EP0111047B1 - Apparatus to generate a succession of impulse-shock wave pulses - Google Patents

Apparatus to generate a succession of impulse-shock wave pulses Download PDF

Info

Publication number
EP0111047B1
EP0111047B1 EP83106091A EP83106091A EP0111047B1 EP 0111047 B1 EP0111047 B1 EP 0111047B1 EP 83106091 A EP83106091 A EP 83106091A EP 83106091 A EP83106091 A EP 83106091A EP 0111047 B1 EP0111047 B1 EP 0111047B1
Authority
EP
European Patent Office
Prior art keywords
layer
shockwave
concretion
shock wave
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83106091A
Other languages
German (de)
French (fr)
Other versions
EP0111047A1 (en
Inventor
Gerold Dr.Rer.Nat. Heine
Othmar Dr.Rer.Nat. Wess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier System GmbH
Original Assignee
Dornier System GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier System GmbH filed Critical Dornier System GmbH
Publication of EP0111047A1 publication Critical patent/EP0111047A1/en
Application granted granted Critical
Publication of EP0111047B1 publication Critical patent/EP0111047B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/28Sound-focusing or directing, e.g. scanning using reflection, e.g. parabolic reflectors

Definitions

  • the invention relates to a device for generating shock wave pulse sequences for the contact-free comminution of concrements in bodies of living beings according to the preamble of claim 1.
  • Such a device is known from DE-A-2 913 251.
  • shock waves are generated by a spark gap in a focal point of a liquid-filled hollow ellipsoid and focused by the ellipsoid surface on the second focal point, in which the concrement to be destroyed, e.g. B. a kidney stone.
  • the shock waves load the concrement under pressure and tension and cause parts of the concrement to flake off.
  • the firing sequence frequency is limited by the charging time of the capacitors. Simultaneous processing of a concrement by two or more shock wave fronts is not possible with this device.
  • shock wave fronts In order to allow several shock wave fronts to act on a concrement almost simultaneously, these fronts must follow one another within 0.1 to 10 microseconds. Attempts have already been made to trigger double pulses by using two shock generators, but only a time interval of 20 milliseconds has been reached. At this point, the crack formation initiated by the first shock wave has already been completed.
  • the invention has for its object to provide a device for generating shock wave pulse sequences in which the shock wave fronts act on the concrement at such short time intervals that the concretion is still under the effect of the first wave front when the subsequent wave front interacts with the Concretion occurs, the slope of the pressure rise must not be reduced.
  • This object is achieved according to the invention by a device in which the thickness of the layer is dimensioned such that a pulse generated by a shock wave source is multiplied by multiple reflection at the front and rear of the layer in a sequence of densely staggered shock wave fronts, which the one mentioned in the task Have property.
  • Embodiments of the invention are the subject of subclaims.
  • the solution according to the invention is based on the fact that a single pulse generated by the spark gap is multiplied by multiple reflections on the front and on the back of a layer with an impedance unequal to that of the propagation medium in a sequence of densely staggered shock wave fronts of the desired repetition frequency.
  • the solution according to the invention also has the advantage that the energy introduced into the body of the living being does not increase in spite of the increased destruction.
  • Fig. 1 shows an inventive device for generating shock wave pulse trains.
  • a tub 1 (only partially drawn), which is filled with a liquid 2, there is a body 3 with a concretion 4, for. B. a kidney stone.
  • a reflector 5 which is filled with a coupling liquid 6 (for example water), is attached to the tub 1.
  • a spark gap 7 In the first focal point of the ellipsoid 5 there is a spark gap 7 which can produce a shock wave front by discharge.
  • the body 3 is positioned so that the concrement 4 is in the second focal point of the ellipsoid.
  • the reflector 5 is closed with a layer 8 according to the invention.
  • the layer has the interfaces 9 and 10 and is not drawn to scale in FIG. 1.
  • the thickness of real layers is in the mm range.
  • An underwater discharge is ignited at the spark gap 7 in order to crush the concrement 4. This creates a shock wave front, which spreads in the reflector 5 and is guided from the reflector walls to the concretion 4.
  • a wave normal with the amplitude P E is shown .
  • the transmitted wave P T also experiences a splitting into a transmitted wave P ⁇ and a reflected wave P TR when the wave fronts reach the rear interface 10 of the layer 8.
  • the amplitudes are again to be calculated analogously to the formulas mentioned above. While the wave P TT continues in the original direction, the wave P TR runs back in the layer 8 and suffers a new reflection at the front interface 9 (with the corresponding amplitude weakening). A corresponding fraction of this wave emerges from the rear boundary surface 10 and follows the first transmitted wave P TT at a time interval ⁇ t - At is the time required for passing through the layer thickness d twice:
  • a layer of suitable thickness can e.g. B. from aluminum, V2A steel, titanium, lead or similar materials or alloys thereof and also from suitable non-metals, ceramics or plastics. Liquids may also be suitable, provided they are e.g. B. can be held in the appropriate shape by pillows.
  • FIG. 2 shows an arrangement with a reflector 5a, in which the layer 8a is designed like a zone plate. It is only traversed by fractions of the shock wave field.
  • the shock wave components which do not pass through the layer 8a, reach the concretion without weakening and at a point in time denoted by t o ; the remaining shock wave components undergo multiple reflection and the first pulse of the pulse sequence reaches the concretion at the time
  • the second (third etc.) pulse of the shock wave sequence has the greatest amplitude.
  • the primary wave can come with a time delay compared to the wave that runs through the plate.
  • FIG. 3 shows an arrangement in which the layer 8b according to the invention is arranged concentrically to the shock wave focus 11 in the form of a spherical shell. All parts of the shock wave field run perpendicular to the layer surface. The reflection conditions and the time offset At of the wave fronts is constant for all parts of the wave field. In addition, the focus remains unaffected.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur Erzeugung von Stosswellenimpulsfolgen zur berührungsfreien Zerkleinerung von Konkrementen in Körpern von Lebewesen gemäß dem Oberbegriff des Anspruchs 1. Eine solche Vorrichtung ist aus DE-A-2 913 251 bekannt.The invention relates to a device for generating shock wave pulse sequences for the contact-free comminution of concrements in bodies of living beings according to the preamble of claim 1. Such a device is known from DE-A-2 913 251.

Bekannt ist ferner ein Gerät zur berührungsfreien Zerkleinerung von Konkrementen in Körpern von Lebewesen mittels Stosswellen (DE-OS 2351 247). Gemäss dieser Literaturstelle werden die Stosswellen von einer Funkenstrecke in einem Brennpunkt eines flüssigkeitsgefüllten Hohlellipsoids erzeugt und von der Ellipsoidfläche auf den zweiten Brennpunkt fokussiert, in dem das zu zerstörende Konkrement, z. B. ein Nierenstein, liegt. Die Stosswellen belasten das Konkrement auf Druck und Zug und bringen Teile des Konkrements zum Abplatzen. Bei dem bekannten Gerät wird die Schussfolgefrequenz durch die Aufladezeit der Kondensatoren begrenzt. Eine gleichzeitige Bearbeitung eines Konkrements durch zwei oder mehr Stosswellenfronten ist mit diesem Gerät nicht möglich.Also known is a device for the contact-free comminution of concrements in bodies of living beings by means of shock waves (DE-OS 2351 247). According to this reference, the shock waves are generated by a spark gap in a focal point of a liquid-filled hollow ellipsoid and focused by the ellipsoid surface on the second focal point, in which the concrement to be destroyed, e.g. B. a kidney stone. The shock waves load the concrement under pressure and tension and cause parts of the concrement to flake off. In the known device, the firing sequence frequency is limited by the charging time of the capacitors. Simultaneous processing of a concrement by two or more shock wave fronts is not possible with this device.

Um mehrere Stosswellenfronten annähernd gleichzeitig auf ein Konkrement wirken zu lassen, müssen diese Fronten innerhalb von 0,1 bis 10 Mikrosekunden aufeinanderfolgen. Es wurde bereits versucht, Doppelimpulse durch Verwendung zweier Stossgeneratoren auszulösen, wobei aber nur ein zeitlicher Abstand von 20 Millisekunden erreicht wurde. Zu diesem Zeitpunkt ist die durch die erste Stosswelle initiierte Rissbildung aber bereits abgeschlossen.In order to allow several shock wave fronts to act on a concrement almost simultaneously, these fronts must follow one another within 0.1 to 10 microseconds. Attempts have already been made to trigger double pulses by using two shock generators, but only a time interval of 20 milliseconds has been reached. At this point, the crack formation initiated by the first shock wave has already been completed.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Erzeugung von Stosswellenimpulsfolgen zu schaffen, bei der die Stosswellenfronten in so kurzen zeitlichen Abständen auf das Konkrement einwirken, dass das Konkrement noch unter der Wirkung der ersten Wellenfront steht, wenn die nachfolgende Wellenfront in Wechselwirkung mit dem Konkrement tritt, wobei die Flankensteilheit des Druckanstiegs nicht verringert werden darf.The invention has for its object to provide a device for generating shock wave pulse sequences in which the shock wave fronts act on the concrement at such short time intervals that the concretion is still under the effect of the first wave front when the subsequent wave front interacts with the Concretion occurs, the slope of the pressure rise must not be reduced.

Diese Aufgabe wird erfindungsgemäss gelöst durch eine Vorrichtung, bei der die Dicke der Schicht so bemessen ist, daß ein von einer Stoßwellenquelle erzeugter Impuls durch Mehrfachreflexion an der Vorder- und Hinterseite der Schicht in eine Folge dichtgestaffelter Stoßwellenfronten vervielfacht wird, die die in der Aufgabe genannte Eigenschaft haben.This object is achieved according to the invention by a device in which the thickness of the layer is dimensioned such that a pulse generated by a shock wave source is multiplied by multiple reflection at the front and rear of the layer in a sequence of densely staggered shock wave fronts, which the one mentioned in the task Have property.

Ausgestaltungen der Erfindung sind Gegenstände von Unteransprüchen.Embodiments of the invention are the subject of subclaims.

Die erfindungsgemäße Lösung beruht darauf, daß ein einzelner, von der Funkenstrecke erzeugter Impuls durch Mehrfachreflexionen an der Vorder- und an der Hinterseite einer Schicht mit einer Impedanz ungleich der des Ausbreitungsmediums in eine Folge von dichtgestaffelten Stoßwellenfronten der gewünschten Folgefrequenz vervielfacht wird. Durch Wechselwirkung verschiedener Stoßwellenfronten in demselben Konkrement werden Interferenzen, die die Druckamplituden und Zugamplituden lokal steigern, und Anregungen spezieller Resonanzfrequenzen mit einer gesteigerten Zerkleinerungswirkung erreicht. Die erfindungsgemäße Lösung hat zudem den Vorteil, daß die in den Körpern des Lebewesens eingeleitete Energie trotz der gestiegenen Zerstörungsleistung nicht anwächst. Dadurch werden Beschädigungen des von der Stoßwelle durchlaufenen Gewebes vermieden und die Konkremente werden trotzdem zuverlässig und schneller als bisher in kleine Bruchstücke zerlegt. Durch die höhere Zerkleinerungswirkung sind weniger Applikationen notwendig. Der Patient wird entlastet, die Standzeit der Elektroden wird erhöht.The solution according to the invention is based on the fact that a single pulse generated by the spark gap is multiplied by multiple reflections on the front and on the back of a layer with an impedance unequal to that of the propagation medium in a sequence of densely staggered shock wave fronts of the desired repetition frequency. Through the interaction of different shock wave fronts in the same concretion, interferences that increase the pressure amplitudes and tensile amplitudes locally and excitations of special resonance frequencies with an increased comminution effect are achieved. The solution according to the invention also has the advantage that the energy introduced into the body of the living being does not increase in spite of the increased destruction. This prevents damage to the tissue traversed by the shock wave, and the concrements are nevertheless broken down into small fragments reliably and faster than before. Due to the higher shredding effect, fewer applications are necessary. The patient is relieved, the service life of the electrodes is increased.

Weitere Vorteile, Merkmale und Ausführungen ergeben sich aus den nachfolgend beschriebenen Figuren.Further advantages, features and designs result from the figures described below.

