EP0101846B1 - Process and device for monitoring a tiltable shute and its use in charging a shaft furnace - Google Patents

Process and device for monitoring a tiltable shute and its use in charging a shaft furnace Download PDF

Info

Publication number
EP0101846B1
EP0101846B1 EP83106698A EP83106698A EP0101846B1 EP 0101846 B1 EP0101846 B1 EP 0101846B1 EP 83106698 A EP83106698 A EP 83106698A EP 83106698 A EP83106698 A EP 83106698A EP 0101846 B1 EP0101846 B1 EP 0101846B1
Authority
EP
European Patent Office
Prior art keywords
angular
spout
angular speed
speed
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83106698A
Other languages
German (de)
French (fr)
Other versions
EP0101846A2 (en
EP0101846A3 (en
Inventor
Edouard Legille
Guy Thillen
Emile Lonardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Wurth SA
Original Assignee
Paul Wurth SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Wurth SA filed Critical Paul Wurth SA
Priority to AT83106698T priority Critical patent/ATE22723T1/en
Publication of EP0101846A2 publication Critical patent/EP0101846A2/en
Publication of EP0101846A3 publication Critical patent/EP0101846A3/en
Application granted granted Critical
Publication of EP0101846B1 publication Critical patent/EP0101846B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/10Charging directly from hoppers or shoots
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0001Positioning the charge
    • F27D2003/0006Particulate materials
    • F27D2003/0007Circular distribution

Definitions

  • the present invention relates to a method of controlling the movement of an oscillating chute which can pivot around two orthogonal axes and actuated, for this purpose, by two drive means independent of each other to move the end of the chute following concentric circles or a spiral around a vertical axis.
  • the invention also relates to a device for implementing this method as well as an installation for loading a shaft furnace equipped with such a device and implementing this method.
  • the object of the present invention is to provide a new method for controlling the movement of an oscillating chute making it possible to eliminate, if not to attenuate, this irregularity by compensation.
  • An auxiliary object of the invention is to provide a device for the implementation, as well as its application to a loading installation of a shaft furnace.
  • the invention provides a method of controlling the movement of the chute, which is characterized in that the angular speed of rotation of the chute is modified around the vertical axis at the angular positions of the chute defined. in the horizontal plane in which the thickness of the deposited layer risks being irregular.
  • the angular positions of the chute in which the pivots which cause the deposit irregularities occur can be determined experimentally or by calculation. Knowing these angular positions, the invention therefore proposes to increase the angular speed of rotation of the chute at the places where the thickness of the deposited layer tends to increase, and to reduce the angular speed where the thickness has tendency to decrease.
  • the angular speed of the chute movement is regulated according to a preferred embodiment, according to the formula
  • the procedure is as follows by iteration:
  • FIGS. 1 and 2 show an oscillating distribution chute 10 in a well-defined angular position, in which it occupies an inclination ⁇ (see FIG. 2) relative to a vertical axis 0 and an angular position y (FIG. 1) a horizontal reference axis, for example, the X axis.
  • see FIG. 2
  • y a horizontal reference axis
  • the chute in this inclination is animated by a gyratory movement, clockwise shows, around the axis 0 with an angular speed ⁇ to effect an annular deposition of the loading material on the melting bed, the relation therefore being
  • the reference 12 designates an annular deposit of material when the chute 10 rotates around the axis 0 with an inclination ⁇ .
  • the reference 14 designates the horizontal projection of the circular path of the lower end of the chute 10.
  • This loading material discharged from the chute therefore has a fall path 16 with a vertical component and an angular component due to ⁇ .
  • the loading material does not fall to the point targeted by the chute at the precise moment when the material leaves this chute. This is illustrated in Figure 1.
  • This angular offset Aa is not only a function of the particle size of the material, but also of its falling speed, that is to say that depending on its falling speed, the particle reaches faster or slower the fusion bed and its drop point will be before or beyond the position Aa.
  • the offset Aa decreases up to, for example Aa-s, which tends to cause an increase in the thickness of the deposit at a location being offset by an angle Aa-s from the position angular of the chute where this pivoting occurred.
  • the offset Aa becomes Aa + ⁇ , which causes a decrease in the thickness of the deposit of the material. This slowdown occurs at the end of the pivoting phase and the reduction in thickness is therefore offset by an angle Aa + s from the angular position in which the pivoting of the chute ends.
  • FIG. 3 shows, in polar coordinates, the thickness of an annular layer of material poured onto the fusion bed, this thickness being proportional to their distance to the origin.
  • the curve e m represents the optimum average thickness that can be calculated for example from the content of a storage tank and the surface area of the melting bed. This thickness being uniform, the curve representing e m is necessarily a circle.
  • the curve represented by e r is the actual thickness of a layer deposited by an oscillating chute animated by a gyratory movement at constant angular speed ⁇ 0 and affected by the irregularities described above.
  • the thickness for each angular position a is represented by the length of the vector e.
  • the curve e whose outline has been deliberately exaggerated, allows two positions of maximum thickness to be recognized at the points E r-max located at the angular positions of 0 ° and 180 °, as well as two positions with minimum thickness at the points E r- min located respectively at the angular positions of 90 ° and 270 °.
  • Figure 4 is a polar diagram similar to that of Figure 3, but for the representation of the angular velocities ⁇ .
  • ⁇ o is the constant angular velocity for the deposition of the real irregular layer e r of FIG. 3.
  • the curve ⁇ c is a curve of compensated speeds obtained by the modification of the curve ⁇ o according to the formula
  • the angular velocity for each angular position is represented by the length
  • the purpose of the angular speed compensation is that the phenomena due to the pivoting of the chute and those due to the variation of the angular speed compensate each other to obtain a uniform deposited layer.
  • the curve e c in FIG. 3 corresponds to the curve ⁇ c in FIG. 4, that is to say the thickness of the layer deposited by modifying the angular speed according to the above formula.
  • the curve e c is of course offset by an angle Aa relative to the curve ⁇ c to take account of the fall time.
  • the effect of this compensation for the angular velocity according to FIG. 4 is that the layer e r is modified so as to produce a curve e approaching the ideal circular curve e m , that is to say by changing the chute faster at the angular positions corresponding to increases in the thickness of the deposit along curve e, and more slowly at the angular positions corresponding to smaller thicknesses of deposit in curve e , there is a tendency to reduce thickness irregularities of the deposited layer.
  • the compensated thickness approaches the ideal uniform thickness e m .
  • the determination of 0 ) 1 , 02, ... is carried out either by tests or by calculation, since the parameters involved in this determination can be measured or calculated.
  • the compensated angular velocities ⁇ 1 , 0) 2, ... can be determined for different inclinations ⁇ and for different grain sizes.
  • compensated angular speed can be stored in a microcomputer which can calculate, at any time, by linear interpolations the exact value of the compensated angular speed of the chute.
  • FIG. 5 represents a block diagram of an embodiment of a control circuit for the compensation of the angular speed of the chute.
  • the microcomputer of which question above, is represented by the reference 10. This microcomputer receives information concerning the inclination ⁇ and the nature of the loading material for the calculation of the compensated angular velocities.
  • a motor 12 for driving the chute is subject to the control signals of an angular speed variator 14 comprising, inter alia, an integrated comparator.
  • Reference 16 designates the mechanical part of a pulse transmitter
  • references 18 and 20 respectively designate an angular speed detector and a position detector, these two detectors can however be combined, since
  • the angular speed detector 18 generates at each instant signals corresponding to the real speed instant r and sends these signals to the variable speed drive 14.
  • the position detector generates, at every instant, signals corresponding to the angular position a of the distribution chute and sends these signals to the microcomputer 10.
  • This microcomputer 10 calculates, at each instant, on the basis of the information received, that is to say a, ⁇ and the parameters corresponding to the nature of the loading material, the compensated angular speed ⁇ c , thanks to the above formulas.
  • Signals corresponding to the angular speed Oc calculated by the microcomputer 10 are sent to the angular speed variator 14.
  • the integrated comparator thereof compares at all times the compensated angular speed ⁇ c with the actual angular speed Or of which it receives the information from the detector 18 and, depending on the result of this comparison, the drive motor 12 will be accelerated or slowed down.
  • the method for correcting the angular speed of the chute is particularly suitable for a drive device of the type proposed in the aforementioned Luxembourg patent application No. 83,280 because of the fact that the gyratory movement of this oscillating chute is caused by a circular movement drive device. It should however be noted that the correction device proposed is also suitable for other devices for driving an oscillating chute with cardan suspension, for example that driven by a pair of hydraulic cylinders.

Abstract

A method and apparatus for controlling the movement of an oscillating spout is presented wherein uneven distribution of spout discharge material is eliminated or at least substantially reduced by a compensating action of varying the angular speed of rotation of the spout in accordance with the angular position of the spout. The present invention is particularly suited for use in conjunction with a charging installation of a shaft furnace, particularly those charging devices having a spout with a cardan suspension system.

Description

La présente invention concerne un procédé de commande du mouvement d'une goulotte oscillante pouvant pivoter autour de deux axes orthogonaux et actionnés, à cet effet, par deux moyens d'entraînement indépendants l'un de l'autre pour déplacer l'extrémité de la goulotte suivant des cercles concentriques ou une spirale autour d'un axe vertical.The present invention relates to a method of controlling the movement of an oscillating chute which can pivot around two orthogonal axes and actuated, for this purpose, by two drive means independent of each other to move the end of the chute following concentric circles or a spiral around a vertical axis.

L'invention concerne également un dispositif de mise en oeuvre de ce procédé ainsi qu'une installation de chargement d'un four à cuve équipé d'un tel dispositif et mettant en oeuvre ce procédé.The invention also relates to a device for implementing this method as well as an installation for loading a shaft furnace equipped with such a device and implementing this method.

La demande de brevet luxembourgeois no 83 280 propose un dispositif de chargement d'un four à cuve au moyen d'une goulotte de distribution oscillante, généralement désigne dans le domaine en question comme goulotte à suspension du type «cardan».Luxembourg patent application no. 83,280 proposes a device for loading a shaft furnace by means of an oscillating distribution chute, generally designated in the field in question as a suspension gimbal of the "gimbal" type.

La demanderesse a constaté, lors de récents tests et expériences sur un prototype de ce genre que les couches de matières déposées au moyen d'une goulotte oscillante présentent des irrégularités dans l'épaisseur de dépôt. Si l'on ne considère qu'une seule couche, ces irrégularités n'auraient pas de conséquence néfaste sur le chargement d'un four à cuve. Malheureusement, ces irrégularités se produisent, pour chaque couche déposée, aux mêmes endroits correspondant à des positions angulaires précises de la goulotte, de sorte qu'il y a un effet d'accumulation de couche en couche qui aboutit finalement à un niveau de chargement en forme de selle. Il a également été constaté que ce défaut n'est pas propre au dispositif tel que proposé dans la demande de brevet précitée, mais qu'il se produit de façon plus ou moins prononcée pour tous les dispositifs de chargement avec suspension de la goulotte du type «cardan», quel que soit le moyen d'entraînement et de commande.The Applicant has noted, during recent tests and experiments on a prototype of this kind that the layers of material deposited by means of an oscillating chute have irregularities in the thickness of the deposit. If we consider only one layer, these irregularities would not have a harmful effect on the loading of a shaft furnace. Unfortunately, these irregularities occur, for each layer deposited, in the same places corresponding to precise angular positions of the chute, so that there is an effect of accumulation of layer in layer which ultimately results in a level of loading in saddle shape. It has also been observed that this defect is not specific to the device as proposed in the aforementioned patent application, but that it occurs in a more or less pronounced manner for all loading devices with suspension of the chute of the type "Gimbal", whatever the drive and control means.

La raison en est que ces genres de goulotte de distribution subissent deux fois au cours de chaque révolution, ceci à des endroits diamétralement opposés et bien déterminés, des pivotements, quoique faibles, mais néanmoins perceptibles, autour de leur axe longitudinal. Lors d'un tel pivotement, le frottement au moment du passage du chargement à travers de la goulotte diminue, c'est-à-dire que la vitesse de chute augmente. Autrement dit, lors d'un tel pivotement, la matière de chargement atteint plus rapidement son point de chute, et l'épaisseur de la couche déposée augmente aux endroits où se produit le point de chute correspondant à la position angulaire de la goulotte dans laquelle se produit ce pivotement. Bien entendu, l'effet contraire se produit à la fin de ce pivotement de la goulotte lorsque le frottement à l'intérieur de la goulotte augmente à nouveau, ce qui produit une diminution de l'épaisseur du dépôt.The reason is that these types of distribution chute undergo twice during each revolution, this in diametrically opposite and well determined locations, pivotings, although weak, but nevertheless perceptible, around their longitudinal axis. During such a pivoting, the friction when the load passes through the chute decreases, that is to say that the falling speed increases. In other words, during such a pivoting, the loading material reaches its drop point more quickly, and the thickness of the deposited layer increases at the places where the drop point occurs corresponding to the angular position of the chute in which this pivoting occurs. Of course, the opposite effect occurs at the end of this pivoting of the chute when the friction inside the chute increases again, which produces a decrease in the thickness of the deposit.

Le but de la présente invention est de prévoir un nouveau procédé de commande du mouvement d'une goulotte oscillante permettant d'éliminer, sinon d'atténuer, cette irrégularité par compensation. Un but auxiliaire de l'invention est de prévoir un dispositif pour la mise en oeuvre, ainsi que son application à une installation de chargement d'un four à cuve.The object of the present invention is to provide a new method for controlling the movement of an oscillating chute making it possible to eliminate, if not to attenuate, this irregularity by compensation. An auxiliary object of the invention is to provide a device for the implementation, as well as its application to a loading installation of a shaft furnace.

Pour atteindre cet objectif, l'invention propose un procédé de commande du mouvement de la goulotte, qui est caractérisé en ce que l'on modifie la vitesse angulaire de rotation de la goulotte autour de l'axe vertical aux positions angulaires de la goulotte définies dans le plan horizontal dans lesquelles l'épaisseur de la couche déposée risque d'être irrégulière.To achieve this objective, the invention provides a method of controlling the movement of the chute, which is characterized in that the angular speed of rotation of the chute is modified around the vertical axis at the angular positions of the chute defined. in the horizontal plane in which the thickness of the deposited layer risks being irregular.

Les positions angulaires de la goulotte dans lesquelles se produisent les pivotements qui entraînent les irrégularités de dépôt peuvent être déterminées expérimentalement ou par calcul. Connaissant ces positions angulaires, l'invention propose, par conséquent, d'augmenter la vitesse angulaire de rotation de la goulotte aux endroits où l'épaisseur de la couche déposée tend à augmenter, et de réduire la vitesse angulaire là où l'épaisseur a tendance à diminuer.The angular positions of the chute in which the pivots which cause the deposit irregularities occur can be determined experimentally or by calculation. Knowing these angular positions, the invention therefore proposes to increase the angular speed of rotation of the chute at the places where the thickness of the deposited layer tends to increase, and to reduce the angular speed where the thickness has tendency to decrease.

La régulation de la vitesse angulaire du mouvement de la goulotte est effectuée selon un mode d'exécution préféré, d'après la formule

Figure imgb0001
The angular speed of the chute movement is regulated according to a preferred embodiment, according to the formula
Figure imgb0001

Avantageusement, pour augmenter l'uniformité du dépôt, on procède de la manière suivante par itération:

Figure imgb0002
Advantageously, to increase the uniformity of the deposit, the procedure is as follows by iteration:
Figure imgb0002

Dans ces formules:

  • ω1, 0)2 représentent les vitesses angulaires corrigées,
  • ωα représente la vitesse angulaire non corrigée,
  • em représente une fonction de la position angulaire.
In these formulas:
  • ω 1 , 0 ) 2 represent the corrected angular velocities,
  • ωα represents the uncorrected angular velocity,
  • e m represents a function of the angular position.

D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée ci-dessous, en référence aux figures annexées, dans lesquelles:

  • La figure 1 montre schématiquement une goulotte de distribution lors du déversement d'une couche annulaire.
  • La figure 2 montre l'inclinaison de la goulotte par rapport à l'axe central.
  • La figure 3 montre un diagramme polaire illustrant l'épaisseur d'une couche de matière déversée au moyen d'une goulotte oscillante.
  • La figure 4 montre un diagramme polaire de la vitesse angulaire.
  • La figure 5 montre un schéma synoptique d'un circuit de commande.
Other features and characteristics of the invention will emerge from the detailed description below, with reference to the appended figures, in which:
  • Figure 1 schematically shows a distribution chute during the pouring of an annular layer.
  • Figure 2 shows the inclination of the chute with respect to the central axis.
  • FIG. 3 shows a polar diagram illustrating the thickness of a layer of material discharged by means of an oscillating chute.
  • Figure 4 shows a polar diagram of the angular velocity.
  • Figure 5 shows a block diagram of a control circuit.

Les figures 1 et 2 montrent une goulotte de distribution oscillante 10 dans une position angulaire bien déterminée, dans laquelle elle occupe une inclinaison β (voir figure 2) par rapport à un axe vertical 0 et une position angulaire y (figure 1 ) par rapport à un axe horizontal de référence, par exemple, l'axe X. On supposera que la goulotte, dans cette inclinaison est animée d'un mouvement giratoire, dans le sens des aiguilles d'une montre, autour de l'axe 0 avec une vitesse angulaire ω pour effectuer un dépôt annulaire de la matière de chargement sur le lit de fusion, la relation étant donc

Figure imgb0003
FIGS. 1 and 2 show an oscillating distribution chute 10 in a well-defined angular position, in which it occupies an inclination β (see FIG. 2) relative to a vertical axis 0 and an angular position y (FIG. 1) a horizontal reference axis, for example, the X axis. We will assume that the chute, in this inclination is animated by a gyratory movement, clockwise shows, around the axis 0 with an angular speed ω to effect an annular deposition of the loading material on the melting bed, the relation therefore being
Figure imgb0003

La référence 12 désigne un dépôt annulaire de matière lorsque la goulotte 10 tourne autour de l'axe 0 avec une inclinaison β. La référence 14 désigne la projection horizontale de la trajectoire circulaire de l'extrémité inférieure de la goulotte 10.The reference 12 designates an annular deposit of material when the chute 10 rotates around the axis 0 with an inclination β. The reference 14 designates the horizontal projection of the circular path of the lower end of the chute 10.

Cette matière de chargement déversée par la goulotte possède par conséquent une trajectoire de chute 16 avec une composante verticale et une composante angulaire à cause de ω. Autrement dit, la matière de chargement ne tombe pas au point que vise la goulotte au moment précis où la matière quitte cette goulotte. Ceci est illustré sur la figure 1.This loading material discharged from the chute therefore has a fall path 16 with a vertical component and an angular component due to ω. In other words, the loading material does not fall to the point targeted by the chute at the precise moment when the material leaves this chute. This is illustrated in Figure 1.

En supposant qu'une particule quitte la goulotte lorsque celle-ci se trouve dans la position angulaire a et que la goulotte poursuit son mouvement giratoire à la vitesse ω dans le sens des aiguilles d'une montre, l'impact de cette particule se produit lorsque la goulotte occupe, par exemple, une position angulaire y, alors que le point d'impact 18 de cette même particule se trouve quelque part entre les deux positions a et y, par exemple, dans la position a + Aa. Autrement dit, il existe un décalage angulaire Aa entre le moment de sortie d'une particule de la goulotte et le moment de son impact sur le lit de fusion. L'amplitude de ce décalage angulaire Aa est, non seulement fonction de la granulométrie de la matière, mais également de sa vitesse de chute, c'est-à-dire que suivant sa vitesse de chute, la particule atteint plus vite ou moins vite le lit de fusion et son point de chute se situera avant ou au-delà de la position Aa.Assuming that a particle leaves the chute when it is in the angular position a and that the chute continues its gyratory movement at speed ω clockwise, the impact of this particle occurs when the chute occupies, for example, an angular position y, while the point of impact 18 of this same particle is located somewhere between the two positions a and y, for example, in the position a + Aa. In other words, there is an angular offset Aa between the moment of exit of a particle from the chute and the moment of its impact on the fusion bed. The amplitude of this angular offset Aa is not only a function of the particle size of the material, but also of its falling speed, that is to say that depending on its falling speed, the particle reaches faster or slower the fusion bed and its drop point will be before or beyond the position Aa.

C'est le phénomène qui se produit pour toutes les goulottes de distribution oscillantes avec suspension à cardan qui, comme déjà dit plus haut, subissent lors de chaque révolution, deux pivotements autour de leur axe longitudinal et modifiant de ce fait le frottement entre la matière de chargement et la paroi de la goulotte. Cette modification du frottement accélère ou ralentit la chute des particules.This is the phenomenon which occurs for all oscillating distribution chutes with cardan suspension which, as already mentioned above, undergo during each revolution, two pivotings around their longitudinal axis and thereby modifying the friction between the material and the wall of the chute. This change in friction accelerates or slows down the fall of particles.

Lorsqu'il y a accélération, le décalage Aa diminue jusqu'à, par exemple Aa-s, ce qui tend à provoquer une augmentation de l'épaisseur du dépôt à un endroit se trouvant décalé d'un angle Aa-s de la position angulaire de la goulotte où s'est produit ce pivotement. De même, lorsqu'il y a ralentissement, le décalage Aa devient Aa + ε, ce qui provoque une diminution de l'épaisseur du dépôt de la matière. Ce ralentissement se produit à la fin de la phase de pivotement et la diminution d'épaisseur se trouve, par conséquent, décalée d'un angle Aa + s de la position angulaire dans laquelle s'achève le pivotement de la goulotte.When there is acceleration, the offset Aa decreases up to, for example Aa-s, which tends to cause an increase in the thickness of the deposit at a location being offset by an angle Aa-s from the position angular of the chute where this pivoting occurred. Similarly, when there is a slowdown, the offset Aa becomes Aa + ε, which causes a decrease in the thickness of the deposit of the material. This slowdown occurs at the end of the pivoting phase and the reduction in thickness is therefore offset by an angle Aa + s from the angular position in which the pivoting of the chute ends.

La figure 3 montre, en coordonnées polaires, l'épaisseur d'une couche annulaire de matière déversée sur le lit de fusion, cette épaisseur étant proportionnelle à leur distance jusqu'à l'origine.FIG. 3 shows, in polar coordinates, the thickness of an annular layer of material poured onto the fusion bed, this thickness being proportional to their distance to the origin.

La courbe em représente l'épaisseur moyenne optimale calculable par exemple d'après le contenu d'un réservoir de stockage et la surface du lit de fusion. Cette épaisseur étant uniforme, la courbe représentant em est forcément un cercle.The curve e m represents the optimum average thickness that can be calculated for example from the content of a storage tank and the surface area of the melting bed. This thickness being uniform, the curve representing e m is necessarily a circle.

La courbe représentée par er est l'épaisseur réelle d'une couche déposée par une goulotte oscillante animée d'un mouvement giratoire à vitesse angulaire constante ω0 et affectée des irrégularités décrites ci-dessus. L'épaisseur pour chaque position angulaire a est représentée par la longueur du vecteur e. La courbe e,, dont le contour a été volontairement exagéré, laisse reconnaître deux positions à épaisseur maximale aux points Er-max se trouvant aux positions angulaires de 0° et 180°, ainsi que deux positions à épaisseur minimale aux points Er-min se trouvant respectivement aux positions angulaires de 90° et 270°.The curve represented by e r is the actual thickness of a layer deposited by an oscillating chute animated by a gyratory movement at constant angular speed ω 0 and affected by the irregularities described above. The thickness for each angular position a is represented by the length of the vector e. The curve e ,, whose outline has been deliberately exaggerated, allows two positions of maximum thickness to be recognized at the points E r-max located at the angular positions of 0 ° and 180 °, as well as two positions with minimum thickness at the points E r- min located respectively at the angular positions of 90 ° and 270 °.

La figure 4 est un diagramme polaire analogue à celui de la figure 3, mais pour la représentation des vitesses angulaires ω. Ainsi ωo est la vitesse angulaire constante pour le dépôt de la couche irrégulière réelle er de la figure 3.Figure 4 is a polar diagram similar to that of Figure 3, but for the representation of the angular velocities ω. Thus ω o is the constant angular velocity for the deposition of the real irregular layer e r of FIG. 3.

La courbe ωc est une courbe de vitesses compensées obtenue par la modification de la courbe ωo selon la formule

Figure imgb0004
The curve ω c is a curve of compensated speeds obtained by the modification of the curve ω o according to the formula
Figure imgb0004

La vitesse angulaire pour chaque position angulaire est représentée par la longueurThe angular velocity for each angular position is represented by the length

Dans cette formule:

  • ω1c =vitesse angulaire modifiée
  • ωo =vitesse angulaire non modifiée qui engendre er
  • f = est une fonction de a et de Aa, c'est-à-dire des paramètres déterminants de la modification de la vitesse angulaire.
In this formula:
  • ω 1 = ω c = modified angular speed
  • ω o = unmodified angular speed which generates e r
  • f = is a function of a and Aa, that is to say of the parameters determining the modification of the angular speed.

La fonction f est définie par f (a) = e, (α) = épaisseur mesurée avant compensation.The function f is defined by f (a) = e, (α) = thickness measured before compensation.

Le but de la compensation de la vitesse angulaire est que les phénomènes dus au pivotement de la goulotte et ceux dus à la variation de la vitesse angulaire se compensent pour obtenir une couche déposée uniforme.The purpose of the angular speed compensation is that the phenomena due to the pivoting of the chute and those due to the variation of the angular speed compensate each other to obtain a uniform deposited layer.

La courbe ec de la figure 3 correspond à la courbe ωc de la figure 4, c'est-à-dire l'épaisseur de la couche déposée en modifiant la vitesse angulaire selon la formule ci-dessus. La courbe ec est bien entendu décalée d'un angle Aa par rapport à la courbe ωc pour tenir compte du temps de chute.The curve e c in FIG. 3 corresponds to the curve ω c in FIG. 4, that is to say the thickness of the layer deposited by modifying the angular speed according to the above formula. The curve e c is of course offset by an angle Aa relative to the curve ω c to take account of the fall time.

L'effet de cette compensation de la vitesse angulaire selon la figure 4 est que la couche er est modifiée de manière à produire une courbe e se rapprochant de la courbe circulaire idéale em, c'est-à-dire en faisant évoluer la goulotte plus vite aux positions angulaires correspondant à des augmentations de l'épaisseur du dépôt selon la courbe e, et plus lentement aux positions angulaires correspondant à des épaisseurs de dépôt plus faibles de la courbe e,, on tend à réduire les irrégularités d'épaisseur de la couche déposée.The effect of this compensation for the angular velocity according to FIG. 4 is that the layer e r is modified so as to produce a curve e approaching the ideal circular curve e m , that is to say by changing the chute faster at the angular positions corresponding to increases in the thickness of the deposit along curve e, and more slowly at the angular positions corresponding to smaller thicknesses of deposit in curve e ,, there is a tendency to reduce thickness irregularities of the deposited layer.

L'explication mathématique de la formule de compensation est la suivante:

  • Soit e, (a) l'épaisseur de la couche pour ωo = constant et présentant les irrégularités dues au pivotement;
  • Soit ev (a) l'épaisseur de la couche pour ωc = variable sans considération des irrégularités dues au pivotement.
    Figure imgb0005
The mathematical explanation of the compensation formula is as follows:
  • Let e, (a) the thickness of the layer for ω o = constant and presenting the irregularities due to the pivoting;
  • Let e v (a) be the thickness of the layer for ω c = variable without considering the irregularities due to the pivoting.
    Figure imgb0005

L'épaisseur théorique moyenne résultant de la superposition des deux phénomènes est

Figure imgb0006
The average theoretical thickness resulting from the superposition of the two phenomena is
Figure imgb0006

Autrement dit, l'épaisseur compensée se rapproche de l'épaisseur uniforme idéale em.In other words, the compensated thickness approaches the ideal uniform thickness e m .

Si une première compensation au moyen du réglage de la vitesse angulaire ne permet pas encore d'obtenir le résultat souhaité, il est possible de procéder par itération et d'effectuer une compensation plus fine suivant la formule:

Figure imgb0007
et éventuellement ainsi de suite.If a first compensation by means of the angular speed adjustment does not yet allow the desired result to be obtained, it is possible to proceed by iteration and perform a finer compensation according to the formula:
Figure imgb0007
and possibly so on.

La détermination de 0)1, 02, ... est effectuée soit par des tests soit par calcul, car les paramètres intervenant dans cette détermination peuvent être mesurés ou calculés.The determination of 0 ) 1 , 02, ... is carried out either by tests or by calculation, since the parameters involved in this determination can be measured or calculated.

Etant donné que a est fonction de β et de la granulométrie de la matière de chargement, les vitesses angulaires compensées ω1, 0)2, ... peuvent être déterminées pour différentes inclinaisons β et pour différentes granulométries.Given that a is a function of β and of the grain size of the loading material, the compensated angular velocities ω 1 , 0) 2, ... can be determined for different inclinations β and for different grain sizes.

Ces différentes valeurs de la vitesse angulaire compensée peuvent être mémorisées dans un micro-ordinateur pouvant calculer, à chaque instant, par interpolations linéaires la valeur exacte de la vitesse angulaire compensée de la goulotte.These different values of the compensated angular speed can be stored in a microcomputer which can calculate, at any time, by linear interpolations the exact value of the compensated angular speed of the chute.

La figure 5 représente un schéma synoptique d'un mode de réalisation d'un circuit de commande pour la compensation de la vitesse angulaire de la goulotte.FIG. 5 represents a block diagram of an embodiment of a control circuit for the compensation of the angular speed of the chute.

Le micro-ordinateur dont question ci-dessus, est représenté par le référence 10. Ce micro-ordinateur reçoit des informations concernant l'inclinaison β et la nature de la matière de chargement pour le calcul des vitesses angulaires compensées.The microcomputer of which question above, is represented by the reference 10. This microcomputer receives information concerning the inclination β and the nature of the loading material for the calculation of the compensated angular velocities.

Un moteur 12 d'entraînement de la goulotte est assujetti aux signaux de commande d'un variateur de vitesses angulaires 14 comprenant, entre autres, un comparateur intégré.A motor 12 for driving the chute is subject to the control signals of an angular speed variator 14 comprising, inter alia, an integrated comparator.

La référence 16 désigne la partie mécanique d'un transmetteur d'impulsions, tandis que les références 18 et 20 désignent respectivement un détecteur de vitesse angulaire et un détecteur de position, ces deux détecteurs pouvant toutefois être combinés, vu que

Figure imgb0008
Reference 16 designates the mechanical part of a pulse transmitter, while references 18 and 20 respectively designate an angular speed detector and a position detector, these two detectors can however be combined, since
Figure imgb0008

Le détecteur de vitesses angulaires 18 engendre à chaque instant des signaux correspondant à la vitesse réelle ωr et envoie ces signaux au variateur de vitesse 14. De même, le détecteur de position engendre, à chaque instant, des signaux correspondant à la position angulaire a de la goulotte de distribution et envoie ces signaux au micro-ordinateur 10. Ce micro-ordinateur 10 calcule, à chaque instant, sur base des informations reçues, c'est-à-dire a, β et les paramètres correspondant à la nature de la matière de chargement, la vitesse angulaire compensée ωc, grâce aux formules ci-dessus. Des signaux correspondant à la vitesse angulaire Oc calculés par le micro-ordinateur 10 sont envoyés dans le variateur de vitesse angulaire 14. Le comparateur intégré de celui-ci compare à chaque instant la vitesse angulaire compensée ωc à la vitesse angulaire réelle Or dont il reçoit l'information du détecteur 18 et, suivant le résultat de cette comparaison, le moteur d'entraînement 12 sera accéléré ou ralenti.The angular speed detector 18 generates at each instant signals corresponding to the real speed instant r and sends these signals to the variable speed drive 14. Likewise, the position detector generates, at every instant, signals corresponding to the angular position a of the distribution chute and sends these signals to the microcomputer 10. This microcomputer 10 calculates, at each instant, on the basis of the information received, that is to say a, β and the parameters corresponding to the nature of the loading material, the compensated angular speed ω c , thanks to the above formulas. Signals corresponding to the angular speed Oc calculated by the microcomputer 10 are sent to the angular speed variator 14. The integrated comparator thereof compares at all times the compensated angular speed ω c with the actual angular speed Or of which it receives the information from the detector 18 and, depending on the result of this comparison, the drive motor 12 will be accelerated or slowed down.

Le procédé de correction de la vitesse angulaire de la goulotte, proposé ci-dessus, convient particulièrement bien à un dispositif d'entraînement du genre proposé dans la demande de brevet luxembourgeois précitée n° 83 280 à cause du fait que le mouvement giratoire de cette goulotte oscillante est occasionnée par un dispositif d'entraînement à mouvement circulaire. Il est toutefois à noter que le dispositif de correction proposé convient également à d'autres dispositifs d'entraînement d'une goulotte oscillante avec suspension à cardan, par exemple celle entraînée par une paire de vérins hydrauliques.The method for correcting the angular speed of the chute, proposed above, is particularly suitable for a drive device of the type proposed in the aforementioned Luxembourg patent application No. 83,280 because of the fact that the gyratory movement of this oscillating chute is caused by a circular movement drive device. It should however be noted that the correction device proposed is also suitable for other devices for driving an oscillating chute with cardan suspension, for example that driven by a pair of hydraulic cylinders.

Claims (6)

1. A process for controlling the movement of a tiltable spout capable of pivoting about two orthogonal axes which for this purpose are actuated by two driving means independent of each other, in order to move the end of the spout over concentric circles or over a spiral course around a vertical axis, characterized by the fact that the angular rotation speed of the spout around the vertical axis is modified at the angular position occupied by the spout, and defined in the horizontal plane, where the thickness of the layer deposited tends to become irregular.
2. Process in accordance with Claim 1, characterized by the fact that the operation of regulating the angular speed of the movement of the spout is performed on the basis of the formula
Figure imgb0013
wherein:
ω1 is the modified angular speed,
ωo is the non-modified angular speed of the curve e,,
em is the optimum average thickness of a layer deposited;
e, is the real thickness of a layer deposited by a spout performing a giratory movement at a constant angular speed 0)0
a is the angular position of the spout considered in the horizontal plane with regard to a reference axis.
Aa is the change of the angular position a of the spout during the falling time of the material between the end of the spout and the charging surface;
f is a function of a and of Aa, i.e. of the angular positions and of the angular differences caused by the duration of the fall of the material respectively.
3. Process in accordance with Claim 2, characterized by the fact that the values of the angular speed are determined by progressive iterations based on the formula
Figure imgb0014
4. Process in accordance with anyone of Claims 2 and 3, characterized by the fact that the compensated values ω1, ω2, ... of the angular speeds are stored in a micro-computer and that the exact values of the annular speeds are determined at each moment by linear extrapolation between the values stored.
5. Device for the performance of the process covered by any one of Claims 1-4, characterized by an angular position detector (207) real angular speed detector (18) connected to a micro-computer (10) and a variator (14) for the angular speed, respectively, and comprising a comparator serving to compare the real angular speed (ω) with the compensated speed (ωo) determined by the micro-computer (10) and, as a function of this comparison, to generate signals serving to regulate the angular speed of the movement of the spout.
6. Application of the device according to Claim 5 and of the process according to Claims 1-4 to a shaft furnace charging installation.
EP83106698A 1982-07-28 1983-07-08 Process and device for monitoring a tiltable shute and its use in charging a shaft furnace Expired EP0101846B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83106698T ATE22723T1 (en) 1982-07-28 1983-07-08 METHOD AND DEVICE FOR CONTROLLING THE MOVEMENT OF A LOADING LINE AND THEIR APPLICATION FOR A LOADING DEVICE OF A TUBE FURNACE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU84303 1982-07-28
LU84303A LU84303A1 (en) 1982-07-28 1982-07-28 METHOD AND DEVICE FOR CONTROLLING THE MOVEMENT OF AN OSCILLATING CHUTE AND APPLICATION TO A LOADING INSTALLATION OF A TANK OVEN

Publications (3)

Publication Number Publication Date
EP0101846A2 EP0101846A2 (en) 1984-03-07
EP0101846A3 EP0101846A3 (en) 1984-05-23
EP0101846B1 true EP0101846B1 (en) 1986-10-08

Family

ID=19729928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83106698A Expired EP0101846B1 (en) 1982-07-28 1983-07-08 Process and device for monitoring a tiltable shute and its use in charging a shaft furnace

Country Status (17)

Country Link
US (1) US4575790A (en)
EP (1) EP0101846B1 (en)
JP (1) JPS5941405A (en)
KR (1) KR920006585B1 (en)
AT (1) ATE22723T1 (en)
AU (1) AU563801B2 (en)
BR (1) BR8304098A (en)
CA (1) CA1203308A (en)
CS (1) CS254321B2 (en)
DE (1) DE3366729D1 (en)
ES (1) ES524421A0 (en)
IN (1) IN158936B (en)
LU (1) LU84303A1 (en)
PL (1) PL140295B1 (en)
SU (1) SU1143316A3 (en)
UA (1) UA7055A1 (en)
ZA (1) ZA835074B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU86822A1 (en) * 1987-03-24 1988-11-17 Wurth Paul Sa METHOD AND DEVICE FOR CORRECTING THE FALL TRAJECTORY IN A LOADING INSTALLATION OF A TANK OVEN
AT388543B (en) * 1987-11-12 1989-07-25 Voest Alpine Ag CONVEYING DEVICE FOR THE DOSED CONVEYING OF SCHUETTGUT
JPH0541046Y2 (en) * 1988-06-07 1993-10-18
LU87938A1 (en) * 1991-05-15 1992-12-15 Wurth Paul Sa LOADING SYSTEM FOR A TANK OVEN
DE10240219A1 (en) * 2002-08-28 2004-03-11 Claas Selbstfahrende Erntemaschinen Gmbh Device for controlling a transfer device
EP1662009A1 (en) 2004-11-26 2006-05-31 VAI Industries (UK) Ltd. Device for distributing material into a furnace
AT502479B1 (en) * 2005-10-24 2007-04-15 Voest Alpine Ind Anlagen METHOD AND DEVICE FOR CHARGING INSERTS
CN101580886B (en) * 2008-05-13 2010-09-22 中冶赛迪工程技术股份有限公司 Bulk material distributing device
EP2955236A1 (en) * 2014-06-13 2015-12-16 Siemens VAI Metals Technologies GmbH Method and apparatus for controlling the fill height of a raw material in a blast furnace

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB782486A (en) * 1955-03-11 1957-09-04 United States Steel Corp Swinging spout and drive therefor applicable to the travelling grates of sintering apparatus
US3362585A (en) * 1965-12-23 1968-01-09 Fischer & Porter Co Dry chemical feeder
US3581070A (en) * 1968-11-01 1971-05-25 Nippon Steel Corp Apparatus for operating a shaft furnace by detecting the falling speed of the charge
US3929240A (en) * 1972-07-05 1975-12-30 Wurth Anciens Ets Paul Shaft furnace charging process
LU65660A1 (en) * 1972-07-05 1972-10-30
JPS5222802B2 (en) * 1973-10-12 1977-06-20
LU70952A1 (en) * 1974-09-20 1975-03-06
LU77547A1 (en) * 1977-06-16 1977-09-19
NL7707178A (en) * 1977-06-29 1979-01-03 Hoogovens Ijmuiden Bv Device for determining charge distribution in blast furnace - consists of two radar antennae mounted on ball joints, a transmitter and a receiver
DE2927316B1 (en) * 1979-07-06 1980-02-21 Demag Ag Mannesmann Distribution device for top closures of shaft ovens, especially for blast furnace top closures
LU83280A1 (en) * 1981-04-03 1983-03-24 Wurth Paul Sa METHOD FOR OPERATING AN OSCILLATING CHUTE IN A PRESSURE ENCLOSURE, DEVICE FOR CARRYING OUT THIS METHOD AND INSTALLATION FOR LOADING A TANK OVEN EQUIPPED WITH SUCH A DEVICE
LU83370A1 (en) * 1981-05-18 1983-03-24 Wurth Paul Sa DEVICE FOR CONTROLLING THE MOVEMENT OF AN OSCILLATING CHUTE AND INSTALLATION FOR LOADING A TANK OVEN EQUIPPED WITH SUCH A DEVICE
LU84521A1 (en) * 1982-12-10 1984-10-22 Wurth Paul Sa COOLING DEVICE FOR A LOADING INSTALLATION OF A TANK OVEN

Also Published As

Publication number Publication date
UA7055A1 (en) 1995-03-31
AU563801B2 (en) 1987-07-23
ATE22723T1 (en) 1986-10-15
EP0101846A2 (en) 1984-03-07
IN158936B (en) 1987-02-21
JPS5941405A (en) 1984-03-07
ES8500663A1 (en) 1984-11-16
DE3366729D1 (en) 1986-11-13
LU84303A1 (en) 1984-03-22
AU1661683A (en) 1984-02-02
PL243129A1 (en) 1984-03-12
KR840005570A (en) 1984-11-14
PL140295B1 (en) 1987-04-30
CA1203308A (en) 1986-04-15
SU1143316A3 (en) 1985-02-28
KR920006585B1 (en) 1992-08-10
EP0101846A3 (en) 1984-05-23
ZA835074B (en) 1984-03-28
BR8304098A (en) 1984-03-07
ES524421A0 (en) 1984-11-16
CS545883A2 (en) 1987-06-11
CS254321B2 (en) 1988-01-15
US4575790A (en) 1986-03-11
JPH0336889B2 (en) 1991-06-03

Similar Documents

Publication Publication Date Title
EP0101846B1 (en) Process and device for monitoring a tiltable shute and its use in charging a shaft furnace
EP0724528B2 (en) Method of filling a container with a product having a net set weight
EP3449030B1 (en) Apparatus for the continuous hot dip coating of a metal strip, and associated method
WO2017187359A1 (en) Apparatus for the continuous hot dip coating of a metal strip and associated method
WO2020207749A1 (en) Abrasion method
EP0682857B1 (en) Method for controlling the spreading for a granular material broadcaster
EP2080430B1 (en) Method for adjusting an agricultural spreader, corresponding adjustment device, agricultural spreader and computer program
EP0033258B1 (en) Wind turbine with an adjustably orientable rotor axis
EP0270870A1 (en) Mechanism for actuating a dosage valve
FR2700286A1 (en) Machine for grinding ophthalmic lenses.
FR2616223A1 (en) METHOD AND DEVICE FOR MONITORING THE FILLING OF A MOLD BY A PULVERULENT REFRACTORY MATERIAL
EP2627983B1 (en) Antifall device for two-wheeled vehicle
EP3956640B1 (en) Device for measuring a mass of a body, and associated methods
FR3087681A1 (en) DEVICE FOR DEPOSITING ADHESIVE OR SEALING MATERIAL USING A WEIGHT CANCELLATION SYSTEM
FR2533028A1 (en) METHOD AND DEVICE FOR DETERMINING THE UNBALANCE OF WHEELS MOUNTED ON A MOTOR AXLE OF A MOTOR VEHICLE
FR2488861A1 (en) Bulk material transfer for belt conveyors - includes adjustable tapered roller with scraper blade in path of falling material
EP0143049B1 (en) Method for lapping conical surfaces, and lapping device for carrying out this method
FR2709345A1 (en) Method and device for checking elongated objects whose cross section differs from the circular shape.
FR2617740A1 (en) Cone crusher
FR2460740A1 (en) METHOD AND DEVICE FOR RECHARGING FOR THE DEPOSITION OF A SURFACE LAYER OF VARIABLE COMPOSITION WELDING MATERIAL, AND PRODUCTS PROCESSED IN ACCORDANCE WITH THE METHOD
EP0012676A1 (en) Machine for externally coating objects such as tubes, particularly with concrete
EP1403435A1 (en) Method for improving the quality of roadway surfaces and device for carrying out the method
FR2670150A1 (en) DEVICE FOR MACHINING AND SURFACING ELASTIC MATERIALS.
FR2706433A1 (en) Device for projecting bulk granular materials
EP0435800A1 (en) Method for baiting liquid metal on rolls in continuous casting and installation for carrying out this method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19840210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 22723

Country of ref document: AT

Date of ref document: 19861015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3366729

Country of ref document: DE

Date of ref document: 19861113

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83106698.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960703

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960729

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960731

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960802

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

BERE Be: lapsed

Owner name: PAUL WURTH S.A.

Effective date: 19970731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980717

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990709

EUG Se: european patent has lapsed

Ref document number: 83106698.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000610

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000614

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010708

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501