EP0097097B1 - Verfahren zum Wärmeaustausch mit direkter Berührung zwischen gasigen und flüssigen Mitteln und Wärmetauscher zur Durchführung dieses Verfahrens - Google Patents

Verfahren zum Wärmeaustausch mit direkter Berührung zwischen gasigen und flüssigen Mitteln und Wärmetauscher zur Durchführung dieses Verfahrens Download PDF

Info

Publication number
EP0097097B1
EP0097097B1 EP83401179A EP83401179A EP0097097B1 EP 0097097 B1 EP0097097 B1 EP 0097097B1 EP 83401179 A EP83401179 A EP 83401179A EP 83401179 A EP83401179 A EP 83401179A EP 0097097 B1 EP0097097 B1 EP 0097097B1
Authority
EP
European Patent Office
Prior art keywords
liquid
chamber
gaseous
conical
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83401179A
Other languages
English (en)
French (fr)
Other versions
EP0097097A1 (de
Inventor
Georges Gustave André Ignace Gautier
Charles Ludovic Etienne Provost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sarl Etudes & Realisations De Technique Thermique Ertt
Original Assignee
Sarl Etudes & Realisations De Technique Thermique Ertt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sarl Etudes & Realisations De Technique Thermique Ertt filed Critical Sarl Etudes & Realisations De Technique Thermique Ertt
Priority to AT83401179T priority Critical patent/ATE31810T1/de
Publication of EP0097097A1 publication Critical patent/EP0097097A1/de
Application granted granted Critical
Publication of EP0097097B1 publication Critical patent/EP0097097B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour

Definitions

  • the present invention relates to the transfer of heat between a gas and a liquid according to the process known as by direct exchange.
  • the transfer of the calories contained in a flow of hot gases (for example a combustion gas) to a liquid, by bringing the sprayed liquid into direct contact with the hot gas, in particular by spraying the liquid into a vertical chamber traversed by the flow of gas, is known and described for example in US-A-4 287 138.
  • the vertical chamber has a heat exchange zone in which are arranged a plurality of nozzles, spraying cold water, some down, the rest up.
  • the bottom of the chamber has a receiver for water which has warmed up in the heat exchange zone in contact with hot gases; the transfer of heat from the gases to the water takes place in a turbulent and anarchic manner, by entanglement of the drops coming from upstream and downstream of the chamber, escaping the possibility of reliable forecast calculation, the process of emission of water against the current of the gas causing additional pressure drops.
  • Heat transfer by direct exchange is subject to various limitations.
  • a first limitation results from the vapor pressure of the liquid in the gas with which the heat exchange takes place because, since the vaporization of the liquid is endothermic, the vapors entrained by the outgoing gases constitute a loss.
  • the efficiency of the heat exchange is a function of the difference in temperatures at the level of the exchange surface, the surface of the exchange surface and the duration of the contact.
  • the temperature of heating of the liquid which is in any case lower than its boiling point, is all the lower the higher the ratio of calorific mass of the liquid to the calorific mass of the gas but the yield is d 'the higher the lower the latter ratio.
  • Document US-A-2838135 describes a process for recovering the heat transported by hot gases which uses two cooling stages each consisting of an enclosure which contains lining materials such as Raschig rings, these enclosures being traversed in series by the hot gas and the filling charge of each chamber being sprinkled by the cold liquid which is uniformly distributed over the charge by atomization nozzles directed downwards.
  • the forecast calculation of the exchanges is random and the head losses high.
  • each stage operates independently according to an indirect heat exchange process without, in one stage, the gas which cools when passing through the stage is constantly brought into contact with droplets of fresh liquid which has not yet undergone heat exchange.
  • the aim of the present invention is to solve the problems which have been mentioned above, firstly by obtaining a better efficiency of the heat exchange, which results in cooler gases at the outlet and, secondly, by obtaining a liquid at a temperature close to the vaporization temperature of said liquid in the gas introduced.
  • the spraying is carried out so as to obtain droplets having an average diameter of the order of a millimeter.
  • the liquid vaporizes, absorbing calories, but the temperature of the mixture gas and vapor cools and said calories absorbed by the vaporization are returned to the liquid constituting the following layers whose volume increases by the volume of the condensed vapors. It can therefore be seen that a significant part of the heat transfer takes place at the level of the upstream layers with a significant temperature difference between the gases and the liquid, therefore with a high efficiency.
  • the exchange takes place at the level of each layer between the entire volume of the gases and a fraction of the total volume of the liquid corresponding to the flow supplying the exchanger.
  • the system therefore produces a system equivalent to a plurality of cascade exchangers which each operate with the difference of maximum temperature, therefore the maximum possible yield.
  • each droplet Due to the very large volume surface of the liquid in the form of fine droplets, the heat exchange coefficient is high and in the layers where vapor condensation takes place, each droplet forms a condensation nucleus, the multiplicity of droplets promoting this condensation with direct transfer of calories into the mass of the droplet.
  • the projection is carried out in the form of conical layers.
  • the duration of the contact is increased, compared to a radial ply, like the inverse of the square of the sine of the half-angle at the top of the ply, the length of the path of the liquid from the center to the wall being equal to the radius of the gas stream divided by the sine of the angle and the thickness of the sheet parallel to the axis, that is to say according to the direction of circulation of the gas flow, being equal to the thickness of the sheet divided by the same sine.
  • the liquid is introduced into at least two circuits at different temperatures, the method then being characterized in that each circuit comprises a plurality of conical spray layers arranged in series, these being therefore distributed in at least two superimposed and independent groups.
  • each circuit comprises a plurality of conical spray layers arranged in series, these being therefore distributed in at least two superimposed and independent groups.
  • the liquid flow collected from a group located further downstream in the gas flow is used to feed the sheets of another group located further upstream.
  • the conical layers open downstream in the direction of circulation of the gaseous fluid.
  • the gas flow is imposed on a helical trajectory. All these factors which increase the duration of contact are of significant importance in the process according to the invention in which, to reach the wall of the vein and in the form of fine droplets, the spraying must be done under a significant pressure therefore at high speed.
  • the liquid which reaches the wall of the gas stream has, in the most upstream layers, a temperature close to the vaporization temperature since this liquid has passed through gases at high temperature while partially vaporizing and, in the following layers, a similar temperature since the gases are, at this level, at the temperature of condensation of the liquid, the volume reaching the wall being partly formed of condensed vapors.
  • the liquid has a decreasing temperature downstream because it has passed through an increasingly cold gas stream with temperatures tending towards equilibrium.
  • the present invention also relates to an apparatus for implementing the above direct contact heat transfer method, comprising a vertical cylindrical exchange chamber with, at one end, an inlet and, at the other end , an outlet for the gases and means for spraying a liquid into the gas flow passing through this chamber, these means being constituted by a plurality of coaxial spray nozzles arranged in the center and staggered in said exchange chamber according to the direction of circulation of the gaseous fluid and supplied from a source of supply of liquid under common pressure, these nozzles spraying the liquid in the form of a thin conical sheet, the conical sheets sprayed from said nozzles being parallel and independent, characterized in that all the nozzles are oriented in the same direction and create spray jets in conical layers which are collected at the periphery of the layer on the wall of the room.
  • the spray nozzles spray in a conical sheet opening upwards and downstream of the gas flow.
  • the spray nozzles for the liquid are divided into at least two groups supplied independently.
  • At least one peripheral chute is provided along the periphery of the chamber and at an intermediate level thereof to collect the liquid from the sheets which flows on the wall.
  • means are preferably provided to take up the liquid collected by a chute and discharge it towards the spray nozzles of a second circuit.
  • means are provided for giving the gas flow a helical rotational movement.
  • These means can be constituted by a tangential inlet and / or directing fins.
  • Figure 1 is a schematic axial sectional view of an exchanger and Figure 2 is a horizontal sectional view by .II-II of Figure 1.
  • the reference 1 designates the cylindrical wall delimiting the chamber of the exchanger
  • 2 is the inlet for the hot gases located at the lower part of the chamber, this inlet opening tangentially over a width approximately equal to the radius of the chamber
  • 3 designates the axial gas outlet.
  • the reference 4 designates helical guide vanes fixed on the inner wall of the lower part of the chamber to accentuate the helical gas circulation.
  • spray nozzles 5 are arranged along the axis of the chamber being substantially regularly spaced and they are supported by their supply pipe 6, the pipes being carried by boxes 7 inserted in the wall 1 and supplied with pressurized water from supply ramps 8.
  • the nozzles 5 are associated with nozzles to give spray jets 9 in thin conical layers.
  • the spraying is ef-. carried out under a pressure of approximately 3 ⁇ 10 5p and gives droplets of approximately 0.4 to 0.7 mm in diameter, the apex angle a being 70 °.
  • the spray nozzles are divided into two groups A and B supplied by independent booms, group A being located at the highest point, that is to say downstream in the direction of smoke circulation and group B upstream.
  • group A On the internal wall and in line with the separation between the highest conical sheet 9b of group B and the lowest conical sheet 9a of group A is made a peripheral chute 10 intended to collect the water from the sheets 9a which s flows on the upper part of the wall.
  • the collected water is evacuated by a pipe 11 in a tank 12 from where it is taken up by a pump 13 to supply by the ramp 8, the nozzles 5 of group B.
  • the water sprayed by the nozzles 5 flows along the wall of the lower part of the chamber and is collected in a tarpaulin 14.
  • the exchanger operates in the following way: the hot gases arrive at a temperature T F by the inlet 2 and circulate in an upward helical movement in the chamber to be evacuated by the outlet 3 at a temperature T s , the circulation taking place by natural or forced draft.
  • the water is introduced at a temperature t o and under a pressure of 3 x 10 5 P, which may be the pressure of the supply network, by the ramp 8 of group A, it is sprayed at this temperature t o by the sprayers 5 of group A in the form of conical sheets.
  • This water at temperature t 1 is taken up by the pump 13 and sprayed under the same pressure by the nozzles 5 of group B in the form of conical layers 9b.
  • the temperature difference T F -t i is high, the exchange efficiency is high and part of the water will pass into the vapor state.
  • the coolant is water and the hot gases are combustion gases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chimneys And Flues (AREA)

Claims (12)

1. Verfahren zum Wärmeaustausch durch direkte Berührung zwischen einem gasförmigen Medium und einem flüssigen Medium, in das man das gasförmige Medium an einem Ende einer zylindrischen vertikalen Kammer (1) einführt und am anderen Ende derselben daraus abzieht, wobei das gasförmige Medium in dieser Kammer in Form einer zylindrischen Säule mit im wesentlichen parallelen fluiden Schlieren zirkuliert und in das man die Flüssigkeit durch die Wand der Kammer einführt und sie in der Kammer mit Hilfe einer Mehrzahl von koaxialen Zerstäubungsdüsen zerstäubt, die im Zentrum angeordnet sind und in der Zirkulationsrichtung des gasförmigen Mediums verteilt angeordnet sind und die von einer gemeinsamen Druckflüssigkeitsquelle versorgt sind, wobei mehrere konische Flüssigkeitslamellen in koaxialen dünnen Schichten ausgebildet werden, die sich von jeder Düse bis zum Umfang der Kammer erstrecken, jede konische Lamelle einer Düse entspricht und die konischen Lamellen aus zerstäubter Flüssigkeit von den verschiedenen Düsen unabhängig voneinander sind und nacheinander von der Gasströmung durchquert werden, dadurch gekennzeichnet, dass die in jeder Lamelle zerstäubte Flüssigkeit am Rand der Lamelle auf der Wand der Kammer aufgefangen wird.
2. Verfahren zum Wärmeaustausch nach Anspruch 1, bei welchem man das flüssige Medium in wenigstens zwei Kreisen unterschiedlicher Temperatur einbringt, dadurch gekennzeichnet, dass jeder Kreis mehrere konische Zerstäubungslamellen aufweist, die in Serie angeordnet sind, wobei diese daher in wenigstens zwei übereinanderliegende und unabhängige Gruppen unterteilt sind.
3. Verfahren zum Wärmeaustausch nach Anspruch 2, dadurch gekennzeichnet, dass die aufgefangene Flüssigkeitsströmung, die von einer Gruppe stammt, die weiter stromabwärts in der Gasströmung gelegen ist, dazu verwendet wird, die Lamellen einer anderen Gruppe zu versorgen, die weiter stromaufwärts gelegen ist.
4. Verfahren zum Wärmeaustausch nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sich die konischen Lamellen nach stromabwärts gemäss der Zirkulationsrichtung des gasförmigen Mediums öffnen.
5. Verfahren zum Wärmeaustausch nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man der Gasströmung eine wendelförmige Bahn verleiht.
6. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5, enthaltend eine vertikale zylindrische Berührungskammer mit einem Einlass am einen Ende und einem Auslass am anderen Ende für die Gase und Einrichtungen zum Zerstäuben einer Flüssigkeit in die Gasströmung, die diese Kammer durchquert, wobei diese Einrichtungen von mehreren koaxialen Zerstäubungsdüsen gebildet sind, die im Zentrum angeordnet und in der Berührungskammer in der Zirkulationsrichtung des gasförmigen Mediums verteilt sind und von einer gemeinsamen Druckflüssigkeitsquelle versorgt sind, wobei die Düsen die Flüssigkeit in Form einer dünnen konischen Lamelle-zerstäuben, die von den Düsen zerstäubten konischen Lamellen parallel und unabhängig voneinander sind, dadurch gekennzeichnet, dass alle Düsen in die gleiche Richtung (9b) weisen und Zerstäubungsstrahlen in konischen Lamellen erzeugen, die am Umfang der Lamelle auf der Wand der Kammer aufgefangen werden.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass bei von unten nach oben zirkulierendem Gas die Zerstäubungsdüsen (5) in einer Lamelle zerstäuben, die sich nach oben und stromabwärts zur gasförmigen Strömung öffnet.
8. Vorrichtung nach einem der Ansprüche 6 und 7, dadurch gekennzeichnet, dass die Zerstäubungsdüsen für die Flüssigkeit in wenigstens zwei Gruppen unterteilt sind, die unabhängig voneinander versorgt sind.
9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass wenigstens längs dem Umfang der Kammer (9) und in einer Zwischenhöhe derselben wenigstens eine Umfangsrinne (10) vorgesehen ist, um die Flüssigkeit der Lamellen aufzufangen, die auf der Wand abläuft.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass Einrichtungen (12) vorgesehen sind, um die von einer Rinne (10) aufgefangene Flüssigkeit aufzunehmen und sie den Zerstäubungsdüsen (5) eines zweiten Kreises (8B) zuzuführen.
11. Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass Einrichtungen
(4) vorgesehen sind, um der gasförmigen Strömung eine schraubenlinienförmige Drehbewegung zu verleihen.
EP83401179A 1982-06-10 1983-06-09 Verfahren zum Wärmeaustausch mit direkter Berührung zwischen gasigen und flüssigen Mitteln und Wärmetauscher zur Durchführung dieses Verfahrens Expired EP0097097B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83401179T ATE31810T1 (de) 1982-06-10 1983-06-09 Verfahren zum waermeaustausch mit direkter beruehrung zwischen gasigen und fluessigen mitteln und waermetauscher zur durchfuehrung dieses verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8210363 1982-06-10
FR8210363A FR2528556B1 (fr) 1982-06-10 1982-06-10 Procede et appareil d'echange direct de chaleur a demultiplication multiple entre fluides gazeux et liquides

Publications (2)

Publication Number Publication Date
EP0097097A1 EP0097097A1 (de) 1983-12-28
EP0097097B1 true EP0097097B1 (de) 1988-01-07

Family

ID=9274984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83401179A Expired EP0097097B1 (de) 1982-06-10 1983-06-09 Verfahren zum Wärmeaustausch mit direkter Berührung zwischen gasigen und flüssigen Mitteln und Wärmetauscher zur Durchführung dieses Verfahrens

Country Status (4)

Country Link
EP (1) EP0097097B1 (de)
AT (1) ATE31810T1 (de)
DE (1) DE3375203D1 (de)
FR (1) FR2528556B1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK170217B1 (da) * 1993-06-04 1995-06-26 Man B & W Diesel Gmbh Stor trykladet forbrændingsmotor og fremgangsmåde til drift af en køler til afkøling af en sådan motors indsugningsluft.
DK170218B1 (da) * 1993-06-04 1995-06-26 Man B & W Diesel Gmbh Stor trykladet dieselmotor
WO1998058221A1 (en) * 1997-06-16 1998-12-23 Izot Isaevich Dyment Method and apparatus for cooling liquid in cooling tower
US6644566B1 (en) * 2000-09-21 2003-11-11 Baltimore Aircoil Company, Inc. Water distribution conduit
WO2008059065A1 (de) 2006-11-17 2008-05-22 Chemetall Gmbh Koordinationsverbindungen der borgruppe

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1658533A (en) * 1927-01-12 1928-02-07 Leon T Mart Spray-cooling-cone device
US2654584A (en) * 1950-09-29 1953-10-06 Research Corp Gas cooling contact apparatus
US2838135A (en) * 1954-01-26 1958-06-10 Pilo Claes Wilhelm Process for the recovery of heat from hot gases
US2820620A (en) * 1954-07-22 1958-01-21 Kaiser Aluminium Chem Corp Apparatus and process for heating liquids
US3163498A (en) * 1961-10-06 1964-12-29 Foster Wheeler Corp Quench apparatus for reactor tube exits
DE1952507B2 (de) * 1969-10-17 1971-07-01 Hutten Friedrich Karl Frhr Von Nassentstaubungsanlage
US4028440A (en) * 1974-03-11 1977-06-07 Baltimore Aircoil Company, Inc. Method and apparatus of multi stage injector cooling
US4287138A (en) * 1979-02-02 1981-09-01 Buckner Lynn A Direct contact gaseous to liquid heat exchange and recovery system
US4345916A (en) * 1980-05-19 1982-08-24 Richards Clyde N Means and method for removing airborne particulates from an aerosol stream

Also Published As

Publication number Publication date
FR2528556A1 (fr) 1983-12-16
FR2528556B1 (fr) 1988-01-29
ATE31810T1 (de) 1988-01-15
EP0097097A1 (de) 1983-12-28
DE3375203D1 (en) 1988-02-11

Similar Documents

Publication Publication Date Title
EP0425363B1 (de) Dampfpumpe mit Gegenstromaustauscher für Luft und Verbrennungsprodukte ohne Zwischenfluid
EP1846721B1 (de) Glasschmelzofen
EP0407278B1 (de) Trocknungsturm für körnige Produkte
FR2608461A1 (fr) Installation et procede perfectionnes d'extraction de petrole, de gaz et de sous-produits a partir de schistes bitumineux et d'autres matieres impregnees d'hydrocarbures
EP0097097B1 (de) Verfahren zum Wärmeaustausch mit direkter Berührung zwischen gasigen und flüssigen Mitteln und Wärmetauscher zur Durchführung dieses Verfahrens
EP0077715B1 (de) Modultrockner zum Trocknen von Getreide
EP0099833B1 (de) Vorrichtung zur Umwandlung und Rückgewinnung von Wärmeenergie
CA2162701C (fr) Procede de regulation du niveau thermique d'un solide dans un echangeur de chaleur presentant des nappes cylindriques de tubes
BE538399A (fr) Procédé et installation pour le traitement de liquides, de préférence dans l'industrie des boissons, notamment du lait
CA2012714A1 (fr) Procede et appareil de chauffage d'un flux de fluide gazeux par echanges thermiques successifs
KR20110106711A (ko) 고온 증기 이용 방법 및 장치
EP0730131A1 (de) Vorrichtung zum Kühlen einer Flüssigkeit oder Kondensieren von Dampf
FR2678047A1 (fr) Dispositif de traitement des fumees chaudes et polluees, notamment acides, provenant de la combustion du fuel dans une chaudiere industrielle ou de chauffage urbain.
FR2543663A1 (fr) Chaudiere de chauffage a condensation
FR2720147A1 (fr) Séchoir économique et non polluant pour produits en grains.
EP0233826B1 (de) Verfahren und Vorrichtung für die Rückgewinnung von Wärme in Anlagen, die warme, dampfhaltige Luft abgeben, und für die Erhöhung der Produktivität dieser Anlagen
EP1773502B1 (de) Sprühdüse
FR2476817A2 (fr) Procede de sechage d'un solide en particules par soufflage d'air chauffe dans un echangeur thermique, et sechoir mettant en oeuvre le procede
RU2263254C1 (ru) Контактный теплообменник
FR2484070A1 (fr) Echangeur de chaleur perfectionne a condensation
FR2790544A1 (fr) Dispositif pour l'extraction de chaleur a partir de gaz et four equipe du dispositif
EP3194874A1 (de) Wärmerohr und verfahren zur herstellung eines wärmerohrs
SU1015233A1 (ru) Пр моточный смешивающий конденсатор
FR2640028A2 (fr) Chaudiere a condensation pour chauffage a fluide caloporteur
BE518186A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840621

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880107

REF Corresponds to:

Ref document number: 31810

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

REF Corresponds to:

Ref document number: 3375203

Country of ref document: DE

Date of ref document: 19880211

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890630

Ref country code: CH

Effective date: 19890630

Ref country code: BE

Effective date: 19890630

BERE Be: lapsed

Owner name: SARL ETUDES & REALISATIONS DE TECHNIQUE THERMIQUE

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900101

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900301

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EAL Se: european patent in force in sweden

Ref document number: 83401179.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990629

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020617

Year of fee payment: 20

EUG Se: european patent has lapsed