Es zeigen :

  • Figuren 1 bis 3 verschiedene Ausführungsformen der Erfindung.
Show it :
  • Figures 1 to 3 different embodiments of the invention.

Fig. 1 zeigt eine erfindungsgemäße Vorrichtung zur Erzeugung von Stoßwellenimpulsfolgen. In einer Wanne 1 (nur teilweise gezeichnet), die mit einer Flüssigkeit 2 gefüllt ist, liegt ein Körper 3 mit einem Konkrement 4, z. B. einem Nierenstein. An der Wanne 1 ist ein Reflektor 5, der mit einer Koppelflüssigkeit 6 (z. B. Wasser) gefüllt ist, befestigt. Im ersten Brennpunkt des Ellipsoids 5 befindet sich eine Funkenstrecke 7, die durch Entladung eine Stoßwellenfront produzieren kann.Fig. 1 shows an inventive device for generating shock wave pulse trains. In a tub 1 (only partially drawn), which is filled with a liquid 2, there is a body 3 with a concretion 4, for. B. a kidney stone. A reflector 5, which is filled with a coupling liquid 6 (for example water), is attached to the tub 1. In the first focal point of the ellipsoid 5 there is a spark gap 7 which can produce a shock wave front by discharge.

Der Körper 3 ist so positioniert, daß sich das Konkrement 4 im zweiten Brennpunkt des Ellipsoids befindet. Der Reflektor 5 ist in dieser Ausführungsform mit einer erfindungsgemäßen Schicht 8 abgeschlossen. Die Schicht besitzt die Grenzflächen 9 und 10 und ist in Fig. 1 nicht maßstäblich gezeichnet. Die Dicke realer Schichten liegt im mm-Bereich. Zur Zerkleinerung des Konkrements 4 wird an der Funkenstrecke 7 eine Unterwasserentladung gezündet. Diese erzeugt eine Stoßwellenfront, die sich im Reflektor 5 ausbreitet und von den Reflektorwänden auf das Konkrement 4 geleitet wird. Eingezeichnet ist eine Wellennormale mit der Amplitude PE. An der Grenzfläche 9 spaltet sich die einfallende Welle PE auf in eine transmittierte Welle PT und eine reflektierte Welle PR, sobald die Schicht 8 eine andere akustische Impedanz z8= C8 - ρ8, als die Koppelflüssigkeit 6 (2G = Ce - ps) hat (c = Schallgeschwindigkeit. p = Dichte).The body 3 is positioned so that the concrement 4 is in the second focal point of the ellipsoid. In this embodiment, the reflector 5 is closed with a layer 8 according to the invention. The layer has the interfaces 9 and 10 and is not drawn to scale in FIG. 1. The thickness of real layers is in the mm range. An underwater discharge is ignited at the spark gap 7 in order to crush the concrement 4. This creates a shock wave front, which spreads in the reflector 5 and is guided from the reflector walls to the concretion 4. A wave normal with the amplitude P E is shown . At the interface 9, the incident wave P E splits into a transmitted wave P T and a reflected wave P R as soon as the layer 8 has a different acoustic impedance z 8 = C 8 - ρ 8 than the coupling liquid 6 ( 2G = C e - p s ) has (c = speed of sound. p = density).

Legt man die aus der AKustik bekannten Beziehungen zugrunde, so erhält man für die Amplitude der reflektierten Welle bei senkrechtem Einfall

Figure imgb0001
und für die transmittierte Welle
Figure imgb0002
Taking the ustik known from the relations K A as a basis, is obtained for the amplitude of the reflected wave at normal incidence
Figure imgb0001
and for the transmitted wave
Figure imgb0002

Hat die Schicht 8 eine Dicke d und hat das Medium 2 dahinter z. B. die gleiche Impedanz wie das Medium 6 davor, so erfährt die transmittierte Welle PT ebenfalls eine Aufspaltung in eine transmitterte Welle PΠ und eine reflektierte Welle PTR, wenn die Wellenfronten die hintere Grenzfläche 10 der Schicht 8 erreichen. Die Amplituden sind wiederum analog zu den oben genannten Formeln zu berechnen. Während die Welle PTT in der ursprünglichen Richtung weiterverläuft, läuft die Welle PTR in der Schicht 8 zurück und erleidet an der vorderen Grenzfläche 9 eine erneute Reflexion (mit der entsprechenden Amplitudenschwächung). Ein entsprechender Bruchteil dieser Welle tritt aus der hinteren Grenzfläche 10 aus und folgt der zuerst transmittierten Welle PTT im zeitlichen Abstand Δt - At ist die Zeit, die zum zweimaligen Durchlaufen der Schichtdicke d notwendig ist :

Figure imgb0003
Has the layer 8 a thickness d and the medium 2 behind it z. B. the same impedance as the medium 6 in front, the transmitted wave P T also experiences a splitting into a transmitted wave P Π and a reflected wave P TR when the wave fronts reach the rear interface 10 of the layer 8. The amplitudes are again to be calculated analogously to the formulas mentioned above. While the wave P TT continues in the original direction, the wave P TR runs back in the layer 8 and suffers a new reflection at the front interface 9 (with the corresponding amplitude weakening). A corresponding fraction of this wave emerges from the rear boundary surface 10 and follows the first transmitted wave P TT at a time interval Δt - At is the time required for passing through the layer thickness d twice:
Figure imgb0003

Diese und weitere Wellen folgen aufgrund mehrfacher Reflexionen im Abstand n - Δt (n = 1, 2, ...), wobei die Amplituden der Einzelwellen in Form einer geometrischen Reihe abnehmen. Durch Auswahl geeigneter Materialien lassen sich die Parameter p, c und d weitgehend frei bestimmen und so die gewünschten Pulsfolgefrequenzen (bei fester Materialwahl abhängig von der Dicke der Schicht 8) und Amplitudenverhältnisse (abhängig von der Größe des Impedanzsprunges Z8―Z6und der Schichtdicke d) in weiten Grenzen festlegen.These and other waves follow due to multiple reflections at a distance n - Δt (n = 1, 2, ...), the amplitudes of the individual waves decreasing in the form of a geometric series. By selecting suitable materials, the parameters p, c and d can largely be freely determined and thus the desired pulse repetition frequencies (with a fixed choice of material depending on the thickness of layer 8) and amplitude ratios (depending on the size of the impedance jump Z 8 ―Z 6 and the layer thickness d) set within wide limits.

Versuche haben ergeben, daß z. B. bei Titanplatten einer Dicke von 0,5 bis 3 mm die Flankensteilheit der durch Vielfachreflexionen erzeugten Einzelpulse unverändert hoch ist.Experiments have shown that e.g. B. in titanium plates with a thickness of 0.5 to 3 mm, the slope of the individual pulses generated by multiple reflections is still high.

Eine Schicht mit geeigneter Dicke kann z. B. aus Aluminium, V2A-Stahl, Titan, Blei o. ä. Materialien oder Legierungen daraus und auch aus geeigneten Nichtmetallen, Keramiken oder Kunststoffen hergestellt werden. Unter Umständen eignen sich auch Flüssigkeiten, sofern sie z. B. durch Kissen in der entsprechenden Form gehalten werden können.A layer of suitable thickness can e.g. B. from aluminum, V2A steel, titanium, lead or similar materials or alloys thereof and also from suitable non-metals, ceramics or plastics. Liquids may also be suitable, provided they are e.g. B. can be held in the appropriate shape by pillows.

Neben der in Fig. 1 gezeigten Anordnung, bei der das gesamte Stoßwellenfeld zum Durchlaufen der Schicht gezwungen ist, sind auch andere Anordnungen zur Aufspaltung der Stoßwellenfront möglich.In addition to the arrangement shown in FIG. 1, in which the entire shock wave field is forced to pass through the layer, other arrangements for splitting the shock wave front are also possible.

Fig. 2 zeigt eine Anordnung mit einem Reflektor 5a, bei der die Schicht 8a wie eine Zonenplatte ausgebildet ist. Sie wird nur von Bruchteilen des Stoßwellenfeldes durchlaufen. Die Stoßwellenanteile, die die Schicht 8a nicht durchlaufen, gelangen ungeschwächt und zu einem mit to bezeichneten Zeitpunkt zum Konkrement; die restlichen Stoßwellenanteile erfahren eine Vielfachreflexion und der erste Impuls der Impulsfolge erreicht das Konkrement zum Zeitpunkt

Figure imgb0004
FIG. 2 shows an arrangement with a reflector 5a, in which the layer 8a is designed like a zone plate. It is only traversed by fractions of the shock wave field. The shock wave components, which do not pass through the layer 8a, reach the concretion without weakening and at a point in time denoted by t o ; the remaining shock wave components undergo multiple reflection and the first pulse of the pulse sequence reaches the concretion at the time
Figure imgb0004

Durch die geeignete Kombination von Material, Schichtdicke und Zonenfolge der Zonenplatte, kann somit erreicht werden, daß z. B. der zweite (dritte usw.) Impuls der Stoßwellenfolge die größte Amplitude hat. Für C8 > Cs - Metalle z. B. - kann die primäre Welle zeitlich verzögert gegenüber der Welle, die durch die Platte läuft, kommen.By a suitable combination of material, layer thickness and zone sequence of the zone plate, it can thus be achieved that, for. B. the second (third etc.) pulse of the shock wave sequence has the greatest amplitude. For C 8 > C s metals z. B. - The primary wave can come with a time delay compared to the wave that runs through the plate.

Fig. 3 zeigt eine Anordnung, bei der die erfindungsgemäße Schicht 8b in Form einer Kugelschale konzentrisch zum Stoßwellenfokus 11 angeordnet ist. Alle Teile des Stoßwellenfeldes laufen senkrecht zur Schichtoberfläche. Die Reflexionsbedingungen und der zeitliche Versatz At der Wellenfronten ist so für alle Teile des Wellenfeldes konstant. Außerdem bleibt dadurch die Fokussierung unbeeinträchtigt.FIG. 3 shows an arrangement in which the layer 8b according to the invention is arranged concentrically to the shock wave focus 11 in the form of a spherical shell. All parts of the shock wave field run perpendicular to the layer surface. The reflection conditions and the time offset At of the wave fronts is constant for all parts of the wave field. In addition, the focus remains unaffected.

Weitere Ausführungsformen der Erfindung, bei denen verschiedene hier gezeigte Merkmale kombiniert werden, sind möglich. Ebenso ist es möglich, Schichten zu verwenden, die keine gleichmäßige Dicke besitzen, sondern z. B. wie Linsen geformt sind.Further embodiments of the invention, in which various features shown here are combined, are possible. It is also possible to use layers that do not have a uniform thickness, but z. B. how lenses are shaped.

Claims (9)

1. Apparatus for generating pulse trains of shockwaves for the contactless comminution of concretions (4) in living bodies (3), comprising a shockwave source (7), i. e. a spark gap, a reflector (5, 5a) for focusing, i. e. a hollow ellipsoid filled with a propagation medium, and a layer (8, 8a, 8b) made from a material having an impedance different from that of the propagation medium (6, 2) mounted in such a manner that it is crossed by the shockwave field, characterized in that the thickness of the layer (8, 8a, 8b) is chosen such as a single pulse generated by the shockwave source (7) is multiplied by multiple reflections at the front (9) and rear (10) sides of the layer (8, 8a, 8b) into a sequence of tightby following shockwave fronts which interact on the concretion (4) at time intervals so close to each other that the concretion (4) is still beeing acted on by the first wave front when the subsequent wave front interacts with the concretion (4).
2. Apparatus according to claim 1, characterized in that the layer (8a) is crossed only by portions of the shockwave field.
3. Apparatus according to claim 1 and claim 2, characterized in that the layer (8b) is in the form of a spherical disk mounted concentrically with the shockwave focus (11).
4. Apparatus according to claim 1 and claim 2, characterized in that the layer is plane and is mounted in the central plane between the two foci of the hollow ellipsoid or seals the reflector.
5. Apparatus according to claims 1 to 4, characterized in that the layer (8a) is formed like a zone plate.
6. Apparatus according to the claims 1 to 5, characterized in that metals or alloys are used as the material.
7. Apparatus according to the claims 1 to 5, characterized in that plastics or ceramic materials are used as the material.
8. Apparatus according to the claims 1 to 5, characterized in that the layer is formed by a liquid.
9. Apparatus according to the claims 1 to 5, characterized in that the thickness of the layer varies and assumes a lenticular shape, for example.
EP83106091A 1982-11-04 1983-06-22 Apparatus to generate a succession of impulse-shock wave pulses Expired EP0111047B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3240691A DE3240691C1 (en) 1982-11-04 1982-11-04 Device for generating shock wave pulse trains
DE3240691 1982-11-04

Publications (2)

Publication Number Publication Date
EP0111047A1 EP0111047A1 (en) 1984-06-20
EP0111047B1 true EP0111047B1 (en) 1986-12-03

Family

ID=6177261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83106091A Expired EP0111047B1 (en) 1982-11-04 1983-06-22 Apparatus to generate a succession of impulse-shock wave pulses

Country Status (4)

Country Link
US (1) US4721108A (en)
EP (1) EP0111047B1 (en)
JP (1) JPS5982978A (en)
DE (2) DE3240691C1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143073A (en) 1983-12-14 1992-09-01 Edap International, S.A. Wave apparatus system
USRE33590E (en) 1983-12-14 1991-05-21 Edap International, S.A. Method for examining, localizing and treating with ultrasound
DE3429487A1 (en) * 1984-08-10 1986-02-20 Richard Wolf Gmbh, 7134 Knittlingen Device for generating an alternating voltage for the transducer of a lithotripsy probe
JPS6232008Y2 (en) * 1985-10-17 1987-08-17
DE3702120A1 (en) * 1987-01-24 1988-08-04 Dornier Medizintechnik PAIN-FREE CRUSHING
DE8710118U1 (en) * 1987-07-23 1988-11-17 Siemens AG, 1000 Berlin und 8000 München Shock wave generator for a device for the contactless destruction of concretions in the body of a living being
EP0324948A3 (en) * 1988-01-21 1989-10-25 Dornier Medizintechnik Gmbh Concretions destruction device
US5065761A (en) * 1989-07-12 1991-11-19 Diasonics, Inc. Lithotripsy system
DE9109025U1 (en) * 1990-08-02 1991-12-05 Siemens AG, 80333 München Generator for generating acoustic train impulses
US7189209B1 (en) 1996-03-29 2007-03-13 Sanuwave, Inc. Method for using acoustic shock waves in the treatment of a diabetic foot ulcer or a pressure sore
DE10158519B4 (en) * 2001-11-29 2005-01-13 Dornier Medtech Holding International Gmbh Shock and shock wave therapy device
US20030199857A1 (en) * 2002-04-17 2003-10-23 Dornier Medtech Systems Gmbh Apparatus and method for manipulating acoustic pulses
US7311677B1 (en) * 2002-06-26 2007-12-25 Fields John G Energy concentrator system and method
DE10234144A1 (en) * 2002-07-26 2004-02-05 Dornier Medtech Gmbh lithotripter
EP1671627B8 (en) * 2004-12-15 2010-04-07 Dornier MedTech Systems GmbH Improvement of cell therapy and tissue regeneration in patients with cardiovascular and neurological diseases by means of shockwaves
DE102005037043C5 (en) * 2005-08-05 2017-12-14 Dornier Medtech Systems Gmbh Shock wave therapy device with image acquisition
DE102006002273A1 (en) * 2006-01-17 2007-07-26 Dornier Medtech Systems Gmbh treatment facility
FR2991807B1 (en) * 2012-06-06 2014-08-29 Centre Nat Rech Scient DEVICE AND METHOD FOR FOCUSING PULSES
EP4052665A1 (en) * 2021-03-04 2022-09-07 Storz Medical AG Diffuser for a shockwave transducer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559227A (en) * 1947-05-24 1951-07-03 Interval Instr Inc Shock wave generator
DE2508494A1 (en) * 1975-02-27 1976-09-02 Hansrichard Dipl Phys D Schulz Focuser for electromagnetic or mechanical waves - for therapeutic local hyper therapy of human tissue with ultrasonic or microwaves
DE2650624C2 (en) * 1976-11-05 1985-05-30 Dornier System Gmbh, 7990 Friedrichshafen Device for smashing concretions in the body of a living being
JPS5540257A (en) * 1978-09-13 1980-03-21 Takehiro Nishi Windmill improve dynamic lift by means of guide vane
DE2913251C2 (en) * 1979-04-03 1985-08-01 Richard Wolf Gmbh, 7134 Knittlingen Device for the contact-free crushing of stones in body cavities
US4311147A (en) * 1979-05-26 1982-01-19 Richard Wolf Gmbh Apparatus for contact-free disintegration of kidney stones or other calculi
DE2921444B2 (en) * 1979-05-26 1981-04-23 Richard Wolf Gmbh, 7134 Knittlingen Device for the contactless crushing of kidney stones or the like.
DE3146626C2 (en) * 1981-11-25 1985-10-10 Dornier System Gmbh, 7990 Friedrichshafen Device for destroying calculus in the body of a living being

Also Published As

Publication number Publication date
JPH0553497B2 (en) 1993-08-10
DE3368008D1 (en) 1987-01-15
EP0111047A1 (en) 1984-06-20
DE3240691C1 (en) 1987-12-23
US4721108A (en) 1988-01-26
JPS5982978A (en) 1984-05-14

Similar Documents

Publication Publication Date Title
EP0111047B1 (en) Apparatus to generate a succession of impulse-shock wave pulses
EP0300315B1 (en) Shock wave generator for an apparatus for non-contact disintegration of concrements, present in a body
DE3877045T2 (en) GENERATOR FOR ELASTIC IMPULSES OF A PREFERRED DESIRED FORM AND ITS APPLICATION IN MEDICAL TREATMENT OR DIAGNOSIS.
DE4241161C2 (en) Acoustic therapy facility
DE69012165T2 (en) Method and device for locating and focusing waves.
DE881266C (en) Method and device for testing solid materials, in particular thin plates or the like, for cracks or fissures
EP0183236A2 (en) Apparatus for the contactless disintegration of concrements in the bodies of living beings
EP0133665A2 (en) Apparatus for the smashing at a distance of calculus
DE2538960C2 (en) Device for the contactless smashing of calculus in a living being
EP0209053A2 (en) Method and apparatus for the non-contacting disintegration of concretions in a living body
DE2915761A1 (en) DEVICE FOR ULTRASONIC EXAMINATION OF AN OBJECT
EP0421286A2 (en) Piezoelectric transducer
WO1991005332A1 (en) Process and device for generating laser-induced shock wave
DD248067A5 (en) GENERATOR WITH ELASTIC STRAITS OF LARGE STAERKS WHICH HAVE LIVING POINTS IN A LIQUID AND THROUGH COLLABORATIONS
DE3520133C2 (en)
DE1487569A1 (en) Ultrasonic transducer
EP0210358B1 (en) Acoustic focussing device
DE2650624C2 (en) Device for smashing concretions in the body of a living being
DE3050285C2 (en) Device for the ultrasonic testing of a cylindrical object
DE3206111A1 (en) CONVERTERS WITH IMPROVED RESOLUTION SYSTEMS AND METHODS FOR SENDING AND / OR RECEIVING SHAFTS EXTENDED BY VIBRATION
EP0278304A1 (en) Lithotripter with an integrated positioning device
EP0240797A1 (en) Shockwave generator with increased efficiency
DE2615973C3 (en) Method and device for reducing the echoes from reflectors lying outside the focal line in an echo sounding method
DE69935712T2 (en) ULTRASONIC DIAGNOSTIC IMAGING SYSTEM WITH POWER MODULATION FOR CONTRAST AND HARMONIC IMAGE DISPLAY
DE4031639A1 (en) DEVICE AND METHOD FOR UNIFORM POLARIZING OF PIEZOELECTRIC TRANSMITTERS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19840723

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3368008

Country of ref document: DE

Date of ref document: 19870115

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890511

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 7

Ref country code: GB

Payment date: 19890630

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960604

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960622

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST