EP0109523B1 - Gas turbine combustion chamber - Google Patents

Gas turbine combustion chamber Download PDF

Info

Publication number
EP0109523B1
EP0109523B1 EP83110020A EP83110020A EP0109523B1 EP 0109523 B1 EP0109523 B1 EP 0109523B1 EP 83110020 A EP83110020 A EP 83110020A EP 83110020 A EP83110020 A EP 83110020A EP 0109523 B1 EP0109523 B1 EP 0109523B1
Authority
EP
European Patent Office
Prior art keywords
chamber
gas turbine
combustion chamber
primary combustion
combustion chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83110020A
Other languages
German (de)
French (fr)
Other versions
EP0109523A1 (en
Inventor
Helmut Maghon
Wolfram Krockow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kraftwerk Union AG
Original Assignee
Kraftwerk Union AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraftwerk Union AG filed Critical Kraftwerk Union AG
Publication of EP0109523A1 publication Critical patent/EP0109523A1/en
Application granted granted Critical
Publication of EP0109523B1 publication Critical patent/EP0109523B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers

Definitions

  • the invention relates to a gas turbine combustion chamber according to the preamble of claim 1.
  • Such a gas turbine combustion chamber is known from DE-PS 2417 147.
  • the primary combustion chambers in this known gas turbine combustion chamber are dimensioned in such a way that the combustion in them does not end.
  • the flames thus strike from the primary combustion chambers into the common chamber designed as a secondary combustion chamber, in which a common secondary flame is formed when the primary flames are mixed.
  • the arrangement of the individual primary combustion chambers on a dome-shaped closure of the secondary combustion chamber is intended to lead to the most compact possible secondary flame through intensive mixing of the primary flames, which guarantees reliable ignition even when separate primary combustion chambers are switched on, without separate ignition devices. So that a complete burnout can take place in the secondary combustion chamber, holes are provided in the jacket through which additional combustion air reaches the common secondary flame.
  • the known gas turbine combustion chamber has the advantage that the division of the combustion process into many small primary combustion chambers shortens the residence time of the combustion air in the high-temperature zone of the flame, which leads to a reduction in the formation of NO x .
  • By switching individual primary combustion chambers on and off, favorable mixture ratios of fuel and combustion air can be maintained even when the load changes.
  • the invention has for its object to provide a gas turbine combustion chamber with a plurality of primary combustion chambers, in which the NO x formation can be reduced even further.
  • the invention is based on the finding that, in the case of afterburning in the large volume of a secondary combustion chamber, the additional dwell time also results in an additional NO x formation and, on the other hand, in the case of a large number of primary combustion chambers with a narrow view in terms of low NO x formation
  • Working area requires a particularly intensive mixing of the hot gas jets emerging from the respective connected primary combustion chambers with the cold air jets emerging from the respective switched off primary combustion chambers.
  • the common chamber, into which the primary combustion chambers open is designed as a pure mixing chamber, for which the shape of a sphere is realized as far as possible.
  • the complete combustion therefore already takes place in the primary combustion chambers which are respectively connected, so that post-combustion with additional NO x formation is prevented in the mixing chamber.
  • the spherical shape of the mixing chamber ensures optimal mixing in the case of radially oriented primary combustion chambers, the primary combustion chambers arranged on the spherical zone facing the outlet opening being particularly important due to their orientation inclined backwards with respect to the main hot gas flow.
  • Another advantage of the spherical shape is that the surface of a sphere offers space for a very large number of primary combustion chambers. It is expedient if all the primary combustion chambers are arranged on latitudes of the sphere. The primary combustion chambers of adjacent latitudes can then be arranged offset to one another, which ensures particularly space-saving accommodation.
  • connection to the gas turbine can be carried out in a structurally particularly simple manner as a penetration of the ball and cylinder.
  • the burners of the primary combustion chambers are immersed in the nozzle of the outer combustion chamber shell.
  • the burner can then be installed through these nozzles. If the inside diameter of the nozzle is larger than the outside diameter of the primary combustion chamber, then the entire primary combustion chamber can also be installed through the nozzle.
  • a central manhole is provided in the spherical combustion chamber jacket, to which a closable opening of the mixing chamber is assigned.
  • the mixing chamber is then accessible through the manhole and the associated opening, which in particular makes it easier to inspect the refractory lining of the primary combustion chambers and the mixing chamber.
  • the primary combustion chambers are equipped with premix burners.
  • premix burners enable particularly low-pollutant operation.
  • the small working range of the premixing burners compared to diffusion burners can be maintained without any problems by the special requirements of the gas turbine combustion chamber according to the invention.
  • openings for the access of quenching air are provided in the area of the primary combustion chambers located behind the combustion zone and before the junction into the mixing chamber. This measure is based on the knowledge that even after complete combustion in the primary combustion chambers in the mixing chamber, a certain after-reaction associated with NO x formation can occur. By supplying the quenching air, however, such after-reactions are frozen before the reactants enter the mixing chamber. This effect can be intensified in that the entire mixed air can be introduced into the mixing chamber exclusively via the burners with the fuel supply switched off and in the form of quenching air via the openings of the primary combustion chambers. With the exception of the mixed air flowing through the switched off primary combustion chambers during part-load operation, all of the mixed air is used as quenching air.
  • combustion air is exclusive.
  • the primary combustion chambers apart from the openings for the access of quenching air, no further openings are then provided for the supply of combustion air or mixed air.
  • the gas turbine combustion chamber has a mixing chamber 1, which has the shape of a ball indicated by the dash-dotted line K and at the outlet opening 10 of which a cylindrical transition section 11 connects to the gas turbine.
  • the outlet opening 10 of the mixing chamber 1 is thus formed by penetrating the ball K and the cylinder of the transition section 11, the diameter of the transition section 11 being smaller than the diameter of the ball K and the longitudinal axis of the transition section 11 passing through the center of the ball K.
  • the jacket of the mixing chamber 1 is composed of a hemisphere HK to be regarded as the end and a spherical zone KZ lying between the hemisphere HK and the outlet opening 10.
  • the primary combustion chambers 2 of adjacent latitudes are each offset from one another.
  • Each of the primary combustion chambers 2 is equipped with a premix burner 3, each of these premix burners 3 being immersed in an associated connection piece 40 of the outer combustion chamber jacket 4.
  • the fuel feeds 30 of the associated premix burners 3 are passed through the end cover 400 of the individual connecting pieces 40.
  • the connecting pieces 40 are dimensioned such that the primary combustion chambers 2 and the premix burner 3 can be fitted through them.
  • the outer combustion chamber jacket 4 has the shape of a ball enclosing the mixing housing 1 at a distance, to which a frustoconical transition section 41 and a short cylindrical section 42 with a connecting flange 43 adjoin the gas turbine connection.
  • a central manhole 44 is provided, to which a closable opening of the mixing chamber 1 is assigned.
  • the lid 12 of this closable opening can be seen in the drawing as a flattened area of the ball K.
  • the compressor air indicated by arrows V is supplied via the annular space formed between the cylindrical transition section 11 of the mixing chamber 1 and the cylindrical section 42 of the combustion chamber jacket 2.
  • the compressor air V then reaches the intermediate space between the mixing chamber 1 and the spherical region of the combustion chamber jacket 4, where it is divided into burner air indicated by arrows B and quenching air indicated by arrows A.
  • the burner air B passes as combustion air into the premix burners 3 and the primary combustion chambers 2 and in the premix burners 3 with the fuel supply 30 switched off through the premix burners 3 and the primary combustion chambers 2 as Mixed air into the mixing chamber 1.
  • the quenching air A passes through openings 20 arranged in the end region of the primary combustion chambers 2 into the primary combustion chambers 2 and immediately thereafter into the mixing chamber 1.
  • the hot gas jets emerging from the respectively connected primary combustion chambers 2 are mixed intensively with the cold air jets emerging from the switched off primary combustion chambers.
  • the hot gas flow cooled to the turbine inlet temperature then leaves the mixing chamber 1 through its outlet opening 10 and flows - as indicated by the arrows H - through the transition section 11 to the inner casing of the gas turbine.
  • the hot gas jets which already carry the mixed air supplied as quenching air A are mixed with one another in the mixing chamber 1.
  • the cold air jets supplied via the switched-off primary combustion chambers 2 are then also included in this mixing.
  • the mixing is particularly intense due to the spherical shape of the mixing chamber 1 and the radial alignment of the hot gas jets and the cold air jets present during part-load operation.
  • this intensive mixing is optimized by the primary combustion chambers 2 arranged on the spherical zone KZ of the mixing chamber 1, since their longitudinal axes are inclined backwards with respect to the main direction of the hot gas flow H.
  • FIG. 2 shows the arrangement of two gas turbine combustion chambers designed according to FIG. 1 on the opposite sides of a gas turbine designated overall by GT.
  • the gas turbine combustion chamber shown on the left in the drawing the spatial arrangement of the connecting piece 40 and the manhole 44 on the spherical combustion chamber jacket 4 can be seen.
  • the connecting pieces 40 In the gas turbine combustion chamber shown on the right in the drawing, the connecting pieces 40 have been omitted in order to illustrate their arrangement on a total of four width circles BK of the spherical combustion chamber jacket 4.
  • Fig. 3 shows a longitudinal section through a primary combustion chamber 2 and the associated premix burner 3.
  • the primary combustion chamber 2 which could also be referred to as a flame tube, consists of a cylindrical flame tube jacket 21, at one end of which an end cover 22 is arranged and at the other end a connecting flange 23 is arranged.
  • the front end cover 22 has a central opening through which the premix burner 3 opens into the primary combustion chamber 2 provided with a refractory lining 24.
  • the end cover 22 has a further opening, which is arranged more towards the outer edge and via which a pilot burner 25 opens through the refractory lining 24 into the primary combustion chamber 2.
  • On the upper end flange 250 of the pilot burner 25, an ignition electrode 251, an air supply 252 and a gas supply 253 can be seen.
  • the openings 20 for access to the quenching air A are aligned radially and pass through the flame tube jacket 21 and the refractory lining 24.
  • the openings 20 are located in the end region of the primary combustion chamber 2, which is attached to the mixing chamber 1 shown in FIG. 1 via the connecting flange 23.
  • the premix burner 3 consists of an essentially cylindrical burner housing 31 which carries a swirl body 32 and a fuel nozzle 33 at one end and a flame holder 34 at the other end.
  • the liquid fuel supplied via the fuel feed 30 and atomized in the fuel nozzle 33 is evaporated and mixed with the burner air B. So that this mixing is as intensive as possible, the burner air B is swirled as it flows through the swirl body 32.
  • the homogeneous mixture consisting of the supplied burner air B and the vaporized fuel is only ignited in the primary combustion chamber 2 by the pilot burner 25, the flame holder 34 serving to stabilize the flame, but nevertheless preventing the flame from kicking back into the premixing chamber 35.
  • a flange 36 is provided, which is fixed on the end cover 22 of the primary combustion chamber 2 in a heat-elastic manner.
  • an electrical igniter can optionally also be used to ignite the mixture in the primary combustion chamber 2.
  • the combustion of the mixture generated in the premix burner 3 is completely completed within the primary combustion chamber 2 before the openings 20 for the access of the quenching air A, with the extremely short residence time of the burner air B in the flame zone forming only extremely small amounts of NO x .
  • the quenching air A supplied immediately after the combustion zone cools the hot gases and prevents a further increase in the nitrogen oxides by freezing the NO x formation reactions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Description

Die Erfindung betrifft eine Gasturbinenbrennkammer nach dem Oberbegriff des Anspruchs 1.The invention relates to a gas turbine combustion chamber according to the preamble of claim 1.

Eine derartige Gasturbinenbrennkammer ist aus der DE-PS 2417 147 bekannt. Die Primärbrennkammern sind bei dieser bekannten Gasturbinenbrennkammer so bemessen, daß die Verbrennung in ihnen nicht beendet wird. Die Flammen schlagen also aus den Primärbrennkammern in die als Sekundärbrennkammer ausgebildete gemeinsame Kammer hinein, in welcher unter Vermischung der Primärflammen eine gemeinsame Sekundärflamme entsteht. Die Anordnung der einzelnen Primärbrennkammern auf einem kalottenförmigen Abschluß der Sekundärbrennkammer soll durch intensive Vermischung der Primärflammen zu einer möglichst kompakten Sekundärflamme führen, welche auch ohne separate Zündeinrichtungen ein sicheres Zünden beim Zuschalten von Primärbrennkammern gewährleistet. Damit in der Sekundärbrennkammer ein vollständiger Ausbrand stattfinden kann, sind in deren Mantel Löcher vorgesehen, durch welche zusätzliche Verbrennungsluft zu der gemeinsamen Sekundärflamme gelangt.Such a gas turbine combustion chamber is known from DE-PS 2417 147. The primary combustion chambers in this known gas turbine combustion chamber are dimensioned in such a way that the combustion in them does not end. The flames thus strike from the primary combustion chambers into the common chamber designed as a secondary combustion chamber, in which a common secondary flame is formed when the primary flames are mixed. The arrangement of the individual primary combustion chambers on a dome-shaped closure of the secondary combustion chamber is intended to lead to the most compact possible secondary flame through intensive mixing of the primary flames, which guarantees reliable ignition even when separate primary combustion chambers are switched on, without separate ignition devices. So that a complete burnout can take place in the secondary combustion chamber, holes are provided in the jacket through which additional combustion air reaches the common secondary flame.

Die bekannte Gasturbinenbrennkammer hat den Vorteil, daß die Aufteilung des Verbrennungsprozesses auf viele kleine Primärbrennkammern die Verweilzeit der Verbrennungsluft in der Hochtemperaturzone der Flamme verkürzt, was zu einer Verringerung der NOX-Bildung führt. Außerdem können durch das Zu- und Abschalten einzelner Primärbrennkammern auch bei Laständerungen günstige Mischungsverhältnisse von Brennstoff und Verbrennungsluft eingehalten werden.The known gas turbine combustion chamber has the advantage that the division of the combustion process into many small primary combustion chambers shortens the residence time of the combustion air in the high-temperature zone of the flame, which leads to a reduction in the formation of NO x . In addition, by switching individual primary combustion chambers on and off, favorable mixture ratios of fuel and combustion air can be maintained even when the load changes.

Der Erfindung liegt die Aufgabe zugrunde, eine Gasturbinenbrennkammer mit einer Vielzahl von Primärbrennkammern zu schaffen, in welcher die NOx-Bildung noch weiter verringert werden kann.The invention has for its object to provide a gas turbine combustion chamber with a plurality of primary combustion chambers, in which the NO x formation can be reduced even further.

Diese Aufgabe wird bei einer gattungsgemäßen Gasturbinenbrennkammer durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.This object is achieved in a generic gas turbine combustion chamber by the characterizing features of claim 1.

Der Erfindung liegt die Erkenntnis zugrunde, daß bei einer Nachverbrennung in dem großen Volumen einer Sekundärbrennkammer durch die zusätzliche Verweilzeit auch eine zusätzliche NOx-Bildung stattfindet und daß andererseits bei einer großen Anzahl von Primärbrennkammern mit einem im Hinblick auf eine geringe NOx-Bildung engen Arbeitsbereich eine besondere intensive Vermischung der aus den jeweils zugeschalteten Primärbrennkammern austretenden Heißgas-Strahlen mit den aus den jeweils abgeschalteten Primärbrennkammern austretenden Kaltluft-Strahlen erforderlich ist. Dementsprechend wird die gemeinsame Kammer, in welche die Primärbrennkammern einmünden, als reine Mischkammer ausgelegt, für welche so weitgehend wie möglich die Form einer Kugel realisiert wird. Die vollständige Verbrennung findet also bereits in den jeweils zugeschalteten Primärbrennkammern statt, so daß in der Mischkammer eine Nachverbrennung mit zusätzlicher NOx-Bildung unterbunden wird. Durch die Kugelform der Mischkammer ist bei radial ausgerichteten Primärbrennkammern eine optimale Vermischung gewährleistet, wobei den auf der der Austrittsöffnung zugewandten Kugelzone angeordneten Primärbrennkammern durch ihre in bezug auf die Haupt-Heißgasströmung rückwärts geneigte Ausrichtung eine besondere Bedeutung zukommt. Ein weiterer Vorteil der Kugelform ist, daß die Oberfläche einer Kugel Platz für die Unterbringung einer sehr großen Anzahl von Primärbrennkammern bietet. Dabei ist es zweckmäßig, wenn sämtliche Primärbrennkammern auf Breitenkreisen der Kugel angeordnet sind. Die Primärbrennkammern benachbarter Breitenkreise können dann versetzt zueinander angeordnet werden, wodurch eine besonders raumsparende Unterbringung gewährleistet ist.The invention is based on the finding that, in the case of afterburning in the large volume of a secondary combustion chamber, the additional dwell time also results in an additional NO x formation and, on the other hand, in the case of a large number of primary combustion chambers with a narrow view in terms of low NO x formation Working area requires a particularly intensive mixing of the hot gas jets emerging from the respective connected primary combustion chambers with the cold air jets emerging from the respective switched off primary combustion chambers. Accordingly, the common chamber, into which the primary combustion chambers open, is designed as a pure mixing chamber, for which the shape of a sphere is realized as far as possible. The complete combustion therefore already takes place in the primary combustion chambers which are respectively connected, so that post-combustion with additional NO x formation is prevented in the mixing chamber. The spherical shape of the mixing chamber ensures optimal mixing in the case of radially oriented primary combustion chambers, the primary combustion chambers arranged on the spherical zone facing the outlet opening being particularly important due to their orientation inclined backwards with respect to the main hot gas flow. Another advantage of the spherical shape is that the surface of a sphere offers space for a very large number of primary combustion chambers. It is expedient if all the primary combustion chambers are arranged on latitudes of the sphere. The primary combustion chambers of adjacent latitudes can then be arranged offset to one another, which ensures particularly space-saving accommodation.

Schließt an die Austrittsöffnung der Mischkammer ein zylindrischer Übergangsabschnitt an, so kann die Verbindung zur Gasturbine als Durchdringung von Kugel und Zylinder konstruktiv besonders einfach ausgeführt werden.If a cylindrical transition section adjoins the outlet opening of the mixing chamber, the connection to the gas turbine can be carried out in a structurally particularly simple manner as a penetration of the ball and cylinder.

Bei einer weiteren Ausgestaltung der Erfindung ist vorgesehen, daß die Brenner der Primärbrennkammern in Stutzen des äußeren Brennkammermantels eintauchen. Die Montage der Brenner kann dann durch diese Stutzen erfolgen. Ist der Innendurchmesser der Stutzen größer, als der Außendurchmesser der Primärbrennkammern, so kann auch die Montage der gesamten Primärbrennkammer durch die Stutzen hindurch vorgenommen werden.In a further embodiment of the invention it is provided that the burners of the primary combustion chambers are immersed in the nozzle of the outer combustion chamber shell. The burner can then be installed through these nozzles. If the inside diameter of the nozzle is larger than the outside diameter of the primary combustion chamber, then the entire primary combustion chamber can also be installed through the nozzle.

Es ist auch vorteilhaft, wenn in dem kugelförmigen Brennkammermantel ein zentrales Mannloch vorgesehen ist, welchem eine verschließbare Öffnung der Mischkammer zugeordnet ist. Die Mischkammer ist dann über das Mannloch und die zugeordnete Öffnung begehbar, wodurch insbesondere eine Inspektion der feuerfesten Auskleidung von Primärbrennkammern und Mischkammer erleichtert wird.It is also advantageous if a central manhole is provided in the spherical combustion chamber jacket, to which a closable opening of the mixing chamber is assigned. The mixing chamber is then accessible through the manhole and the associated opening, which in particular makes it easier to inspect the refractory lining of the primary combustion chambers and the mixing chamber.

Bei einer bevorzugten Ausgestaltung der Erfindung sind die Primärbrennkammern mit Vormischbrennern ausgerüstet. Derartige Vormischbrenner ermöglichen einen besonders schadstoffarmen Betrieb. Andererseits kann der im Vergleich zu Diffusionsbrennern geringe Arbeitsbereich der Vormischbrenner durch die besonderen Voraussetzungen der erfindungsgemäßen Gasturbinenbrennkammer ohne Problem eingehalten werden. Durch am Ende der Vormischbrenner angeordnete Flammenhalter kann eine unerwünschte Rückzündung des Gemisches verhindert und ein flammenstabilisierendes Rezirkulationsgebiet erzeugt werden.In a preferred embodiment of the invention, the primary combustion chambers are equipped with premix burners. Such premix burners enable particularly low-pollutant operation. On the other hand, the small working range of the premixing burners compared to diffusion burners can be maintained without any problems by the special requirements of the gas turbine combustion chamber according to the invention. By means of flame holders arranged at the end of the premix burner, undesired re-ignition of the mixture can be prevented and a flame-stabilizing recirculation area can be generated.

Es ist auch zweckmäßig, wenn jeder Primärbrennkammer eine separate Zündeinrichtung zugeordnet ist und somit beim Zuschalten der Primärbrennkammern eine einwandfreie Zündung gewährleistet ist.It is also expedient if a separate ignition device is assigned to each primary combustion chamber and thus a perfect ignition is ensured when the primary combustion chambers are switched on.

Bei einer weiteren, besonders bevorzugten Ausgestaltung der Erfindung sind in dem hinter der Verbrennungszone und vor der Einmündung in die Mischkammer liegenden Bereich der Primärbrennkammern Öffnungen für den Zutritt von Abschreckluft vorgesehen. Dieser Maßnahme liegt die Erkenntnis zugrunde, daß auch nach einer vollständigen Verbrennung in den Primärbrennkammern in der Mischkammer eine gewisse mit einer NOx-Bildung verbundene Nachreaktion auftreten kann. Durch die Zufuhr der Abschreckluft werden derartige Nachreaktionen jedoch noch vor dem Eintritt der Reaktionspartner in die Mischkammer eingefroren. Dieser Effekt kann dadurch noch verstärkt werden, daß die gesamte Mischluft ausschließlich über die Brenner mit abgeschalteter Brennstoffzufuhr und in Form von Abschreckluft über die Öffnungen der Primärbrennkammern in die Mischkammer einleitbar ist. Mit Ausnahme der bei Teillastbetrieb durch die abgeschalteten Primärbrennkammern strömenden Mischluft wird also die gesamte Mischluft als Abschreckluft eingesetzt.In a further, particularly preferred embodiment of the invention, openings for the access of quenching air are provided in the area of the primary combustion chambers located behind the combustion zone and before the junction into the mixing chamber. This measure is based on the knowledge that even after complete combustion in the primary combustion chambers in the mixing chamber, a certain after-reaction associated with NO x formation can occur. By supplying the quenching air, however, such after-reactions are frozen before the reactants enter the mixing chamber. This effect can be intensified in that the entire mixed air can be introduced into the mixing chamber exclusively via the burners with the fuel supply switched off and in the form of quenching air via the openings of the primary combustion chambers. With the exception of the mixed air flowing through the switched off primary combustion chambers during part-load operation, all of the mixed air is used as quenching air.

Im Hinblick auf einen schadstoffarmen Verbrennungsprozeß ist es auch günstig, wenn die gesamte Verbrennungsluft ausschließlich. über die Brenner mit zugeschalteter Brennstoffzufuhr zuführbar ist. In den Primärbrennkammern sind dann außer den Öffnungen für den Zutritt von Abschreckluft keine weiteren Öffnungen für die Zufuhr von Verbrennungsluft oder Mischluft vorgesehen.With regard to a low-pollutant combustion process, it is also favorable if all of the combustion air is exclusive. can be supplied via the burner with the fuel supply switched on. In the primary combustion chambers, apart from the openings for the access of quenching air, no further openings are then provided for the supply of combustion air or mixed air.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigt

  • Fig. 1 in stark vereinfachter schematischer Darstellung einen Längsschnitt durch eine Gasturbinenbrennkammer mit einer Vielzahl von Primärbrennkammern und einer kugelförmigen Mischkammer,
  • Fig. 2 di stirnseitige Ansicht einer Gasturbine mit zwei drin Fig. 1 dargestellten Gasturbinenbrennkammern und
  • Fig. 3 einen Längsschnitt durch eine Primärbrennkammer der in Fig. 1 dargestellten Gasturbinenbrennkammer.
An embodiment of the invention is shown in the drawing and will be described in more detail below. It shows
  • 1 is a highly simplified schematic representation of a longitudinal section through a gas turbine combustion chamber with a plurality of primary combustion chambers and a spherical mixing chamber,
  • Fig. 2 di front view of a gas turbine with two gas turbine combustion chambers shown in Fig. 1 and
  • 3 shows a longitudinal section through a primary combustion chamber of the gas turbine combustion chamber shown in FIG. 1.

Gemäß Fig. 1 besitzt die Gasturbinenbrennkammer eine Mischkammer 1, welche die Form einer durch die strichpunktierte Linie K angedeuteten Kugel aufweist und an deren Austrittsöffnung 10 sich ein die Verbindung zur Gasturbine herstellender zylindrischer Übergangsabschnitt 11 anschließt. Die Austrittsöffnung 10 der Mischkammer 1 ist also durch eine Durchdringung der Kugel K und des Zylinders des Übergangsabschnittes 11 gebildet, wobei der Durchmesser des Übergangsabschnittes 11 geringer ist als der Durchmesser der Kugel K und wobei die Längsachse des Übergangsabschnittes 11 durch den Mittelpunkt der Kugel K geht. Dementsprechend setzt sich der Mantel der Mischkammer 1 aus einer als Abschluß anzusehenden Halbkugel HK und einer zwischen der Halbkugel HK und der Austrittsöffnung 10 liegenden Kugelzone KZ zusammen.1, the gas turbine combustion chamber has a mixing chamber 1, which has the shape of a ball indicated by the dash-dotted line K and at the outlet opening 10 of which a cylindrical transition section 11 connects to the gas turbine. The outlet opening 10 of the mixing chamber 1 is thus formed by penetrating the ball K and the cylinder of the transition section 11, the diameter of the transition section 11 being smaller than the diameter of the ball K and the longitudinal axis of the transition section 11 passing through the center of the ball K. . Accordingly, the jacket of the mixing chamber 1 is composed of a hemisphere HK to be regarded as the end and a spherical zone KZ lying between the hemisphere HK and the outlet opening 10.

Auf Breitenkreisen der Kugel K ist eine Vielzahl von in die Mischkammer 1 einmündenden Primärbrennkammern 2 angeordnet, deren Längsachsen sich im Mittelpunkt der Kugel K treffen. In dem dargestellten Ausführungsbeispiel sind auf einem ersten Breitenkreis der Halbkugel HK fünf Primärbrennkammern 2, auf einem zweiten Breitenkreis der Halbkugel HK zehn Primärbrennkammern 2, auf dem Äquator bzw. Großkreis der Kugel K zehn Primärbrennkammern 2 und auf einem Breitenkreis der Kugelzone KZ ebenfalls zehn Primärbrennkammern 2 angeordnet. Die Primärbrennkammern 2 benachbarter Breitenkreise sind dabei jeweils versetzt zueinander angeordnet.A plurality of primary combustion chambers 2, which open into the mixing chamber 1 and whose longitudinal axes meet at the center of the ball K, are arranged on the circles of latitude of the ball K. In the exemplary embodiment shown, there are five primary combustion chambers 2 on a first parallel of the hemisphere HK, ten primary combustion chambers 2 on a second parallel of the HK hemisphere, ten primary combustion chambers 2 on the equator or large circle of the ball K and also ten primary combustion chambers 2 on a parallel of the spherical zone KZ arranged. The primary combustion chambers 2 of adjacent latitudes are each offset from one another.

Jede der Primärbrennkammern 2 ist mit einem Vormischbrenner 3 ausgerüstet, wobei jeder dieser Vormischbrenner 3 in einem zugeordneten Stutzen 40 des äußeren Brennkammermantels 4 eintaucht. Dabei sind durch stirnseitige Abschlußdeckel 400 der einzelnen Stutzen 40 jeweils die Brennstoffzuführungen 30 der zugehörigen Vormischbrenner 3 hindurchgeführt. Außerdem sind die Stutzen 40 derart bemessen, daß durch sie die Montage der Primärbrennkammern 2 und der Vormischbrenner 3 vorgenommen werden kann.Each of the primary combustion chambers 2 is equipped with a premix burner 3, each of these premix burners 3 being immersed in an associated connection piece 40 of the outer combustion chamber jacket 4. In this case, the fuel feeds 30 of the associated premix burners 3 are passed through the end cover 400 of the individual connecting pieces 40. In addition, the connecting pieces 40 are dimensioned such that the primary combustion chambers 2 and the premix burner 3 can be fitted through them.

Der äußere Brennkammermantel 4 besitzt die Form einer das Mischgehäuse 1 mit Abstand umschließenden Kugel, an welche sich zum Gasturbinenanschluß hin ein kegelstumpfförmiger Übergangsabschnitt 41 und ein kurzer zylindrischer Abschnitt 42 mit Anschlußflansch 43 anschließt. Auf der dem Anschlußflansch 43 gegenüberliegenden Seite des Brennkammermantels 4 ist ein zentrales Mannloch 44 vorgesehen, welchem eine verschließbare Öffnung der Mischkammer 1 zugeordnet ist. Der Deckel 12 dieser verschließbaren Öffnung ist in der Zeichnung als abgeflachter Bereich der Kugel K zu erkennen. Bei abgenommenem Deckel 440 des Mannloches 44 und bei abgenommenem Deckel 12 der Mischkammer 1 ist also die Mischkammer 1 begehbar. Hierdurch wird insbesondere eine Inspektion der feuerfesten Auskleidung der Mischkammer 1 und der einzelnen Primärbrennkammern 2 erleichtert.The outer combustion chamber jacket 4 has the shape of a ball enclosing the mixing housing 1 at a distance, to which a frustoconical transition section 41 and a short cylindrical section 42 with a connecting flange 43 adjoin the gas turbine connection. On the side of the combustion chamber jacket 4 opposite the connecting flange 43, a central manhole 44 is provided, to which a closable opening of the mixing chamber 1 is assigned. The lid 12 of this closable opening can be seen in the drawing as a flattened area of the ball K. With the cover 440 of the manhole 44 removed and the cover 12 of the mixing chamber 1 removed, the mixing chamber 1 can therefore be walked on. This in particular makes it easier to inspect the refractory lining of the mixing chamber 1 and the individual primary combustion chambers 2.

Die Zufuhr der durch Pfeile V angedeuteten Verdichterluft erfolgt über den zwischen dem zylindrischen Übergangsabschnitt 11 der Mischkammer 1 und dem zylindrischen Abschnitt 42 des Brennkammermantels 2 gebildeten Ringraum. Die Verdichterluft V gelangt dann in den zwischen der Mischkammer 1 und dem kugelförmigen Bereich des Brennkammermantels 4 liegenden Zwischenraum und teilt sich dort in durch Pfeile B angedeutete Brennerluft und durch Pfeile A angedeutete Abschreckluft auf. Die Brennerluft B gelangt bei den Vormischbrennern 3 mit zugeschalteter Brennstoffzuführung 30 als Verbrennungsluft in die Vormischbrenner 3 und die Primärbrennkammern 2 und bei den Vormischbrennern 3 mit abgeschalteter Brennstoffzuführung 30 durch die Vormischbrenner 3 und die Primärbrennkammern 2 hindurch als Mischluft in die Mischkammer 1. Die Abschreckluft A gelangt über im Endbereich der Primärbrennkammern 2 angeordnete Öffnungen 20 in die Primärbrennkammern 2 und gleich anschließend in die Mischkammer 1. In der Mischkammer 1 erfolgt eine intensive Vermischung der aus den jeweils zugeschalteten Primärbrennkammern 2 austretenden Heißgas-Strahlen mit den aus den jeweils abgeschalteten Primärbrennkammern austretenden Kaltluft-Strahlen. Die auf Turbineneintrittstemperatur abgekühlte Heißgasströmung verläßt dann die Mischkammer 1 durch deren Austrittsöffnung 10 und strömt - wie es durch die Pfeile H angedeutet ist - durch den Übergangsabschnitt 11 zum Innengehäuse der Gasturbine. Bei Vollastbetrieb werden in der Mischkammer 1 nur die Heißgas-Strahlen, welche die als Abschreckluft A zugeführte Mischluft bereits mit sich führen, miteinander vermischt. Bei Teillastbetrieb werden in diese Vermischung dann auch die über die abgeschalteten Primärbrennkammern 2 zugeführten Kaltluft-Strahlen einbezogen. Die Vermischung wird dabei durch die Kugelform der Mischkammer 1 und durch radiale Ausrichtung der Heißgas-Strahlen und der bei Teillastbetrieb vorhandenen Kaltluft-Strahlen besonders intensiv. Insbesondere wird diese intensive Vermischung durch die auf der Kugelzone KZ der Mischkammer 1 angeordneten Primärbrennkammern 2 optimiert, da deren Längsachsen in bezug auf die Hauptrichtung der Heißgasströmung H rückwärts geneigt sind.The compressor air indicated by arrows V is supplied via the annular space formed between the cylindrical transition section 11 of the mixing chamber 1 and the cylindrical section 42 of the combustion chamber jacket 2. The compressor air V then reaches the intermediate space between the mixing chamber 1 and the spherical region of the combustion chamber jacket 4, where it is divided into burner air indicated by arrows B and quenching air indicated by arrows A. In the premix burners 3 with the fuel supply 30 switched on, the burner air B passes as combustion air into the premix burners 3 and the primary combustion chambers 2 and in the premix burners 3 with the fuel supply 30 switched off through the premix burners 3 and the primary combustion chambers 2 as Mixed air into the mixing chamber 1. The quenching air A passes through openings 20 arranged in the end region of the primary combustion chambers 2 into the primary combustion chambers 2 and immediately thereafter into the mixing chamber 1. In the mixing chamber 1, the hot gas jets emerging from the respectively connected primary combustion chambers 2 are mixed intensively with the cold air jets emerging from the switched off primary combustion chambers. The hot gas flow cooled to the turbine inlet temperature then leaves the mixing chamber 1 through its outlet opening 10 and flows - as indicated by the arrows H - through the transition section 11 to the inner casing of the gas turbine. At full load operation, only the hot gas jets which already carry the mixed air supplied as quenching air A are mixed with one another in the mixing chamber 1. During part-load operation, the cold air jets supplied via the switched-off primary combustion chambers 2 are then also included in this mixing. The mixing is particularly intense due to the spherical shape of the mixing chamber 1 and the radial alignment of the hot gas jets and the cold air jets present during part-load operation. In particular, this intensive mixing is optimized by the primary combustion chambers 2 arranged on the spherical zone KZ of the mixing chamber 1, since their longitudinal axes are inclined backwards with respect to the main direction of the hot gas flow H.

Fig. 2 zeigt die Anordnung von zwei gemäß Fig. 1 ausgebildeten Gasturbinenbrennkammern auf den gegenüberliegenden Seiten einer insgesamt mit GT bezeichneten Gasturbine. Bei der in der Zeichnung links dargestellten Gasturbinenbrennkammer ist die räumliche Anordnung der Stutzen 40 und des Mannloches 44 auf dem kugelförmigen Brennkammermantel 4 zu erkennen. Bei der in der Zeichnung rechts dargestellten Gasturbinenbrennkammer wurden die Stutzen 40 weggelassen, um auf diese Weise deren Anordnung auf insgesamt vier Breitenkreisen BK des kugelförmigen Brennkammermantels 4 zu verdeutlichen.FIG. 2 shows the arrangement of two gas turbine combustion chambers designed according to FIG. 1 on the opposite sides of a gas turbine designated overall by GT. In the gas turbine combustion chamber shown on the left in the drawing, the spatial arrangement of the connecting piece 40 and the manhole 44 on the spherical combustion chamber jacket 4 can be seen. In the gas turbine combustion chamber shown on the right in the drawing, the connecting pieces 40 have been omitted in order to illustrate their arrangement on a total of four width circles BK of the spherical combustion chamber jacket 4.

Fig. 3 zeigt einen Längsschnitt durch eine Primärbrennkammer 2 und den zugehörigen Vormischbrenner 3. Die Primärbrennkammer 2, die auch als Flammrohr bezeichnet werden könnte, besteht aus einem zylindrischen Flammrohrmantel 21, an dessen einem Ende ein stirnseitiger Abschlußdeckel 22 angeordnet ist und an dessen anderem Ende ein Anschlußflansch 23 angeordnet ist. Der stirnseitige Abschlußdeckel 22 besitzt eine zentrische Öffnung, über welche der Vormischbrenner 3 in die mit einer feuerfesten Auskleidung 24 versehene Primärbrennkammer 2 einmündet. Der Abschlußdeckel 22 besitzt eine weitere, mehr zum äußeren Rand hin angeordnete Öffnung, über welche ein Zündbrenner 25 durch die feuerfeste Auskleidung 24 hindurch in die Primärbrennkammer 2 einmündet. An dem oberen Abschlußflansch 250 des Zündbrenners 25 sind eine Zündelektrode 251, eine Luftzufuhr 252 und eine Gaszufuhr 253 zu erkennen.Fig. 3 shows a longitudinal section through a primary combustion chamber 2 and the associated premix burner 3. The primary combustion chamber 2, which could also be referred to as a flame tube, consists of a cylindrical flame tube jacket 21, at one end of which an end cover 22 is arranged and at the other end a connecting flange 23 is arranged. The front end cover 22 has a central opening through which the premix burner 3 opens into the primary combustion chamber 2 provided with a refractory lining 24. The end cover 22 has a further opening, which is arranged more towards the outer edge and via which a pilot burner 25 opens through the refractory lining 24 into the primary combustion chamber 2. On the upper end flange 250 of the pilot burner 25, an ignition electrode 251, an air supply 252 and a gas supply 253 can be seen.

Die Öffnungen 20 für den Zutritt der Abschreckluft A sind radial ausgerichtet und gehen durch den Flammrohrmantel 21 und die feuerfeste Auskleidung 24 hindurch. Die Öffnungen 20 befinden sich dabei im Endbereich der Primärbrennkammer 2, welche über den Anschlußflansch 23 auf der in Fig. 1 dargestellten Mischkammer 1 befestigt wird.The openings 20 for access to the quenching air A are aligned radially and pass through the flame tube jacket 21 and the refractory lining 24. The openings 20 are located in the end region of the primary combustion chamber 2, which is attached to the mixing chamber 1 shown in FIG. 1 via the connecting flange 23.

Der Vormischbrenner 3 besteht aus einem im wesentlichen zylindrisch ausgebildeten Brennergehäuse 31, welches an einem stirnseitigen Ende einen Drallkörper 32 und eine Brennstoffdüse 33 und am anderen stirnseitigen Ende einen Flammenhalter 34 trägt. In der zwischen dem Drallkörper 32 und dem Flammenhalter 34 gebildeten Vormischkammer 35 wird der über die Brennstoffzuführung 30 zugeführte und in der Brennstoffdüse 33 zerstäubte flüssige Brennstoff verdampft und mit der Brennerluft B vermischt. Damit diese Vermischung möglichst intensiv ist, wird die Brennerluft B beim Durchströmen des Drallkörpers 32 verwirbelt. Das aus der zugeführten Brennerluft B und dem verdampften Brennstoff bestehende homogene Gemisch wird erst in der Primärbrennkammer 2 durch den Zündbrenner 25 gezündet, wobei der Flammenhalter 34 zur Stabilisierung der Flamme dient, aber trotzdem ein Rückschlagen der Flamme in die Vormischkammer 35 verhindert. Zur Befestigung des Vormischbrenners 3 ist ein Flansch 36 vorgesehen, welcher auf dem Abschlußdeckel 22 der Primärbrennkammer 2 wärmeelastisch festgelegt ist.The premix burner 3 consists of an essentially cylindrical burner housing 31 which carries a swirl body 32 and a fuel nozzle 33 at one end and a flame holder 34 at the other end. In the premixing chamber 35 formed between the swirl body 32 and the flame holder 34, the liquid fuel supplied via the fuel feed 30 and atomized in the fuel nozzle 33 is evaporated and mixed with the burner air B. So that this mixing is as intensive as possible, the burner air B is swirled as it flows through the swirl body 32. The homogeneous mixture consisting of the supplied burner air B and the vaporized fuel is only ignited in the primary combustion chamber 2 by the pilot burner 25, the flame holder 34 serving to stabilize the flame, but nevertheless preventing the flame from kicking back into the premixing chamber 35. To attach the premix burner 3, a flange 36 is provided, which is fixed on the end cover 22 of the primary combustion chamber 2 in a heat-elastic manner.

Bei der Verwendung von gasförmigen Brennstoffen wird ebenfalls innerhalb der Vormischkammer 35 ein homogenes Gemisch mit der Brennerluft B gebildet, wobei die Vorverdampfung dann natürlich entfällt. Anstelle des Zündbrenners 25 kann für die Zündung des Gemisches in der Primärbrennkammer 2 auch ggf. ein elektrischer Zünder verwendet werden.When gaseous fuels are used, a homogeneous mixture with the burner air B is likewise formed within the premixing chamber 35, with the pre-evaporation then naturally being omitted. Instead of the pilot burner 25, an electrical igniter can optionally also be used to ignite the mixture in the primary combustion chamber 2.

Die Verbrennung des im Vormischbrenner 3 erzeugten Gemisches wird innerhalb der Primärbrennkammer 2 noch vor den Öffnungen 20 für den Zutritt der Abschreckluft A vollständig abgeschlossen, wobei durch die äußerst kurze Verweilzeit der Brennerluft B in der Flammenzone nur äußerst geringe Mengen an NOX gebildet werden. Die unmittelbar nach der Verbrennungszone zugeführte Abschreckluft A kühlt die Heißgase ab und verhindert durch ein Einfrieren der NOX-Bildungsreaktionen einen weiteren Anstieg der Stickoxide.The combustion of the mixture generated in the premix burner 3 is completely completed within the primary combustion chamber 2 before the openings 20 for the access of the quenching air A, with the extremely short residence time of the burner air B in the flame zone forming only extremely small amounts of NO x . The quenching air A supplied immediately after the combustion zone cools the hot gases and prevents a further increase in the nitrogen oxides by freezing the NO x formation reactions.

Claims (13)

1. A gas turbine combustion chamber comprising
- a plurality of primary combustion chambers (2) which open into a common chamber,
- a separate air supply for each primary combustion chamber (2),
- a separate load-dependent, connectable and disconnectable fuel supply (30) for each primary combustion chamber (2), and
- a calotte-shaped closure member (HK) for the common chamber, on which the primary combustion chambers (2) are arranged in such a way that their longitudinal axes at least approximately meet at one point within the common chamber,
characterised by the following features:
- the common chamber is constructed purely as a mixing chamber (1);
- the mixing chamber (1) has the form of a sphere (K) which is closed all round, except for the discharge points of the primary combustion chambers (2) and a discharge orifice (10);
- in the region of the zone of the sphere (KZ), which lies between the hemispherical closure member (HK) and the discharge orifice (10), the mixing chamber (1) is provided with further primary combustion chambers (2), the longitudinal axes of which coincide with the longitudinal axes of the remaining primary combustion chambers (2) at least approximately at the central point of the sphere (K).
2. A gas turbine combustion chamber as claimed in claim 1, characterised in that all the primary combustion chambers (2) are arranged on parallels of latitude of the sphere (K).
3. A gas turbine combustion chamber as claimed in claim 2, characterised in that the primary combustion chambers (2) of adjacent parallels of latitude are staggered with respect to one another.
4. A gas turbine combustion chamber as claimed in one of the preceding claims, characterised in that a cylindrical transition section (11) is fixed at the discharge orifice (10) of the mixing chamber (1).
5. A gas turbine combustion chamber as claimed in one of the preceding claims, characterised in that the burners of the primary combustion chambers (2) extend into tubular connecting members (40) of an outer combustion chamber casing (4).
6. A gas turbine combustion chamber as claimed in claim 5, characterised in that the internal diameter of the connecting members (40) is greater than the external diameter of the primary combustion chambers (2).
7. A gas turbine combustion chamber as claimed in claim 5 or claim 6, characterised in that a central manhole (44), with which a closable opening of the mixing chamber (1) is associated, is arranged in the spherical combustion casing (4).
8. A gas turbine combustion chamber as claimed in one of the preceding claims, characterised in that the primary combustion chambers (2) are equipped with premix burners (3).
9. A gas turbine combustion chamber as claimed in claim 1, characterised in that flame arresters (34) are arranged at the ends of the premix burners (3).
10. A gas turbine combustion chamber as claimed in one of the preceding claims, characterised in that each primary combustion chamber is provided with a separate ignition device.
11. A gas turbine combustion chamber as claimed in one of the preceding claims, characterised in that openings (20) for the admission of quenching air (4) are arranged in the region of the primary combustion chambers (2) which lies behind the combustion zone and in front of the mouth of the mixing chamber (1).
12. A gas turbine combustion chamber as claimed in claim 11, characterised in that the whole of the mixing air can be exclusively introduced into the mixing chamber (1) through the burners with the fuel supply (30) disconnected and, in the form of quenching air (A), through the openings (20) of the primary combustion chambers (2).
13. A gas turbine combustion chamber as claimed in one of the preceding claims, characterised in that the whole of the combustion air can be exclusively suppled through the burners with the fuel supply (30) connected.
EP83110020A 1982-10-19 1983-10-06 Gas turbine combustion chamber Expired EP0109523B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3238684 1982-10-19
DE19823238684 DE3238684A1 (en) 1982-10-19 1982-10-19 GAS TURBINE COMBUSTION CHAMBER

Publications (2)

Publication Number Publication Date
EP0109523A1 EP0109523A1 (en) 1984-05-30
EP0109523B1 true EP0109523B1 (en) 1985-07-31

Family

ID=6176069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110020A Expired EP0109523B1 (en) 1982-10-19 1983-10-06 Gas turbine combustion chamber

Country Status (4)

Country Link
US (1) US4827724A (en)
EP (1) EP0109523B1 (en)
JP (1) JPS5989928A (en)
DE (2) DE3238684A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3241162A1 (en) * 1982-11-08 1984-05-10 Kraftwerk Union AG, 4330 Mülheim PRE-MIXING BURNER WITH INTEGRATED DIFFUSION BURNER
EP0193029B1 (en) * 1985-02-26 1988-11-17 BBC Brown Boveri AG Gas turbine combustor
DE3606625A1 (en) * 1985-03-04 1986-09-04 Kraftwerk Union AG, 4330 Mülheim Pilot burner with low NOx emission for furnace installations, in particular of gas turbine installations, and method of operating it
DE3908542C2 (en) * 1989-03-16 1994-08-11 Daimler Benz Ag Device for examining combustion processes
US5596873A (en) * 1994-09-14 1997-01-28 General Electric Company Gas turbine combustor with a plurality of circumferentially spaced pre-mixers
DE19615910B4 (en) * 1996-04-22 2006-09-14 Alstom burner arrangement
GB2319078B (en) 1996-11-08 1999-11-03 Europ Gas Turbines Ltd Combustor arrangement
JP6440433B2 (en) * 2014-09-29 2018-12-19 川崎重工業株式会社 Fuel injection nozzle, fuel injection module, and gas turbine
DE102020135067A1 (en) * 2020-12-29 2022-06-30 Chemin Gmbh Probe head and use of a probe head

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL69961C (en) * 1946-11-07
FR975715A (en) * 1947-12-02 1951-03-08 Power Jets Res & Dev Ltd Improvements to combustion devices
NL84788C (en) * 1951-06-12
GB715387A (en) * 1952-04-09 1954-09-15 Parsons & Marine Eng Turbine Improvements in or relating to combustion chambers for gas turbines or other prime movers
CH577627A5 (en) * 1974-04-03 1976-07-15 Bbc Sulzer Turbomaschinen
US3981675A (en) * 1974-12-19 1976-09-21 United Technologies Corporation Ceramic burner construction
US4012904A (en) * 1975-07-17 1977-03-22 Chrysler Corporation Gas turbine burner
CH595546A5 (en) * 1976-08-13 1978-02-15 Bbc Brown Boveri & Cie
US4351156A (en) * 1978-08-02 1982-09-28 International Harvester Company Combustion systems
DE2949388A1 (en) * 1979-12-07 1981-06-11 Kraftwerk Union AG, 4330 Mülheim COMBUSTION CHAMBER FOR GAS TURBINES AND METHOD FOR OPERATING THE COMBUSTION CHAMBER
US4356698A (en) * 1980-10-02 1982-11-02 United Technologies Corporation Staged combustor having aerodynamically separated combustion zones

Also Published As

Publication number Publication date
DE3360470D1 (en) 1985-09-05
JPS5989928A (en) 1984-05-24
DE3238684A1 (en) 1984-04-19
US4827724A (en) 1989-05-09
JPH0223771B2 (en) 1990-05-25
EP0109523A1 (en) 1984-05-30

Similar Documents

Publication Publication Date Title
DE69413352T2 (en) Adjustable vortex vanes in a combustion chamber of a gas turbine
DE69218576T2 (en) Combustion chamber of a gas turbine
DE69513542T2 (en) Fuel nozzle
DE60215351T2 (en) PREAMBLE CHAMBER FOR TURBINE COMBUSTION CHAMBER
DE69632111T2 (en) Premix burner for a gas turbine combustion chamber with low pollutant emission
DE69306447T2 (en) Single-stage burner with two operating modes
DE69718226T2 (en) Nozzle for diffusion and premix combustion in a turbine
EP0029619B1 (en) Gas-turbine combustor with premixing-prevaporizing elements
DE19533055B4 (en) Double fuel mixer for a gas turbine combustor
EP2156095B1 (en) Swirling-free stabilising of the flame of a premix burner
DE2417147C2 (en) Combustion chamber arrangement for gas turbines
DE102009003572A1 (en) Combustion chamber cap with rim-shaped openings
DE69306291T2 (en) One-piece attachment for a dual ring combustion chamber
DE69311191T2 (en) Dual ring burner
CH697908A2 (en) Fuel distributor for DNL gas turbines.
DE4417538A1 (en) Combustion chamber with self-ignition
EP0109523B1 (en) Gas turbine combustion chamber
DE69126846T2 (en) Secondary premix fuel nozzle with integrated swirl device
EP0433789A1 (en) Method for a premix burning of a liquid fuel
DE4138433C2 (en) Burners for industrial furnaces
DE2261596B2 (en) Method and combustion chamber for burning a fuel
EP0252315B1 (en) Combustion chamber device with a precombustion chamber for an understoichiometric combustion
DE1198130B (en) Burner for ring-shaped combustion chambers
EP0030313B1 (en) Gas-turbine combustor and method of operating the combustor
DE2944139A1 (en) BURNER ARRANGEMENT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840309

AK Designated contracting states

Designated state(s): CH DE FR GB LI SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3360470

Country of ref document: DE

Date of ref document: 19850905

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910913

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911017

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911022

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911217

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920124

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83110020.1

Effective date: 19930510