a screened cylindrical central channel.
7. A heat exchanger system according to any of claims 4-6, characterised in that the pressure vessel (1) has at the bottom a coaxial gas entry connection and, also in the bottom part of the pressure vessel, at least one lateral gas exit connection (5).
8. A heat exchanger system according to claims 1 and 7, characterised in that the mixing chamber communicates with the pressure vessel gas exit connection (5) by way of an annular chamber (9) disposed between the other branch channel (34) and the pressure vessel inner wall.
9. A heat exchanger system according to claim 8, characterised in that there is at least one aperture (80) near the junction of the channel part (30) and such aperture extends from the terminal zone of such part (30) into the annular chamber (9), and an adjustable closure member (82) is associated with such aperture (80).
10. A heat exchanger system according to claim 4, characterised in that the coiled tubes in the channel part (30) and near the junction are of considerably less diameter than the remaining length of the tubes.
11. A heat exchanger system according to any of claims 1-10, characterised in that the end of the outer wall (14) of the channel part (40) and/or the beginning of the wall (22) separating the two branch channels (32, 34) are axially adjustable.
12. A heat exchanger system according to claims 4 and 10, characterised in that the coiled tubes are spaced apart from one another by protuberances secured on them.
13. A heat exchanger system according to claims 4, 10 and 12, characterised in that the tube banks (38) are suspended by way of tube arms (51, 57) through which the medium is supplied to or removed from the tube banks.
EP83100230A 1982-11-24 1983-01-13 Heat transfer system, especially for a process gas Expired EP0111615B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6846/82 1982-11-24
CH6846/82A CH662638A5 (en) 1982-11-24 1982-11-24 HEAT TRANSFER SYSTEM, PREFERRED FOR A PROCESS GAS.

Publications (2)

Publication Number Publication Date
EP0111615A1 EP0111615A1 (en) 1984-06-27
EP0111615B1 true EP0111615B1 (en) 1986-07-30

Family

ID=4315941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100230A Expired EP0111615B1 (en) 1982-11-24 1983-01-13 Heat transfer system, especially for a process gas

Country Status (6)

Country Link
US (1) US4494484A (en)
EP (1) EP0111615B1 (en)
JP (1) JPS5997404A (en)
CA (1) CA1215968A (en)
CH (1) CH662638A5 (en)
DE (1) DE3364790D1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH665274A5 (en) * 1984-07-05 1988-04-29 Sulzer Ag HEAT EXCHANGER.
CH665020A5 (en) * 1984-08-15 1988-04-15 Sulzer Ag HEAT EXCHANGER.
WO2003056265A1 (en) * 2001-12-25 2003-07-10 Honda Giken Kogyo Kabushiki Kaisha Heat exchanger
FR2921718B1 (en) * 2007-10-01 2014-11-28 Snecma THERMAL HEAT EXCHANGER FOR FUEL CELL
US8555809B2 (en) * 2010-01-14 2013-10-15 Rohm And Haas Electronic Materials, Llc Method for constant concentration evaporation and a device using the same
US9366203B2 (en) * 2013-09-24 2016-06-14 Fca Us Llc Conformable high pressure gaseous fuel storage system having a gas storage vessel with fractal geometry
US9957612B2 (en) 2014-01-17 2018-05-01 Ceres Technologies, Inc. Delivery device, methods of manufacture thereof and articles comprising the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH174774A (en) * 1934-06-08 1935-01-31 Sulzer Ag Heat exchanger.
CH375030A (en) * 1960-01-29 1964-02-15 Sulzer Ag Heat exchanger
US3279439A (en) * 1964-06-05 1966-10-18 Babcock & Wilcox Co Vapor generating superheating and reheating unit
CH482982A (en) * 1967-10-30 1969-12-15 Sulzer Ag Forced steam generator heated by waste heat
US3766892A (en) * 1972-04-21 1973-10-23 Combustion Eng Split feed economizer
US3884297A (en) * 1973-02-12 1975-05-20 Automotive Environmental Syste Annular flow heat exchanger
CH586372A5 (en) * 1974-12-06 1977-03-31 Sulzer Ag
US4073267A (en) * 1975-10-03 1978-02-14 General Atomic Company Vapor generator
US4284134A (en) * 1978-09-05 1981-08-18 General Atomic Company Helically coiled tube heat exchanger
DE2846581A1 (en) * 1978-10-26 1980-05-08 Ght Hochtemperaturreak Tech HEAT EXCHANGER FOR GASES OF HIGH TEMPERATURE
US4252087A (en) * 1979-04-24 1981-02-24 Kime Wellesley R Rapid response steam generating apparatus and method

Also Published As

Publication number Publication date
US4494484A (en) 1985-01-22
DE3364790D1 (en) 1986-09-04
JPS5997404A (en) 1984-06-05
EP0111615A1 (en) 1984-06-27
CH662638A5 (en) 1987-10-15
CA1215968A (en) 1986-12-30

Similar Documents

Publication Publication Date Title
DE2008311B2 (en) HEAT EXCHANGER
EP1219892B1 (en) Heat recovery boiler for cooling hot synthesis gas
EP0111615B1 (en) Heat transfer system, especially for a process gas
DE2517693C2 (en) Heat exchanger designed as a longitudinal countercurrent device
EP0160161A1 (en) Heat exchanger for cooling gases
CH670501A5 (en)
EP0366606B1 (en) Hot gas cooler for a coal gasification plant
DE3007610C2 (en) Heat exchanger with a central inlet chamber and an outlet chamber underneath for a heat-emitting medium
EP0166805B1 (en) Heat transfer system
CH667521A5 (en) SUSSBLAESER.
CH643649A5 (en) HOT GAS COOLER WITH A PRESSURE TANK.
DE2208397A1 (en) Steam generator
DE2459472B1 (en) GAS HEATED STEAM GENERATOR, IN PARTICULAR FOR NUCLEAR REACTOR PLANTS
EP0172363B1 (en) Heat-exchange apparatus, particularly for cooling gas from a high-temperature reactor
EP0171558B1 (en) Heat-exchange apparatus
DE2700563C3 (en) Heat exchanger for a high temperature reactor
DE544455C (en) Device for supplying steam to directly heated pulp digesters with forced circulation of the cooking liquid
DE2854499C2 (en) Gas-heated straight tube steam generator in element construction for a nuclear reactor plant
DE2654948C2 (en) Immersion heat exchanger
DE7829577U1 (en) STORAGE TANK FOR HOT WATER HEATING
DE3809265C2 (en)
DE57267C (en) Distillation column
DE3820947A1 (en) Fluidised-bed reactor
DE1614360B2 (en) NUCLEAR REACTOR WITH A PRESSURE VESSEL IN WHICH THE SPLITABLE ELEMENTS ARE STORED IN LONG EXTENDED COOLING PIPES
DE1401101C (en) Vertical tube heater

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19841208

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3364790

Country of ref document: DE

Date of ref document: 19860904

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
ITPR It: changes in ownership of a european patent

Owner name: TRASFORMAZIONE SOCIETARIA;SULZER AKTIENGESELLSCHAF

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: SULZER AG TE WINTERTHUR, ZWITSERLAND.

NLS Nl: assignments of ep-patents

Owner name: ABB MANAGEMENT AG TE BADEN, ZWITSERLAND.

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

BECH Be: change of holder

Free format text: 940420 *ABB MANAGEMENT LTD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961216

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961217

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961219

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961223

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

BERE Be: lapsed

Owner name: ABB MANAGEMENT LTD

Effective date: 19980131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980113

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST