EP0097613A1 - Bus bars arrangement for electrolytic cells - Google Patents

Bus bars arrangement for electrolytic cells Download PDF

Info

Publication number
EP0097613A1
EP0097613A1 EP83810225A EP83810225A EP0097613A1 EP 0097613 A1 EP0097613 A1 EP 0097613A1 EP 83810225 A EP83810225 A EP 83810225A EP 83810225 A EP83810225 A EP 83810225A EP 0097613 A1 EP0097613 A1 EP 0097613A1
Authority
EP
European Patent Office
Prior art keywords
cell
bar ends
cathode bar
group
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83810225A
Other languages
German (de)
French (fr)
Other versions
EP0097613B1 (en
Inventor
Jean-Marc Blanc
Hans Pfister
Otto Knaisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Alusuisse Holdings AG
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Holdings AG, Schweizerische Aluminium AG filed Critical Alusuisse Holdings AG
Priority to AT83810225T priority Critical patent/ATE21128T1/en
Publication of EP0097613A1 publication Critical patent/EP0097613A1/en
Application granted granted Critical
Publication of EP0097613B1 publication Critical patent/EP0097613B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the present invention relates to an asymmetrical rail arrangement for guiding the direct electrical current from the cathode bar ends of a transverse aluminum melt flow electrolysis cell to the traverse of the follow-up cell, part of the busbars connected to the upstream cathode bar ends passing under the electrolysis cell.
  • the electrolysis takes place in a temperature range of approximately 940 - 970 ° C.
  • the electrolyte becomes poor in aluminum oxide.
  • aluminum oxide in the electrolyte there is an anode effect, which results in an increase in the voltage from, for example, 4-5 V to 30 V and above.
  • the aluminum oxide concentration must be increased by adding new alumina.
  • the ohmic resistance from the cathode bars to the anodes of the follow-up cell causes energy losses in the order of up to 1 kWh / kg of aluminum produced. It has therefore been repeatedly tried to optimize the arrangement of the busbars with respect to the ohmic resistance.
  • the vertical components of magnetic induction formed must also be taken into account, which - together with the horizontal current density components - generate a force field in the liquid metal obtained through the reduction process.
  • the electrical direct current is supplied from the K ohleboden the cell embedded cathode bars collected and occurs with respect to the general current direction generally from the upstream and downstream lying ends.
  • the iron cathode bars are connected to aluminum busbars via flexible straps.
  • the busbars which are usually combined to form busbars, direct the direct current into the area of the subsequent cell, where the current is led via other flexible belts and via risers to the crossmember carrying the anodes.
  • the Steiglei Depending on the type of cell, the lines are electrically conductively connected to the front and / or one long side of the traverse.
  • GB-PS 1 032 810 discloses within the scope of an invention which relates to cell encapsulation that the busbars can be arranged below the electrolysis cell. According to FIG. 2, current guides 135 are guided symmetrically below the cell with respect to the transverse direction of the furnace and fed symmetrically into the traverse of the subsequent cell.
  • a rail guide is sought with which the magnetic effects are not increased if the current strength is increased.
  • part of the current exiting the cathode bar ends upstream, but less than half, is carried out under the cell.
  • the rest of the current emerging upstream from the cathode bar ends is concentrated around the end faces of the cell.
  • the current under the cell through leading conductors in the middle of the electrolytic cell and are designed as busbars.
  • the feed into the traverse of the subsequent cell is symmetrical with respect to the furnace cross axis at four points on the longitudinal side of the traverse.
  • a ucn US Pat. No. 4,313,811 relates to a rail arrangement for guiding the direct electrical current from the cathode bar ends of a transversely placed electrolytic cell to the traverse of the subsequent cell.
  • the rails connected to the upstream cathode bar ends are alternately arranged individually under the electrolysis cell and in packets around the electrolysis cell.
  • the alternating groups consist of 1 - 5 rails, preferably about a quarter of the total current is carried out under the electrolysis cell.
  • Asymmetry is understood to mean the difference between the currents flowing around the two end faces, expressed in% of the total current flowing from the upstream cathode bar ends.
  • the group of rails passing through in the middle cell area is preferably connected to 15-30% of the upstream cathode bar ends.
  • the group arranged in the middle cell area is shifted by 3 - 30%, preferably 3 - 20%, with respect to the transverse cell axis, by guide rails under the electrolysis cell, namely from the neighboring cell row, which the electrical DC current leads the way.
  • the busbars connected to the other cathode bar ends arranged on the upstream side lead around the respectively closer face of the electrolysis cell if they lead past the busbars leading under the electrolysis cell in the longitudinal direction of the cell. In other words, the entire current that emerges from the upstream cathode bars and does not flow under the electrolysis cell is never conducted around the same end face. As a result, more current is conducted around the face of the electrolytic cell that is closer to the neighboring cell row. The asymmetry thus generated compensates for the harmful magnetic influences of the neighboring cell row.
  • the group of busbars which pass through the electrolysis cell and are located in the middle cell area are arranged symmetrically with respect to the cell transverse axis.
  • the asymmetry is generated in that 3-35%, preferably 3-20%, of the cathode bar ends facing away from the neighboring cell row and located immediately next to the group of busbars leading through the electrolysis cell are connected to at least one busbar which is around the "wrong" end face of the electrolytic cell.
  • the expression “wrong” means that this busbar (s) runs in the longitudinal direction of the cell under the electrolysis cell group of busbars passed through and thus generates the asymmetry / s. All of the busbars connected to the remaining, upstream cathode bar ends run normally around the respectively closer face of the electrolysis cell, without passing in the longitudinal direction of the group of busbars leading through the electrolysis cell.
  • the two variants described above can be combined with one another.
  • the group of conductors located under the electrolysis cell in the middle cell area can normally be displaced by 3 to 30% or somewhat less, for example by 3 to 27%, preferably by 3 to 17 % , in the direction pointing away from the neighboring cell row.
  • the number of cathode bar ends located upstream, which are directly next to the group arranged in the central cell area, on its side facing away from the neighboring cell row, with at least one end face facing the neighboring cell row are connected to the busbar leading around the electrolysis cell, normally left at 3 - 35% or appropriately reduced somewhat, preferably to 3 - 20%.
  • the risers which take up the entire electrical current from the upstream and downstream cathode bar ends, preferably open laterally into the traverse of the subsequent cell, i.e. in the long side.
  • the connection of the two outer risers is preferably at least 5%, based on the length of the crossbar, displaced inwards from the end face.
  • the risers expediently 3-4, are expediently guided symmetrically with respect to the transverse cell axis to the traverse of the following cell.
  • cathode bars In the electrolytic cell 10 of FIG. 1 there are 24 cathode bars with cathode bar ends upstream and downstream 14 with respect to the general current direction I. These iron cathode bar ends 12, 14 are connected to aluminum rails, which conduct the current to the traverse 16 of the subsequent cell.
  • busbars 18 are passed under the electrolytic cell. These busbars 18 are in relation to the cell transverse axis Q, i.e. the symmetrical position by two cathode bars in the direction of the end face 20 of the electrolytic cell 10 facing away from the neighboring cell row. In the present example, 16.7% of the current emerging from the upstream cathode bar ends 12 is conducted through individual conductor rails 18 under the electrolysis cell 10.
  • the current from 12 cathode bar ends flows over the busbars 24, which are guided around the end face 22 of the electrolysis cell 10 facing the row of neighboring cells.
  • only the current of 8 cathode bar ends ends over the busbars 26, which are guided around the end face 20 of the electrolysis cell 10 facing away from the neighboring cell row. This asymmetry of 4 is caused by a shift of the group G by 8.3%.
  • the busbars 24, 26 merge with busbars from the downstream cathode bar ends 14 and lead to the traverse 16 in four risers 28, 30, 32, 34 arranged symmetrically with respect to the cell transverse axis Q. the following cell 36. They open into the longitudinal sides of the cross member 16, the outer risers 28, 34 are each indented by about 10%, based on the total cross member length, from the end face thereof.
  • the group G of the four under the electrolysis cell is guided symmetrically with respect to the cell transverse axis Q by leading conductor rails 18. As in FIG. 1, they carry out 16.7% of the current emerging from the upstream cathode bar ends 12 under the electrolysis cell.
  • the asymmetry is generated in that the current from two upstream cathode bar ends 12 is guided by a bus bar 38 in the longitudinal direction of the electrolytic cell 10 past the group G to the "wrong" end face 22 of the electrolytic cell 10.
  • These current rails 24 (which also contain the current of the current rail 38) lead around the end face 22 facing the row of adjacent cells and conduct the current from 12 cathode bar ends located upstream.
  • the busbars 26 leading around the end face 20 facing away from the neighboring cell row on the other hand, only conduct the current from 8 cathode bar ends located upstream. This results in an asymmetry of 4.
  • the riser lines 28, 30, 32, 34 arranged in accordance with FIG. 1 conduct the direct electrical current into two branches of the traverse 16 of the following cell 36.
  • busbars 18 In the case of the busbars 18, it is essential that they are carried out individually under the electrolysis cell in accordance with the distance between the cathode bars.
  • the Busbars 24, 26, on the other hand, can be bundled individual conductors or a single conductor with a corresponding cross section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Waveguide Aerials (AREA)
  • Inert Electrodes (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

In einer asymmetrischen Schienenanordnung wird der elektrische Gleichstrom von den Kathodenbarrenenden (12, 14) einer quergestellten Aluminiumschmelzflusselektrolysezelle (10) zur Traverse (16) der Folgezelle (36) geleitet. Ein Teil der mit den stromauf liegenden Kathodenbarrenenden (12) verbundenen Stromschienen (18) führt unter Elektrolysezelle (10) durch. Die Schienenkonfiguration im kathodischen Teil der Eiektrolysezelle (10) ist derart konzipiert, dass die Variation der Asymmetrie des aus den stromauf liegenden Kathodenbarrenenden (12) austretenden Stromes zwischen 3 und 30% liegt.In an asymmetrical rail arrangement, the direct electrical current is conducted from the cathode bar ends (12, 14) of a transverse aluminum melt flow electrolysis cell (10) to the crossmember (16) of the subsequent cell (36). Some of the busbars (18) connected to the upstream cathode bar ends (12) lead through under the electrolysis cell (10). The rail configuration in the cathodic part of the electrolytic cell (10) is designed such that the variation in the asymmetry of the current emerging from the upstream cathode bar ends (12) is between 3 and 30%.

Description

Die vorliegende Erfindung betrifft eine asymmetrische Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer quergestellten Aluminiumschmelzflusselektrolysezelle zur Traverse der Folgezelle wobei ein Teil der mit den stromauf liegenden Kathodenbarrenenden verbundenen Stromschienen unter der Elektrolysezelle durch führt.The present invention relates to an asymmetrical rail arrangement for guiding the direct electrical current from the cathode bar ends of a transverse aluminum melt flow electrolysis cell to the traverse of the follow-up cell, part of the busbars connected to the upstream cathode bar ends passing under the electrolysis cell.

Für die Gewinnung von Aluminium durch Schmelzflusselektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Elektrolysezelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In die Schmelze tauchen von oben Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu C02 und CO verbindet.For the production of aluminum by melt flow electrolysis of aluminum oxide, this is dissolved in a fluoride melt, which consists largely of cryolite. The cathodically deposited aluminum collects under the fluoride melt on the carbon base of the electrolytic cell, the surface of the liquid aluminum forming the cathode. Anodes which consist of amorphous carbon in conventional processes are immersed in the melt. At the carbon anodes, the electrolytic decomposition of the aluminum oxide produces oxygen, which combines with the carbon of the anodes to form CO 2 and CO.

Die Elektrolyse findet in einem Temperaturbereich von etwa 940 - 970°C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von 1 - 2 Gew.-% Aluminiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer Erhöhung der Spannung von beispielsweise 4 - 5 V auf 30 V und darüber auswirkt. Spätestens dann muss die Aluminiumoxidkonzentration durch Zugabe von neuer Tonerde angehoben werden.The electrolysis takes place in a temperature range of approximately 940 - 970 ° C. In the course of electrolysis, the electrolyte becomes poor in aluminum oxide. At a lower concentration of 1-2% by weight aluminum oxide in the electrolyte, there is an anode effect, which results in an increase in the voltage from, for example, 4-5 V to 30 V and above. Then, at the latest, the aluminum oxide concentration must be increased by adding new alumina.

Im Kohleboden der Elektrolysezelle sind Kathodenbarren eingebettet, wobei deren Enden die Seitenwandung der aus Stahlwanne, Isolationsschicht und Kohlenstoffauskleidung bestehenden Elektrolysewanne auf beiden Seiten durchgreifen.In K ohleboden the electrolytic cell are embedded cathode bars, the ends of which extend through the side wall of the tub made of steel, insulating layer and carbon lining electrolysis bath on both sides.

Durch den ohmschen Widerstand von den Kathodenbarren bis zu den Anoden der Folgezelle werden Energieverluste verursacht, die in der Grössenordnung von bis zu 1 kWh/kg produziertes Aluminium liegen. Es ist deshalb wiederholt v-r-sucht worden, die Anordnung der Stromschienen in bezug auf den ohmschen Widerstand zu optimalisieren. Dabei müssen jedoch auch die gebildeten Vertikalkomponenten der magnetischen Induktion berücksichtigt werden, welche - zusammen mit den horizontalen Stromdichtekomponenten - im durch den Reduktionsprozess gewonnenen flüssigen Metall ein Kraftfeld erzeugen.The ohmic resistance from the cathode bars to the anodes of the follow-up cell causes energy losses in the order of up to 1 kWh / kg of aluminum produced. It has therefore been repeatedly tried to optimize the arrangement of the busbars with respect to the ohmic resistance. However, the vertical components of magnetic induction formed must also be taken into account, which - together with the horizontal current density components - generate a force field in the liquid metal obtained through the reduction process.

In einer Aluminiumhütte mit in Reihen angeordneten, quergestellten Elektrolysezellen erfolgt die Stromführung von Zelle zu Zelle folgendermassen: Der elektrische Gleichstrom wird von im Kohleboden der Zelle eingebetteten Kathodenbarren gesammelt und tritt in bezug auf die allgemeine Strom- richtung in der Regel aus den stromauf und stromab liegenden Enden aus. Die eisernen Kathodenbarren sind über flexible Bänder mit Stromschienen aus Aluminium verbunden. Die üblicherweise zu Sammelschienen zusammengefassten Stromschienen führen den Gleichstrom in den Bereich der Folgezelle, wo der Strom über andere flexible Bänder und über Steigleitungen zu der die Anoden tragenden Traverse geführt wird. Die Steigleitungen sind je nach Zellentyp mit den Stirn- und/oder einer Längsseite der Traverse elektrisch leitend verbunden.In a smelter with in rows arranged transversely placed electrolysis cells is carried out as follows to cell, the flow guide of cell: The electrical direct current is supplied from the K ohleboden the cell embedded cathode bars collected and occurs with respect to the general current direction generally from the upstream and downstream lying ends. The iron cathode bars are connected to aluminum busbars via flexible straps. The busbars, which are usually combined to form busbars, direct the direct current into the area of the subsequent cell, where the current is led via other flexible belts and via risers to the crossmember carrying the anodes. The Steiglei Depending on the type of cell, the lines are electrically conductively connected to the front and / or one long side of the traverse.

Diese für Aluminiumhütten charakteristischen Schienenführungen weisen jedoch sowohl elektrische als auch magnetische Unannehmlichkeiten auf, die nach mehreren Vorveröffentlichungen zu beheben versucht worden sind.However, these rail guides, which are characteristic of aluminum smelters, have both electrical and magnetic inconveniences, which attempts have been made to remedy after several previous publications.

In der GB-PS 1 032 810 wird im Rahmen einer Erfindung, welche die Zellenkapselung betrifft, offenbart, dass die Stromschienen unterhalb der Elektrolysezelle angeordnet werden können. Nach Fig. 2 werden Stromführungen 135 in bezug auf die Ofenquerrichtung symmetrisch unter der Zelle durch geführt und symmetrisch in die Traverse der Folgezelle eingespeist.GB-PS 1 032 810 discloses within the scope of an invention which relates to cell encapsulation that the busbars can be arranged below the electrolysis cell. According to FIG. 2, current guides 135 are guided symmetrically below the cell with respect to the transverse direction of the furnace and fed symmetrically into the traverse of the subsequent cell.

Nach der US-PS 3 415 724 wird eine Schienenführung angestrebt, mit welcher die magnetischen Effekte nicht erhöht werden, wenn die Stromstärke erhöht wird. Zu diesem Zweck wird ein Teil des stromauf aus den Kathodenbarrenenden austretenden Stromes, jedoch weniger als die Hälfte, unter der Zelle durch geführt. Der übrige, stromauf aus den Kathodenbarrenenden austretende Strom wird konzentriert um die Stirnseiten der Zelle herum geführt. Nach Fig. 3 liegen die den Strom unter der Zelle durch führenden Leiter in der Mitte der Elektrolysezelle und sind als Sammelschienen ausgebildet. Die Einspeisung in die Traverse der Folgezelle erfolgt in bezug auf die Ofenquerachse symmetrisch an vier Stellen der Traversenlängsseite.According to US Pat. No. 3,415,724, a rail guide is sought with which the magnetic effects are not increased if the current strength is increased. For this purpose, part of the current exiting the cathode bar ends upstream, but less than half, is carried out under the cell. The rest of the current emerging upstream from the cathode bar ends is concentrated around the end faces of the cell. According to Fig. 3, the current under the cell through leading conductors in the middle of the electrolytic cell and are designed as busbars. The feed into the traverse of the subsequent cell is symmetrical with respect to the furnace cross axis at four points on the longitudinal side of the traverse.

Aucn die US-PS 4 313 811 hat eine Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer quergestellen Elektrolysezelle zur Traverse der Folgezelle zum Gegenstand. Die mit den stromauf liegenden Kathodenbarrenenden verbundenen Schienen sind alternierend einzeln unter der Elektrolysezelle durch und paketweise um die Elektrolysezelle herum angeordnet. Die alternierenden Gruppen bestehen aus 1 - 5 Schienen, vorzugsweise wird etwa ein Viertel des gesamten Stromes unter der Elektrolysezelle durch geführt. A ucn US Pat. No. 4,313,811 relates to a rail arrangement for guiding the direct electrical current from the cathode bar ends of a transversely placed electrolytic cell to the traverse of the subsequent cell. The rails connected to the upstream cathode bar ends are alternately arranged individually under the electrolysis cell and in packets around the electrolysis cell. The alternating groups consist of 1 - 5 rails, preferably about a quarter of the total current is carried out under the electrolysis cell.

Obwohl insbesondere nach der letztgenannten Veröffentlichung die magnetischen und elektrischen Unannehmlichkeiten weitgehend beseitigt werden können, haben sich die Erfinder die Aufgabe gestellt, für quergestellte Aluminiumschmelzflusselektrolysezellen eine Schienenanordnung zu schaffen, bei welcher die Investitionskosten und die Stromausbeute bei praktisch vernachlässigbaren magnetischen und elektrischen Effekten weiter optimalisiert sind.Although the magnetic and electrical inconveniences can be largely eliminated, in particular after the last-mentioned publication, the inventors have set themselves the task of creating a rail arrangement for transverse aluminum melt flow electrolysis cells in which the investment costs and the current efficiency are further optimized with practically negligible magnetic and electrical effects.

Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die Schienenkonfiguration im kathodischen Teil der Elektrolysezelle

  • - eine Gruppe von Stromschienen, die im mittleren Zellenbereich mit 10 - 40% der stromauf liegenden Kathodenbarrenenden verbunden und einzeln unter der Elektrolysezelle durchführend angeordnet sind,
  • - beidseits dieser Gruppe von Stromschienen paketweise um die Stirnseiten der Elektrolysezelle herum führende, mit den restlichen stromauf liegenden Kathodenbarrenenden verbundene Stromschienen, und
  • - in 2 bis 6 Steigleitungen übergehende, den gesamten elektrischen Strom von stromauf und stromab liegenden Kathodenbarrenenden aufnehmenden Stromschienen

umfasst, wobei die Variation der Asymmetrie des aus den stromauf liegenden Kathodenbarrenenden austretenden Stromes zwischen 3 und 30% liegt.The object is achieved according to the invention in that the rail configuration in the cathodic part of the electrolytic cell
  • a group of busbars which are connected in the middle cell area to 10-40% of the upstream cathode bar ends and are arranged individually to carry out under the electrolysis cell,
  • on both sides of this group of busbars, in packets around the end faces of the electrolytic cell, leading busbars connected to the remaining upstream cathode bar ends, and
  • - In 2 to 6 risers, the entire electrical current from upstream and downstream cathode bar ends receiving current rails

comprises, the variation of the asymmetry of the current emerging from the upstream cathode bar ends being between 3 and 30%.

Unter Asymmetrie wird der Unterschied der Ströme, die um die beiden Stirnseiten herum fliessen, ausgedrückt in % des gesamten aus den stromauf liegenden Kathodenbarrenenden fliessenden Stromes, verstanden.Asymmetry is understood to mean the difference between the currents flowing around the two end faces, expressed in% of the total current flowing from the upstream cathode bar ends.

Die Gruppe von im mittleren Zellenbereich unten durchführenden Schienen ist bevorzugt mit 15 - 30% der stromauf liegenden Kathodenbarrenenden verbunden.The group of rails passing through in the middle cell area is preferably connected to 15-30% of the upstream cathode bar ends.

Nach einer ersten Ausführungsform der Erfindung ist die im mittleren Zellenbereich angeordnete Gruppe von unter der Elektrolysezelle durch führenden Stromschienen in bezug auf die Zellenquerachse um 3 - 30%, vorzugsweise um 3 - 20%, verschoben, und zwar in von der Nachbarzellenreihe, welche den elektrischen Gleichstrom zurückführt, wegweisender Richtung. Die mit den übrigen, auf der stromauf liegenden Seite angeordneten Kathodenbarrenenden verbundenen Stromschienen führen um die jeweils näher liegende Stirnseite der Elektrolysezelle herum, falls sie an den unter der Elektrolysezelle durch führenden Stromschienen in Zellenlängsrichtung vorbei führen. Mit anderen Worten wird nie der gesamte Strom, der aus den stromauf liegenden Kathodenbarren austritt und nicht unter der Elektrolysezelle durch fliesst, um dieselbe Stirnseite herum geführt. Dadurch wird mehr Strom um die der Nachbarzellenreihe näher liegende Stirnseite der Elektrolysezelle herum geführt. Durch die damit erzeugte Asymmetrie werden die schädlichen magnetischen Einflüsse der Nachbarzellenreihe kompensiert.According to a first embodiment of the invention, the group arranged in the middle cell area is shifted by 3 - 30%, preferably 3 - 20%, with respect to the transverse cell axis, by guide rails under the electrolysis cell, namely from the neighboring cell row, which the electrical DC current leads the way. The busbars connected to the other cathode bar ends arranged on the upstream side lead around the respectively closer face of the electrolysis cell if they lead past the busbars leading under the electrolysis cell in the longitudinal direction of the cell. In other words, the entire current that emerges from the upstream cathode bars and does not flow under the electrolysis cell is never conducted around the same end face. As a result, more current is conducted around the face of the electrolytic cell that is closer to the neighboring cell row. The asymmetry thus generated compensates for the harmful magnetic influences of the neighboring cell row.

Nach einer weiteren Variante der Erfindung ist die im mittleren Zellenbereich liegende Gruppe von unter der Elektrolysezelle durchführenden Stromschienen in bezug auf die Zellenquerachse symmetrisch angeordnet. Die Asymmetrie wird erzeugt, indem 3 - 35%, vorzugsweise 3 - 20%, der stromauf unmittelbar neben der Gruppe von unter der Elektrolysezelle durchführenden Stromschienen liegenden, von der Nachbarzellenreihe abgewandten Kathodenbarrenenden mit mindestens einer Stromschiene verbunden sind, die um die "falsche" Stirnseite der Elektrolysezelle herumführt/en. Mit dem Ausdruck "falsch" wird ausgedrückt, dass diese Stromschiene/n in Zellenlängsrichtung an der unter der Elektrolysezelle durch geführten Gruppe von Stromschienen vorbei läuft/laufen und so die Asymmetrie erzeugt/en. Sämtliche mit den restlichen, stromauf liegenden Kathodenbarrenenden verbundenen Stromschienen laufen normal um die jeweils nähere Stirnseite der Elektrolysezelle herum, ohne in Zellenlängsrichtung an der unter der Elektrolysezelle durch führenden Gruppe von Stromschienen vorbei zu führen.According to a further variant of the invention, the group of busbars which pass through the electrolysis cell and are located in the middle cell area are arranged symmetrically with respect to the cell transverse axis. The asymmetry is generated in that 3-35%, preferably 3-20%, of the cathode bar ends facing away from the neighboring cell row and located immediately next to the group of busbars leading through the electrolysis cell are connected to at least one busbar which is around the "wrong" end face of the electrolytic cell. The expression "wrong" means that this busbar (s) runs in the longitudinal direction of the cell under the electrolysis cell group of busbars passed through and thus generates the asymmetry / s. All of the busbars connected to the remaining, upstream cathode bar ends run normally around the respectively closer face of the electrolysis cell, without passing in the longitudinal direction of the group of busbars leading through the electrolysis cell.

Die beiden vorstehend beschriebenen Varianten können miteinander kombiniert werden. Die im mittleren Zellenbereich liegende Gruppe von unter der Elektrolysezelle durch führenden Stromschienen kann normal um 3 - 30% oder etwas weniger, beispielsweise um 3 - 27%, vorzugsweise um 3 - 17%, in von der Nachbarzellenreihe wegweisender Richtung verschoben werden. Ebenso kann die Anzahl der stromauf liegenden Kathodenbarrenenden, welche unmittelbar neben der im mittleren Zellenbereich angeordneten Gruppe, auf deren von der Nachbarzellenreihe abgewandten Seite, mit mindestens einer um die der Nachbarzellenreihe zugewandte Stirnseite der Elektrolysezelle herumführenden Stromschiene verbunden sind, normal bei 3 - 35% belassen oder zweckmässig etwas reduziert werden, vorzugsweise auf 3 - 20%.The two variants described above can be combined with one another. The group of conductors located under the electrolysis cell in the middle cell area can normally be displaced by 3 to 30% or somewhat less, for example by 3 to 27%, preferably by 3 to 17 % , in the direction pointing away from the neighboring cell row. Likewise, the number of cathode bar ends located upstream, which are directly next to the group arranged in the central cell area, on its side facing away from the neighboring cell row, with at least one end face facing the neighboring cell row are connected to the busbar leading around the electrolysis cell, normally left at 3 - 35% or appropriately reduced somewhat, preferably to 3 - 20%.

Die Steigleitungen, welche den gesamten elektrischen Strom von stromauf- und stromab liegenden Kathodenbarrenenden aufnehmen, münden bevorzugt seitlich in die Traverse der Folgezelle ein, d.h. in deren Längsseite. Die Verbindung der beiden äusseren Steigleitungen ist dabei vorzugsweise mindestens 5%, bezogen auf die Länge der Traverse, von der Stirnseite nach innen verschoben.The risers, which take up the entire electrical current from the upstream and downstream cathode bar ends, preferably open laterally into the traverse of the subsequent cell, i.e. in the long side. The connection of the two outer risers is preferably at least 5%, based on the length of the crossbar, displaced inwards from the end face.

Die Steigleitungen, zweckmässig 3 - 4, werden in bezug auf die Zellenquerachse zweckmässig symmetrisch zur Traverse der Folgezelle geführt.The risers, expediently 3-4, are expediently guided symmetrically with respect to the transverse cell axis to the traverse of the following cell.

Die Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen schematisch:

  • Fig. 1 eine asymmetrische Schienenanordnung einer Elektrolysezelle bis zur Traverse der Folgezelle, mit vier asymmetrisch angeordneten, unter der Elektrolysezelle durch führenden Stromschienen
  • Fig. 2 eine Schienenanordnung einer Elektrolysezelle bis zur Traverse der Folgezelle, mit vier symmetrisch angeordneten, unter der Zelle durch führenden Stromschienen und einer von zwei Kathodenbarrenenden gespiesenen, um die "falsche" Stirnseite herum führenden Stromschiene.
The invention is explained in more detail with reference to the drawing. They show schematically:
  • Fig. 1 shows an asymmetrical rail arrangement of an electrolysis cell up to the traverse of the subsequent cell, with four asymmetrically arranged, under the electrolysis cell by leading conductor rails
  • Fig. 2 shows a rail arrangement of an electrolysis cell up to the traverse of the subsequent cell, with four symmetrically arranged, under the cell by leading current rails and one of two cathode bar ends fed around the "wrong" front side leading current rail.

In die Elektrolysezelle 10 von Fig. 1 sind 24 Kathodenbarren mit in bezug auf die allgemeine Stromrichtung I stromauf 12 und stromab 14 liegenden Kathodenbarrenenden. Diese eisernen Kathodenbarrenenden 12, 14 sind mit Aluminiumschienen verbunden, welche den Strom zur Traverse 16 der Folgezelle führen.In the electrolytic cell 10 of FIG. 1 there are 24 cathode bars with cathode bar ends upstream and downstream 14 with respect to the general current direction I. These iron cathode bar ends 12, 14 are connected to aluminum rails, which conduct the current to the traverse 16 of the subsequent cell.

Im mittleren Bereich der Elektrolysezelle 10 ist eine Gruppe G von vier Stromschienen 18 unter der Elektrolysezelle durch geführt. Diese Stromschienen 18 sind in bezug auf die Zellenquerachse Q, d.h. die symmetrische Position, um zwei Kathodenbarren in Richtung der von der Nachbarzellenreihe abgewandten Stirnseite 20 der Elektrolysezelle 10 verschoben. Im vorliegenden Beispiel werden also 16,7% des aus den stromauf liegenden Kathodenbarrenenden 12 austretenden Stromes über einzelne Stromschienen 18 unter der Elektrolysezelle 10 durch geführt.In the central area of the electrolytic cell 10, a group G of four busbars 18 is passed under the electrolytic cell. These busbars 18 are in relation to the cell transverse axis Q, i.e. the symmetrical position by two cathode bars in the direction of the end face 20 of the electrolytic cell 10 facing away from the neighboring cell row. In the present example, 16.7% of the current emerging from the upstream cathode bar ends 12 is conducted through individual conductor rails 18 under the electrolysis cell 10.

Ueber die Stromschienen 24, welche um die der Nachbarzellenreihe zugewandte Stirnseite 22 der Elektrolysezelle 10 herum geführt werden, fliesst der Strom von 12 Kathodenbarrenenden. Ueber die Stromschienen 26 dagegen, welche um die der Nachbarzellenreihe abgewandte Stirnseite 20 der Elektrolysezelle 10 herum geführt werden, dagegen nur der Strom von 8 Kathodenbarrenenden. Diese Asymmetrie von 4 wird von einer Verschiebung der Gruppe G um 8,3% erzeugt.The current from 12 cathode bar ends flows over the busbars 24, which are guided around the end face 22 of the electrolysis cell 10 facing the row of neighboring cells. On the other hand, only the current of 8 cathode bar ends ends over the busbars 26, which are guided around the end face 20 of the electrolysis cell 10 facing away from the neighboring cell row. This asymmetry of 4 is caused by a shift of the group G by 8.3%.

Die Stromschienen 24, 26 vereinigen sich mit Stromschienen von den stromab liegenden Kathodenbarrenenden 14 und führen in vier in bezug auf die Zellenquerachse Q symmetrisch angeordneten Steigleitungen 28, 30, 32, 34 zur Traverse 16 der Folgezelle 36. Sie münden in die Längsseiten der Traverse 16, die äusseren Steigleitungen 28, 34 sind um je etwa 10%, bezogen auf die gesamte Traversenlänge, von deren Stirnseite eingerückt.The busbars 24, 26 merge with busbars from the downstream cathode bar ends 14 and lead to the traverse 16 in four risers 28, 30, 32, 34 arranged symmetrically with respect to the cell transverse axis Q. the following cell 36. They open into the longitudinal sides of the cross member 16, the outer risers 28, 34 are each indented by about 10%, based on the total cross member length, from the end face thereof.

Bei der Schienenanordnung nach Fig. 2 liegt die Gruppe G der vier unter der Elektrolysezelle durch führenden Stromschienen 18 in bezug auf die Zellenquerachse Q symmetrisch. Sie führen, wie bei Fig. 1, 16,7% des aus den stromauf liegenden Kathodenbarrenenden 12 austretenden Stromes unter der Elektrolysezelle durch. Die Asymmetrie wird erzeugt, indem der Strom von zwei stromauf liegenden Kathodenbarrenenden 12 mittels einer Stromschiene 38 in Längsrichtung der Elektrolysezelle 10 an der Gruppe G vorbei nach der "falschen" Stirnseite 22 der Elektrolysezelle 10 geführt wird. Diese um die der Nachbarzellenreihe zugewandte Stirnseite 22 herum führenden Stromschienen 24 (welche auch den Strom der Stromschiene 38 enthalten) leiten den Strom von 12 stromauf liegenden Kathodenbarrenenden. Die um die der Nachbarzellenreihe abgewandte Stirnseite 20 herum führenden Stromschienen 26 dagegen leiten nur den Strom von 8 stromauf liegenden Kathodenbarrenenden. Damit ergibt sich eine Asymmetrie von 4.In the rail arrangement according to FIG. 2, the group G of the four under the electrolysis cell is guided symmetrically with respect to the cell transverse axis Q by leading conductor rails 18. As in FIG. 1, they carry out 16.7% of the current emerging from the upstream cathode bar ends 12 under the electrolysis cell. The asymmetry is generated in that the current from two upstream cathode bar ends 12 is guided by a bus bar 38 in the longitudinal direction of the electrolytic cell 10 past the group G to the "wrong" end face 22 of the electrolytic cell 10. These current rails 24 (which also contain the current of the current rail 38) lead around the end face 22 facing the row of adjacent cells and conduct the current from 12 cathode bar ends located upstream. The busbars 26 leading around the end face 20 facing away from the neighboring cell row, on the other hand, only conduct the current from 8 cathode bar ends located upstream. This results in an asymmetry of 4.

Die entsprechend von Fig. 1 angeordneten Steigleitungen 28, 30, 32, 34 leiten den elektrischen Gleichstrom in zwei Aeste der Traverse 16 der Folgezelle 36.The riser lines 28, 30, 32, 34 arranged in accordance with FIG. 1 conduct the direct electrical current into two branches of the traverse 16 of the following cell 36.

Bei den Stromschienen 18 ist von wesentlicher Bedeutung, dass sie einzeln, entsprechend dem Abstand der Kathodenbarren, unter der Elektrolysezelle durch geführt werden. Die Stromschienen 24, 26 dagegen können gebündelte Einzelleiter oder ein einziger Leiter mit entsprechendem Querschnitt sein.In the case of the busbars 18, it is essential that they are carried out individually under the electrolysis cell in accordance with the distance between the cathode bars. The Busbars 24, 26, on the other hand, can be bundled individual conductors or a single conductor with a corresponding cross section.

Claims (10)

1. Asymmetrische Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer quergestellten Aluminiumschmelzflusselektrolysezelle zur Traverse der Folgezelle
wobei ein Teil der mit den stromauf liegenden Kathodenbarrenenden verbundenen Stromschienen unter der Elektrolysezelle durch führt, dadurch gekennzeichent, dass
die Schienenkonfiguration im kathodischen Teil der Elektrolysezelle (10) - eine Gruppe (G) von Stromschienen (18), die im mittleren Zellenbereich mit 10 - 40% der stromauf liegenden Kathodenbarrenenden (12) verbunden und einzeln unter der Elektrolysezelle (10) durch führend angeordnet sind, - beidseits dieser Gruppe (G) von Stromschienen (18) paketweise um die Stirnseiten (20,22) der Elektrolysezelle (10) herumführende, mit den restlichen, stromauf liegenden Kathodenbarrenenden (12) verbundene Stromschienen (24,26), und - in 2 - 6 Steigleitungen (28,30,32,34) übergehende, den gesamten elektrischen Strom von stromauf- und stromab liegenden Kathodenbarrenenden aufnehmenden Stromschienen (24,26)
umfasst, wobei die Variation der Asymmetrie des aus den stromauf liegenden Kathodenbarrenenden (12) austretenden Stromes zwischen 3 und 30% liegt.
1. Asymmetrical rail arrangement for conducting the direct electrical current from the cathode bar ends of a transverse aluminum melt flow electrolysis cell to the traverse of the subsequent cell
wherein a part of the busbars connected to the upstream cathode bar ends passes under the electrolytic cell, characterized in that
the rail configuration in the cathodic part of the electrolytic cell (10) a group (G) of busbars (18) which are connected in the central cell region to 10-40% of the upstream cathode bar ends (12) and are arranged individually under the electrolysis cell (10), - On both sides of this group (G) of conductor rails (18) in packets around the end faces (20, 22) of the electrolytic cell (10), with the remaining, upstream cathode bar ends (12) connected conductor rails (24, 26), and - in 2 - 6 risers (28, 30, 32, 34), the entire electrical current from upstream and downstream cathode bar ends receiving current rails (24, 26)
comprises, the variation of the asymmetry of the current emerging from the upstream cathode bar ends (12) being between 3 and 30%.
2. Schienenanordnung nach Anspruch 1, dadurch gekennzeich- net, dass die im mittleren Zellenbereich liegende Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) in bezug auf die Zellenquerachse (Q) um 3 - 30% in von der Nachbarzellenreihe wegweisender Richtung verschoben angeordnet ist, und sämtliche mit den restlichen, stromauf liegenden Kathodenbarrenenden (12) verbundenen Stromschienen (24,26) um die jeweils nähere Stirnseite (20,22) der Elektrolysezelle (10) herum führen.2. Rail arrangement according to claim 1, characterized g ekennzeich- net that the group (G) lying in the middle cell region of individually under the electrolysis cell (10) through the leading conductor rails (18) in relation to the cell transverse axis (Q) to give 3 - 30% is shifted in the direction pointing away from the neighboring cell row, and guide all the busbars (24, 26) connected to the remaining upstream cathode bar ends (12) around the respectively closer end face (20, 22) of the electrolysis cell (10). 3. Schienenanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die im mittleren Zellenbereich liegende Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) in bezug auf die Zellenquerachse (Q) symmetrisch angeordnet ist, 3 - 35% der stromauf liegenden Kathodenbarrenenden (12), welche unmittelbar neben der im mittleren Zellenbereich ange-ordneten Gruppe (G), auf deren von der Nachbarzellenreihe abgewandten Seite, mit mindestens einer Stromschiene (38) verbunden sind, die um die der Nachbarzellenreihe zugewandte Stirnseite (22) der Elektrolysezelle (10) herum führt, während die mit den übrig bleibenden, stromauf liegenden Kathodenbarrenenden (12) verbundenen Stromschienen (24,26) um die jeweils nähere Stirnseite (22,20) der Elektrolysezelle (10) herum führen.3. Rail arrangement according to claim 1, characterized in that the group (G) lying in the middle cell area is arranged symmetrically with respect to the transverse cell axis (Q) from individually under the electrolysis cell (10) by leading current rails (18), 3 - 35% the upstream cathode bar ends (12) immediately adjacent the associated e-in the middle cell region on g group (g), on the side remote from the neighboring cell row side, are connected with at least one busbar (38) to the side facing the neighboring cell row end side (22) of the electrolysis cell (10) leads around, while the current rails (24, 26) connected to the remaining upstream cathode bar ends (12) lead around the respectively closer end face (22, 20) of the electrolysis cell (10). 4. Schienenanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die im mittleren Zellenbereich liegende Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) in bezug auf die Zellenquerachse (Q) um 3 - 30% in von der Nachbarzellenreihe wegweisender Richtung verschoben angeordnet ist, 3 - 35% der stromauf liegenden Kathodenbarrenenden (12), welche unmittelbar neben der im mittleren Zellenbereich angeordneten Gruppe (G), auf deren von der Nachbarzellenreihe abgewandten Seite, mit mindestens einer Stromschiene (38) verbunden sind, die um die der Nachbarzellenreihe zugewandte Stirnseite (22) der Elektrolysezelle (10) herum führt, während die mit den übrig bleibenden, stromauf liegenden Kathodenbarrenenden (12) verbundenen Stromschienen (24,26) um die jeweils nähere Stirnseite (22, 20) der Elektrolysezelle (10) herum führen.4. Rail arrangement according to claim 1, characterized in that the group (G) lying in the central cell area from individually below the electrolysis cell (10) is arranged by leading current rails (18) with respect to the cell transverse axis (Q) by 3 - 30% in the direction pointing away from the neighboring cell row, 3 - 35% of the upstream cathode bar ends (12), which are located directly next to the group arranged in the middle cell area (G), on the side facing away from the neighboring cell row, are connected to at least one busbar (38) which leads around the end face (22) of the electrolytic cell (10) facing the neighboring cell row, while the ends with the remaining, upstream cathode bar ends (12) connected busbars (24, 26) around the respective closer face (22, 20) of the electrolytic cell (10). 5. Schienenanordnung nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, däss die Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) im mittleren Zellenbereich mit 15 - 30% der stromauf liegenden Kathodenbarrenenden verbunden ist.5. Rail arrangement according to one of claims 1-4, characterized in that the group (G) is individually connected under the electrolysis cell (10) by leading current rails (18) in the central cell region with 15-30% of the upstream cathode bar ends. 6. Schienenanordnung nach wenigstens einem der Ansprüche 1, 2, 4 oder 5, dadurch gekennzeichent, dass die Gruppe (G) von einzeln unter der Elektrolysezelle (10) durch führenden Stromschienen (18) im mittleren Zellenbereich um 3 - 20% asymmetrisch verschoben ist.6. Rail arrangement according to at least one of claims 1, 2, 4 or 5, characterized gekennzeichent that the group (G) is shifted asymmetrically by individually under the electrolysis cell (10) by leading current rails (18) in the central cell area by 3 - 20% . 7. Schienenanordnung nach wenigstens einem der Ansprüche 1 und 3 - 6, dadurch gekennzeichnet, dass 3 - 20% der stromauf liegenden Kathodenbarrenenden (12), welche unmittelbar neben der im mittleren Zellenbereich angeordneten Gruppe (G), auf deren von der Nachbarzellenreihe abgewandten Seite, mit Stromschienen (38) verbunden sind, die um die der Nachbarzellenreihe zugewandte Stirnseite (22) der Elektrolysezelle (10) herum führen.7. Rail arrangement according to at least one of claims 1 and 3-6, characterized in that 3 - 20% of the upstream cathode bar ends (12), which un Indirectly next to the group (G) arranged in the middle cell area, on the side facing away from the neighboring cell row, are connected to busbars (38) which lead around the end face (22) of the electrolytic cell (10) facing the neighboring cell row. 8. Schienenanordnung nach wenigstens einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass alle Steigleitungen (28,30,32,34) seitlich in die Traverse (16) der Folgezelle (36) einmünden und die beiden äusseren Steigleitungen (28,34) je mindestens 5%, bezogen auf die Länge der Traverse (16), von der Stirnseite nach innen verschoben sind.8. Rail arrangement according to at least one of claims 1-7, characterized in that all risers (28,30,32,34) open laterally into the crossmember (16) of the following cell (36) and the two outer risers (28,34) at least 5%, based on the length of the crossmember (16), are shifted inwards from the end face. 9. Schienenanordnung nach Anspruch 8-dadurch gekennzeichnet, dass vorzugsweise 3 - 4 max.,jedoch sechs Steigleitungen vorgesehen sind. 9 . Rail arrangement according to claim 8, characterized in that preferably 3-4 max., But six risers are provided. 10. Schienenanordnung nach wenigstens einem der Ansprüche 7 - 9, dadurch gekennzeichnet, dass die Steigleitungen in bezug auf die Zellenquerachse (Q) symmetrisch in die Traverse (16) der Folgezelle (36) einmünden.10. Rail arrangement according to at least one of claims 7-9, characterized in that the risers open symmetrically with respect to the cell transverse axis (Q) in the crossmember (16) of the following cell (36).
EP83810225A 1982-06-23 1983-05-31 Bus bars arrangement for electrolytic cells Expired EP0097613B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83810225T ATE21128T1 (en) 1982-06-23 1983-05-31 RAIL ARRANGEMENT FOR ELECTROLYTIC CELLS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3838/82 1982-06-23
CH3838/82A CH648065A5 (en) 1982-06-23 1982-06-23 RAIL ARRANGEMENT FOR ELECTROLYSIS CELLS OF AN ALUMINUM HUT.

Publications (2)

Publication Number Publication Date
EP0097613A1 true EP0097613A1 (en) 1984-01-04
EP0097613B1 EP0097613B1 (en) 1986-07-30

Family

ID=4264560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83810225A Expired EP0097613B1 (en) 1982-06-23 1983-05-31 Bus bars arrangement for electrolytic cells

Country Status (10)

Country Link
US (1) US4474611A (en)
EP (1) EP0097613B1 (en)
AT (1) ATE21128T1 (en)
AU (1) AU563942B2 (en)
CA (1) CA1232868A (en)
CH (1) CH648065A5 (en)
DE (1) DE3364929D1 (en)
IS (1) IS1260B6 (en)
NO (1) NO161688C (en)
ZA (1) ZA834224B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185822A1 (en) * 1984-12-28 1986-07-02 Alcan International Limited Busbar arrangement for aluminium electrolytic cells
EP0345959A1 (en) * 1988-06-06 1989-12-13 Norsk Hydro A/S Arrangement of busbars on large, transversely disposed electrolysis cells
WO2000046429A1 (en) * 1999-02-05 2000-08-10 Aluminium Pechiney Electrolytic cell arrangement for production of aluminium

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2552782B1 (en) * 1983-10-04 1989-08-18 Pechiney Aluminium ELECTROLYSIS TANK WITH INTENSITY HIGHER THAN 250,000 AMPERES FOR THE PRODUCTION OF ALUMINUM BY THE HALL-HEROULT PROCESS
US4976841A (en) * 1989-10-19 1990-12-11 Alcan International Limited Busbar arrangement for aluminum electrolytic cells
FR2806742B1 (en) 2000-03-24 2002-05-03 Pechiney Aluminium INSTALLATION OF FACILITIES OF AN ELECTROLYSIS PLANT FOR THE PRODUCTION OF ALUMINUM
CN100439566C (en) * 2004-08-06 2008-12-03 贵阳铝镁设计研究院 Five power-on bus distributing style with different current
CN100451177C (en) * 2004-08-06 2009-01-14 贵阳铝镁设计研究院 Asymmetric type tank bottom bus and current distributing style
FI121472B (en) * 2008-06-05 2010-11-30 Outotec Oyj Method for Arranging Electrodes in the Electrolysis Process, Electrolysis System and Method Use, and / or System Use
CN103243350B (en) * 2013-05-20 2015-10-21 中南大学 A kind of aluminum cell side conductive cathode structure reducing aluminum liquid horizontal electric current
US10128486B2 (en) 2015-03-13 2018-11-13 Purdue Research Foundation Current interrupt devices, methods thereof, and battery assemblies manufactured therewith
GB2542588B (en) * 2015-09-23 2019-04-03 Dubai Aluminium Pjsc Cathode busbar system for electrolytic cells arranged side by side in series

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2333060A1 (en) * 1975-11-28 1977-06-24 Pechiney Aluminium METHOD AND DEVICE FOR COMPENSATION OF THE MAGNETIC FIELDS OF NEAR WIRES OF IGNEE ELECTROLYSIS TANKS PLACED THROUGH
GB2027056A (en) * 1978-08-04 1980-02-13 Alusuisse Electrolytic reduction cell with compensating components in its magnetic field

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216843B2 (en) * 1973-10-26 1977-05-12
FR2324761A1 (en) * 1975-09-18 1977-04-15 Pechiney Aluminium METHOD AND DEVICE FOR SUPPLYING ELECTRIC CURRENT TO IGNEE ELECTROLYSIS VESSELS PLACED THROUGH
CH648605A5 (en) * 1980-06-23 1985-03-29 Alusuisse RAIL ARRANGEMENT OF AN ELECTROLYSIS CELL.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2333060A1 (en) * 1975-11-28 1977-06-24 Pechiney Aluminium METHOD AND DEVICE FOR COMPENSATION OF THE MAGNETIC FIELDS OF NEAR WIRES OF IGNEE ELECTROLYSIS TANKS PLACED THROUGH
GB2027056A (en) * 1978-08-04 1980-02-13 Alusuisse Electrolytic reduction cell with compensating components in its magnetic field

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185822A1 (en) * 1984-12-28 1986-07-02 Alcan International Limited Busbar arrangement for aluminium electrolytic cells
EP0345959A1 (en) * 1988-06-06 1989-12-13 Norsk Hydro A/S Arrangement of busbars on large, transversely disposed electrolysis cells
WO2000046429A1 (en) * 1999-02-05 2000-08-10 Aluminium Pechiney Electrolytic cell arrangement for production of aluminium
FR2789407A1 (en) * 1999-02-05 2000-08-11 Pechiney Aluminium ARRANGEMENT OF ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM

Also Published As

Publication number Publication date
EP0097613B1 (en) 1986-07-30
ATE21128T1 (en) 1986-08-15
IS2813A7 (en) 1983-12-24
NO161688B (en) 1989-06-05
IS1260B6 (en) 1986-11-24
AU1595183A (en) 1984-01-05
CA1232868A (en) 1988-02-16
CH648065A5 (en) 1985-02-28
NO832244L (en) 1983-12-27
DE3364929D1 (en) 1986-09-04
NO161688C (en) 1989-09-13
AU563942B2 (en) 1987-07-30
US4474611A (en) 1984-10-02
ZA834224B (en) 1984-03-28

Similar Documents

Publication Publication Date Title
EP0097613B1 (en) Bus bars arrangement for electrolytic cells
DE2613867C3 (en) Rectangular fused metal electrolysis cells arranged transversely one behind the other
EP0042815B1 (en) Bus-bar arrangement for electrolytic cells
DE2131473C2 (en) Conductor arrangement to compensate for harmful magnetic influences from rows of electrolytic cells on neighboring rows of cells
EP0787833B1 (en) Conductor arrangement for electrolytic cells
EP0072778B1 (en) Bus bar arrangement for electrolysis cells
DE2841205C3 (en) Electrolysis cell with compensated magnetic field components
DE2801650C2 (en) Circuit arrangement for the electrical power supply of electrolytic cells in a longitudinal arrangement
EP0033714B1 (en) Busbar system for electrolysis cells
EP0034117A2 (en) Asymmetrical busbar system for electrolysis cells
DE102004008813B3 (en) Process and installation for the electrochemical deposition of copper
DE2850469A1 (en) ELECTROLYSIS REDUCTION CELL
DE3012697A1 (en) METHOD OF STABILIZING AN ALUMINUM METAL LAYER IN AN ALUMINUM ELECTROLYTIC CELL
DE3618588C2 (en)
DE3102637C2 (en)
CH636908A5 (en) ARRANGEMENT FOR COMPENSATING MAGNETIC FIELDS IN MELTING MOLDS.
EP1015671A2 (en) Method and device for energy saving simultaneous electrolytic treatment of several workpieces
DE3004071A1 (en) Cathode bus=bars for mfg. aluminium in electrolysis cells - where bus=bars are divided into two lengths to reduce voltage drop between adjacent cells
DE1771753B2 (en) CATHODIC CURRENT CONDUCTION TO ELECTROLYSIS CELLS
DE1758664C (en) Process to compensate for the magnetic effects in electrolysis furnace with high current strength for the manufacture of aluminum and rail system to carry out the process
EP2776609A1 (en) Electrolytic cell, in particular for producing aluminum, having a tub-shaped cathode
DE1758664B2 (en) PROCESS FOR COMPENSATING THE MAGNETIC EFFECTS IN ELECTROLYSIS OVENS WITH HIGH CURRENT FOR THE PRODUCTION OF ALUMINUM AND RAIL SYSTEM FOR PERFORMING THE PROCESS
DE2822310A1 (en) Bus=bars for aluminium producing electrolyser - has left cathode stack with portion running length of transverse wall towards right stack
DE1934198A1 (en) Electroplating of metals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840622

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 21128

Country of ref document: AT

Date of ref document: 19860815

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3364929

Country of ref document: DE

Date of ref document: 19860904

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920416

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920531

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920610

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930531

Ref country code: AT

Effective date: 19930531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930531

EAL Se: european patent in force in sweden

Ref document number: 83810225.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020523

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020524

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020528

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020604

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030530

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed