EP0096823A2 - Method for the recuperation of heat from flue gases - Google Patents

Method for the recuperation of heat from flue gases Download PDF

Info

Publication number
EP0096823A2
EP0096823A2 EP83105567A EP83105567A EP0096823A2 EP 0096823 A2 EP0096823 A2 EP 0096823A2 EP 83105567 A EP83105567 A EP 83105567A EP 83105567 A EP83105567 A EP 83105567A EP 0096823 A2 EP0096823 A2 EP 0096823A2
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
heat
flue gases
heat transfer
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83105567A
Other languages
German (de)
French (fr)
Other versions
EP0096823A3 (en
EP0096823B1 (en
Inventor
Winfried Prof. Dr.-Ing. Buschulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority to AT83105567T priority Critical patent/ATE12543T1/en
Publication of EP0096823A2 publication Critical patent/EP0096823A2/en
Publication of EP0096823A3 publication Critical patent/EP0096823A3/en
Application granted granted Critical
Publication of EP0096823B1 publication Critical patent/EP0096823B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Definitions

  • the invention relates to a method for recovering heat from flue gases, in which the flue gases are brought into contact with a coolant in a heat exchanger via heat transfer surfaces, thereby partially condensing the components of the flue gas and draining off the condensate.
  • This object is achieved according to the invention in a method of the type described at the outset by passing the flue gases essentially vertically from bottom to top along at least one continuous heat transfer surface through the heat exchanger by choosing the length of the heat exchanger and / or the temperature of the coolant in such a way that the condensation occurs in the upper area of the heat exchanger and that the resulting condensate is completely drained off at the bottom of the heat exchanger.
  • the hot flue gas is therefore introduced from below into flue gas heat exchanger channels arranged vertically between the heat transfer surfaces and is led upwards with cooling. From a certain height, the wall temperature takes on a value which is below the boiling temperature of the water-acid mixture, so that from this point onwards a liquid film forms, because water and acid increasingly condense. This produces an acid of very weak concentration (approx. 750 mg of acid re on 1 1 water). Due to the vertical arrangement of the heat exchanger surfaces and the vertical guidance of the flue gas, the condensate flows away from the flue gas flow and also wets the heat exchanger walls below, which would normally remain dry due to the still high flue gas temperatures.
  • the weakly concentrated condensate flowing down the heat exchanger surface prevents deposits and incrustations from forming in the area of the dew point limit. These usually occur in the dew point range in that the boiling points of water on the one hand and sulfurous acid or sulfuric acid on the other are different (water 373 K, sulfuric acid 611 K). For this reason, the sulfuric acid normally condenses at a lower point than the water, so that highly concentrated liquid acid initially forms in the transition area. However, the condensate generated above this critical area flows downward in the opposite direction to the flue gas flow and rinses off and dilutes the condensed sulfuric acid and the condensed sulfuric acid in this critical area. This rinsing effect effectively prevents deposits and incrustation in this area.
  • the overheated flue gas in the lower part of the heat exchanger evaporates part of the falling film and carries it along with its upward flow. This will make the flue gas because of the ent absorption of heat of vaporization and the supply of water vapor cooled faster to the thaw temperature. Mixing with the water vapor promotes heat transfer to the heat transfer surfaces via mass transfer. The condensate is finally cooled well by the long path along the wall before it is completely drained off at the bottom of the heat exchanger.
  • the gases emerging from the heat exchanger are further cooled in the evaporator of a heat pump and the condensate which is produced is allowed to flow from top to bottom over the heat exchanger to flush the heat transfer surfaces.
  • This additional flushing with the condensate recovered reinforces the advantageous effects explained above, which occur when the condensate trickles down on the heat transfer surfaces.
  • the residual gas heat exchanger shown in the drawing has an outer wall 1 which surrounds the actual heat exchanger on all sides and which can be made of ceramic, metal, plastic or another material.
  • the space available to the flue gases is delimited by heat transfer surfaces 8 which extend essentially vertically in the area between the annular space 4 and the annular collecting space 6 and continuously pass from bottom to top without having any projections or recesses.
  • the heat exchanger is filled with a coolant 9, which can be introduced into the heat exchanger via a feed line 10 arranged on the top side and can be removed again via a discharge line 11 arranged on the bottom side.
  • a coolant 9 is in direct thermal contact with the heat transfer surfaces 8.
  • a condensate drain 12 is provided on the underside of the annular space 4, which condensate completely drains off from the heat exchanger on the underside of the annular space 4.
  • the flue gas having a high temperature comes out of the burner 3 via a boiler system in the lower annular space 4 and flows vertically upwards from it. through the .transmission channels to the annular plenum 6, from which it leaves the heat exchanger via the discharge line 7 again.
  • the flue gas flows from bottom to top, it is cooled, the heat extracted from the flue gas being supplied to the coolant via the heat transfer surfaces.
  • the length of the heat transfer channels and / or the temperature of the coolant are chosen so that the flue gas is cooled below the dew point in the upper part of the heat exchanger, so that condensation occurs.
  • the resulting condensate runs down the inside of the heat transfer channels on the heat transfer surfaces and rinses them in the manner described above, whereby on the one hand a build-up of concentrated acid on the heat transfer surfaces is avoided, while on the other hand the effectiveness of the heat transfer through the condensate is increased.
  • the condensate flowing down rinses the heat transfer surfaces of the heat transfer channels over their entire length and finally collects on the underside of the lower annular space 4, where it is completely removed from the heat exchanger via the condensate drain 12.
  • the condensate obtained in this way can also be used for flushing the heat transfer surfaces; it is then introduced into the heat transfer channels in a manner which is not apparent from the drawing, so that this additional condensate also trickled down on the heat transfer surfaces.
  • the flue gas is enclosed on all sides by the heat transfer surfaces flushed with the coolant, at least in the part where its temperature is too high for condensate formation. Otherwise Wür de in this area the formation of highly concentrated sulfuric acid with the destructive consequences of corrosion occur, which have already been explained above. Due to the heat transfer surfaces extending over the entire length of the flue gas path, however, rinsing by means of the condensate occurs over the entire heat transfer surface up to an area in which no condensate formation can normally be observed, so that the heat transfer surfaces are cleaned over their entire length and protected against the undesired deposition of concentrated acid.

Abstract

1. Method for the recuperation of heat from flue gases, with which the flue gases are brought into contact with a cooling medium in a heat exchanger via heat transfer surfaces, the components of the flue gases are partially condensed thereby and the condensate is abducted, characterized in that the flue gases are conducted substantially vertically through the heat exchanger from bottom to top along at least one continuous heat transfer surface that the length of the heat exchanger and/or the temperature of the cooling medium are selected such that the condensation takes place in the upper region of the heat exchanger and that the resulting condensate flows off in the form of a liquid film on the heat transfer surfaces in the opposite direction to the flow of flue gases.

Description

Die Erfindung betrifft ein Verfahren zur Rückgewinnung von Wärme aus Rauchgasen, bei welchem man die Rauchgase in einem Wärmetauscher mit einem Kühlmittel über Wärmeübertragungsflächen in Kontakt bringt, dadurch die Bestandteile des Rauchgases teilweise kondensiert und das Kondensat ableitet.The invention relates to a method for recovering heat from flue gases, in which the flue gases are brought into contact with a coolant in a heat exchanger via heat transfer surfaces, thereby partially condensing the components of the flue gas and draining off the condensate.

Ein solches Verfahren zur Rückgewinnung von Wärme aus Rauchgasen ist beispielsweise aus der deutschen Offenlegungsschrift 28 20 826 bekannt.Such a method for recovering heat from flue gases is known, for example, from German Offenlegungsschrift 28 20 826.

Probleme ergeben sich bei solchen Verfahren dadurch, daß die beim Abkühlen der Rauchgase unter den Taupunkt entstehenden Kondensate neben Wasser auch einen Schwefeloxidanteil enthalten, der zusammen mit dem Wasser zur Bildung von schwefliger Säure und Schwefelsäure führt. Auch Stickoxide und Kohlendioxid werden in dem Wasser gelöst und bilden Säuren. Diese Säuren, insbesondere die schweflige Säure und die Schwefelsäure, wirken stark korrodierend und führen bei bisher bekannten Verfahren häufig zur Zerstörung des Wärmetauschers und dabei insbesondere der Wärmeübertragungsflächen.Problems with such processes result from the fact that the condensates which form when the flue gases cool down below the dew point also contain a sulfur oxide content which together with the water leads to the formation of sulfurous acid and sulfuric acid. Nitrogen oxides and carbon dioxide are also dissolved and bil in the water the acids. These acids, in particular the sulphurous acid and the sulfuric acid, have a strongly corrosive effect and frequently lead to destruction of the heat exchanger and, in particular, of the heat transfer surfaces in the case of previously known processes.

Es ist Aufgabe der Erfindung, ein Verfahren zur Rückgewinnung von Wärme aus Rauchgasen derart zu verbessern, daß trotz der Kondensatbildung eine Korrosion des Wärmetauschers zuverlässig vermieden wird.It is an object of the invention to improve a method for recovering heat from flue gases in such a way that corrosion of the heat exchanger is reliably avoided despite the formation of condensate.

Diese Aufgabe wird bei einem Verfahren der eingangs beschriebenen Art erfindungsgemäß dadurch gelöst, daß man die Rauchgase im wesentlichen senkrecht von unten nach oben längs mindenstens einer durchgehenden Wärmeübertragungsfläche durch den Wärmetauscher leitet, daß man die Länge des Wärmetauschers und/oder die Temperatur des Kühlmittels derart wählt, daß die Kondensation im oberen Bereich des Wärmetauschers eintritt, und daß man das entstehende Kondensat an der Unterseite des Wärmetauschers vollständig ableitet.This object is achieved according to the invention in a method of the type described at the outset by passing the flue gases essentially vertically from bottom to top along at least one continuous heat transfer surface through the heat exchanger by choosing the length of the heat exchanger and / or the temperature of the coolant in such a way that the condensation occurs in the upper area of the heat exchanger and that the resulting condensate is completely drained off at the bottom of the heat exchanger.

Bei dem erfindungsgemäßen Verfahren wird also das heiße Rauchgas von unten in senkrecht zwischen den Wärmeübertragungsflächen angeordnete Rauchgas-Wärmetauscherkanäle eingeleitet und unter Abkühlung nach oben geführt. Die Wandtemperatur nimmt ab einer bestimmten Höhe einen Wert an, der unterhalb der Siedetemperatur des Wasser-Säuregemisches liegt, so daß sich von diesem Punkt an aufwärts ein Flüssigkeitsfilm bildet, weil in zunehmendem Maße Wasser und Säure kondensieren. Es entsteht dabei eine Säure sehr schwacher Konzentration (ca. 750 mg Säure auf 1 1 Wasser). Durch die senkrechte Anordung der Wärmetauscherflächen und die senkrechte Führung des Rauchgases fließt das Kondensat dem Rauchgasstrom entgegengesetzt ab und benetzt auch die unten liegenden Wärmetauscherwandungen mit einem Flüssigkeitsfilm, die wegen der noch hohen Rauchgastemperaturen normalerweise trocken bleiben würden.In the method according to the invention, the hot flue gas is therefore introduced from below into flue gas heat exchanger channels arranged vertically between the heat transfer surfaces and is led upwards with cooling. From a certain height, the wall temperature takes on a value which is below the boiling temperature of the water-acid mixture, so that from this point onwards a liquid film forms, because water and acid increasingly condense. This produces an acid of very weak concentration (approx. 750 mg of acid re on 1 1 water). Due to the vertical arrangement of the heat exchanger surfaces and the vertical guidance of the flue gas, the condensate flows away from the flue gas flow and also wets the heat exchanger walls below, which would normally remain dry due to the still high flue gas temperatures.

Durch das an der Wärmetauscherfläche herunterfließende, schwach konzentrierte Kondensat wird vermieden, daß sich im Bereich der Taupunktsgrenze Ablagerungen und Verkrustungen ergeben können. Diese treten normalerweise gerade im Taupunktsbereich dadurch ein, daß die Siedepunkte von Wasser einerseits und schwefliger Säure bzw. Schwefelsäure andererseits verschieden sind (Wasser 373 K, Schwefelsäure 611 K). Aus diesem Grunde kondensiert die Schwefelsäure normalerweise bereits an einem tieferen Punkt als das Wasser, so daß in dem übergangsbereich zunächst hochkonzentrierte flüssige Säure entsteht. Das oberhalb dieses kritischen Bereiches erzeugte Kondensat fließt jedoch entgegen der Richtung des Rauchgasstromes nach unten und spült gerade in diesem kritischen Bereich die kondensierte Schwefelsäure und die kondensierte schweflige Säure ab und verdünnt diese dabei. Dieser Spüleffekt verhindert somit wirkungsvoll eine Ablagerung und Verkrustung in diesem Bereich.The weakly concentrated condensate flowing down the heat exchanger surface prevents deposits and incrustations from forming in the area of the dew point limit. These usually occur in the dew point range in that the boiling points of water on the one hand and sulfurous acid or sulfuric acid on the other are different (water 373 K, sulfuric acid 611 K). For this reason, the sulfuric acid normally condenses at a lower point than the water, so that highly concentrated liquid acid initially forms in the transition area. However, the condensate generated above this critical area flows downward in the opposite direction to the flue gas flow and rinses off and dilutes the condensed sulfuric acid and the condensed sulfuric acid in this critical area. This rinsing effect effectively prevents deposits and incrustation in this area.

Vorteilhaft ist es weiterhin, daß das überhitzte Rauchgas im unteren Teil des Wärmetauschers einen Teil des herabrieselnden Films wieder verdampft und bei seiner Aufwärtsströmung mitschleppt. Dadurch wird das Rauchgas wegen der Entnahme von Verdampfungswärme und der Wasserdampfzufuhr schneller auf die Tautemperatur abgekühlt. Die Durchmischung mit dem Wasserdampf.fördert über Stoffaustausch den Wärmetransport an die Wärmeübertragungsflächen. Das Kondensat wird schließlich durch den langen Weg an der Wand entlang gut ausgekühlt, ehe es an der Unterseite des Wärmetauschers vollständig abgeleitet wird.It is also advantageous that the overheated flue gas in the lower part of the heat exchanger evaporates part of the falling film and carries it along with its upward flow. This will make the flue gas because of the ent absorption of heat of vaporization and the supply of water vapor cooled faster to the thaw temperature. Mixing with the water vapor promotes heat transfer to the heat transfer surfaces via mass transfer. The condensate is finally cooled well by the long path along the wall before it is completely drained off at the bottom of the heat exchanger.

Bei einer vorteilhaften Weiterbildung kann vorgesehen sein, daß man die aus dem Wärmetauscher austretenden Gase im Verdampfer einer Wärmepumpe weiter abkühlt und das entstehende Kondensat zur Spülung der Wärmeübertragungsflächen des Wärmetauschers von oben nach unten über diese fließen läßt. Diese zusätzliche Spülung mit dem weitergewonnenen Kondensat verstärkt die oben erläuterten vorteilhaften Effekte, die beim Herabrieseln des Kondensats an den Wärmeübertragungsflächen eintreten.In an advantageous further development it can be provided that the gases emerging from the heat exchanger are further cooled in the evaporator of a heat pump and the condensate which is produced is allowed to flow from top to bottom over the heat exchanger to flush the heat transfer surfaces. This additional flushing with the condensate recovered reinforces the advantageous effects explained above, which occur when the condensate trickles down on the heat transfer surfaces.

Die nachfolgende Beschreibung eines zur Durchführung des erfindungsgemäßen Verfahrens geeigneten Restwärmetauschers dient im Zusammenhang mit der Zeichnung, die einen im Schnitt widergegebenen Restwärmetauscher darstellt, der näheren Erläuterung.The following description of a residual heat exchanger suitable for carrying out the method according to the invention serves in connection with the drawing, which represents a residual heat exchanger shown in section, for a more detailed explanation.

Der in der Zeichnung dargestellte Restgaswärmetauscher weist eine den eigentlichen Wärmetauscher allseits umgebende Außenwand 1 auf, die aus Keramik, Metall, Kunststoff oder einem anderen Material bestehen kann.The residual gas heat exchanger shown in the drawing has an outer wall 1 which surrounds the actual heat exchanger on all sides and which can be made of ceramic, metal, plastic or another material.

Die Rauchgasableitung 2 eines in der Zeichnung nur schematisch dargestellten Brenners 3 führt im unteren Teil des Wärmetauschers horizontal in einen Ringraum 4, der über senkrechte, parallele Wärmeübertragungskanäle 5 mit einem oberen Ringsammelraum in Verbindung steht. Aus diesem Ringsammelraum 6 werden die Rauchgase über eine Ableitung 7 aus dem Wärmetauscher herausgeführt.The flue gas discharge line 2 of a burner 3, which is only shown schematically in the drawing, leads horizontally in the lower part of the heat exchanger into an annular space 4, which is connected to an upper annular collecting space via vertical, parallel heat transmission channels 5. From this annular collecting space 6, the flue gases are led out of the heat exchanger via a discharge line 7.

Der den Rauchgasen zur Verfügung stehende Raum wird durch Wärmeübertragungsflächen 8 begrenzt, die sich im Bereich zwischen dem Ringraum 4 und dem Ringsammelraum 6 im wesentlichen senkrecht erstrecken und von unten nach oben kontinuierlich durchgehen, ohne irgendwelche Vor- oder Rücksprünge aufzuweisen. Außerhalb des dem Rauchgas zur Verfügung stehenden Volumens ist der Wärmetauscher mit einem Kühlmittel 9 gefüllt, welches über eine an der Oberseite angeordnete Zuleitung 10 in den Wärmetauscher eingeleitet und über eine an der Unterseite angeordnete Ableitung 11 aus diesem wieder entnommen werden kann. Es kann sich beispielsweise um das rücklaufende Heizwasser einer Heizungsanlage handeln. Das Kühlmittel 9 steht in unmittelbarem Wärmekontakt mit den Wärmeübertragungsflächen 8.The space available to the flue gases is delimited by heat transfer surfaces 8 which extend essentially vertically in the area between the annular space 4 and the annular collecting space 6 and continuously pass from bottom to top without having any projections or recesses. Outside the volume available to the flue gas, the heat exchanger is filled with a coolant 9, which can be introduced into the heat exchanger via a feed line 10 arranged on the top side and can be removed again via a discharge line 11 arranged on the bottom side. For example, it can be the returning heating water of a heating system. The coolant 9 is in direct thermal contact with the heat transfer surfaces 8.

An der Unterseite des Ringraumes 4 ist eine Kondensatableitung 12 vorgesehen, die an der Unterseite des Ringraumes 4 gesammeltes Kondensat vollständig aus dem Wärmetauscher ableitet.A condensate drain 12 is provided on the underside of the annular space 4, which condensate completely drains off from the heat exchanger on the underside of the annular space 4.

Im Betrieb des beschriebenen Wärmetauschers gelangt das eine hohe Temperatur aufweisende Rauchgas aus dem Brenner 3 über eine Kesselanlage in den unteren Ringraum 4 und strömt von diesem senkrecht nach oben. durch die .Übertragungskanäle bis zum Ringsammelraum 6, aus dem es den Wärmetauscher über die Ableitung 7 wieder verläßt. Bei dem von unten nach oben gerichteten Strom des Rauchgases wird dieses abgekühlt, wobei die dem Rauchgas entzogene Wärme über die Wärmeübertragungsflächen dem Kühlmittel zugeführt wird. Die Länge der Wärmeübertragungskanäle und/oder die Temperatur des Kühlmittels werden dabei so gewählt, daß im oberen Teil des Wärmetauschers das Rauchgas unter den Taupunkt abgekühlt wird, so daß Kondensatbildung eintritt. Das entstehende Kondensat rinnt auf der Innenseite der Wärmeübertragungskanäle an den Wärmeübertragungsflächen nach unten und spült diese in der oben beschriebenen Weise, wobei einerseits eine Ablagerung konzentrierter Säure an den Wärmeübertragungsflächen vermieden wird, während andererseits die Effektivität der Wärmeübertragung durch das Kondensat erhöht wird. Das herabrinnende Kondensat spült die Wärmeübertragungsflächen der Wärmeübertragungskanäle über deren gesamte Länge und sammelt sich schließlich an der Unterseite des unteren Ringraumes 4, wo es über die Kondensatableitung 12 vollständig aus dem Wärmetauscher entfernt wird.During the operation of the heat exchanger described, the flue gas having a high temperature comes out of the burner 3 via a boiler system in the lower annular space 4 and flows vertically upwards from it. through the .transmission channels to the annular plenum 6, from which it leaves the heat exchanger via the discharge line 7 again. When the flue gas flows from bottom to top, it is cooled, the heat extracted from the flue gas being supplied to the coolant via the heat transfer surfaces. The length of the heat transfer channels and / or the temperature of the coolant are chosen so that the flue gas is cooled below the dew point in the upper part of the heat exchanger, so that condensation occurs. The resulting condensate runs down the inside of the heat transfer channels on the heat transfer surfaces and rinses them in the manner described above, whereby on the one hand a build-up of concentrated acid on the heat transfer surfaces is avoided, while on the other hand the effectiveness of the heat transfer through the condensate is increased. The condensate flowing down rinses the heat transfer surfaces of the heat transfer channels over their entire length and finally collects on the underside of the lower annular space 4, where it is completely removed from the heat exchanger via the condensate drain 12.

Falls das aus dem oberen Ringsammelraum 6 austretende Rauchgas noch weiter abgekühlt wird, kann das dabei gewonnene Kondensat ebenfalls zur Spülung der Wärmeübertragungsflächen eingesetzt werden, es wird dann in aus der Zeichnung nicht ersichtlicher Weise in die Wärmeübertragungskanäle eingeleitet, so daß dieses zusätzliche Kondensat ebenfalls an den Wärmeübertragungsflächen herabrieselt.If the flue gas emerging from the upper annular collecting space 6 is cooled even further, the condensate obtained in this way can also be used for flushing the heat transfer surfaces; it is then introduced into the heat transfer channels in a manner which is not apparent from the drawing, so that this additional condensate also trickled down on the heat transfer surfaces.

Für die konstruktive Ausgestaltung des Wärmetauschers ist es wesentlich, daß an keiner Stelle Räume entstehen, in denen sich ein herabrieselndes Kondensat sammeln kann. Es dürfen also keine Vertiefungen entstehen, sondern auch im Bereich der Übergangsstellen von senkrechten in waagerechten Flächen muß dafür Sorge getragen werden, daß immer ein vollständiger Abfluß des Kondensats gewährleistet ist. Andernfalls besteht bei einer Ansammlung von Kondensat an irgendeiner Stelle die Gefahr, daß sich an einer solchen Stelle das Kondensat konzentriert. Eine solche Konzentration kann dadurch eintreten, daß das Wasser infolge seines gegenüber den Säuren niedrigeren Siedepunktes unter dem Einfluß der vorbeiströmenden Rauchgase oder bei Stillstand der Anlage eher verdampft als die Säuren. Die in solchen Vertiefungen zurückbleibenden, konzentrierten Säuren würden stark korrodierend wirken und an diesen Stellen eine Zerstörung des Wärmetauschers einleiten. Es ist also auch bei Schweißnähten etc. darauf zu achten, daß derartige Ansammlungen von Kondensat nicht auftreten können. Günstig ist es in diesem Zusammenhang auch, wenn die Bodenfläche des unteren Ringraums in Richtung auf die Kondensatableitung 12 ein wenig geneigt ist; geneigt werden vorzugsweise auch andere im wesentlichen horizontale Grenzflächen, wie dies aus der Zeichnung ersichtlich ist.For the structural design of the heat exchanger, it is essential that there are no spaces in which a condensate can collect. So there must not be any depressions, but also in the area of the transition points from vertical to horizontal surfaces care must be taken to ensure that a complete drainage of the condensate is always guaranteed. Otherwise, there is a risk of condensate concentrating at such a point that the condensate is concentrated at such a point. Such a concentration can occur in that the water, due to its lower boiling point than the acids, under the influence of the flue gases flowing past or when the system is at a standstill, evaporates more than the acids. The concentrated acids remaining in such depressions would have a highly corrosive effect and would destroy the heat exchanger at these points. It should therefore also be ensured that such accumulations of condensate cannot occur with weld seams etc. In this context, it is also favorable if the bottom surface of the lower annular space is slightly inclined towards the condensate drain 12; other essentially horizontal interfaces are preferably inclined, as can be seen from the drawing.

Wesentlich ist weiterhin, daß das Rauchgas zumindest in dem Teil, wo seine Temperatur zu einer Kondensatbildung zu hoch ist, allseits von den mit dem Kühlmittel bespülten Wärmeübertragungsflächen umschlossen ist. Andernfalls würde in diesem Bereich die Bildung von hochkonzentrierter Schwefelsäure mit den zerstörenden Korrosionsfolgen eintreten, die bereits oben erläutert worden sind. Durch die sich über die gesamte Länge des Rauchgasweges erstreckenden Wärmeübertragungsflächen wird jedoch erreicht, daß eine Spülung mittels des Kondensates über die gesamte Wärmeübertragungsfläche bis zu einem Bereich eintritt, in dem normalerweise keine Kondensatbildung zu beobachten ist, so daß die Wärmeübertragungsflächen über ihre gesamte Länge gereinigt und gegen die unerwünschte Ablagerung konzentrierter Säure geschützt werden.It is also important that the flue gas is enclosed on all sides by the heat transfer surfaces flushed with the coolant, at least in the part where its temperature is too high for condensate formation. Otherwise Wür de in this area the formation of highly concentrated sulfuric acid with the destructive consequences of corrosion occur, which have already been explained above. Due to the heat transfer surfaces extending over the entire length of the flue gas path, however, rinsing by means of the condensate occurs over the entire heat transfer surface up to an area in which no condensate formation can normally be observed, so that the heat transfer surfaces are cleaned over their entire length and protected against the undesired deposition of concentrated acid.

Claims (2)

1. Verfahren zur Rückgewinnung von Wärme aus Rauchgasen, bei welchem man die Rauchgase in einem Wärmetauscher mit einem Kühlmittel über Wärmeübertragungsflächen in Kontakt bringt, dadurch die Bestandteile des Rauchgases teilweise kondensiert und das Kondensat ableitet, dadurch gekennzeichnet , daß man die Rauchgase im wesentlichen senkrecht von unten nach oben längs mindestens einer durchgehenden Wärmeübertragungsfläche durch den Wärmetauscher leitet, daß man die Länge des Wärmetauschers und/oder die Temperatur des Kühlmittels derart wählt, daß die Kondensation im oberen Bereich des Wärmetauschers eintritt, und daß man das entstehende Kondensat an der Unterseite des Wärmetauschers vollständig ableitet.1. A method for recovering heat from flue gases, in which the flue gases are brought into contact with a coolant in a heat exchanger via heat transfer surfaces, thereby partially condensing the components of the flue gas and draining off the condensate, characterized in that the flue gases are essentially vertical leads downwards along at least one continuous heat transfer surface through the heat exchanger, that one chooses the length of the heat exchanger and / or the temperature of the coolant in such a way that the condensation occurs in the upper area of the heat exchanger, and that the resulting condensate is on the underside of the heat exchanger completely derives. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die aus dem Wärmetauscher austretenden Gase im Verdampfer einer Wärmepumpe weiter abkühlt und das entstehende Kondensat zur Spülung der Wärmeübertragungsflächen des Wärmetauschers von oben nach unten über diese fliessen läßt.2. The method according to claim 1, characterized in that the gases emerging from the heat exchanger in the evaporator of a heat pump is further cooled and the resulting condensate for rinsing the heat transfer surfaces of the heat exchanger flow from top to bottom over this.
EP83105567A 1982-06-11 1983-06-07 Method for the recuperation of heat from flue gases Expired EP0096823B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83105567T ATE12543T1 (en) 1982-06-11 1983-06-07 METHOD OF HEAT RECOVERY FROM FLUE GASES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823222069 DE3222069A1 (en) 1982-06-11 1982-06-11 METHOD FOR RECOVERING HEAT FROM SMOKE GASES
DE3222069 1982-06-11

Publications (3)

Publication Number Publication Date
EP0096823A2 true EP0096823A2 (en) 1983-12-28
EP0096823A3 EP0096823A3 (en) 1984-02-15
EP0096823B1 EP0096823B1 (en) 1985-04-03

Family

ID=6165873

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83105567A Expired EP0096823B1 (en) 1982-06-11 1983-06-07 Method for the recuperation of heat from flue gases

Country Status (4)

Country Link
EP (1) EP0096823B1 (en)
AT (1) ATE12543T1 (en)
DE (2) DE3222069A1 (en)
DK (1) DK153182C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0164098A2 (en) * 1984-06-06 1985-12-11 Willy Ufer Heat exchanger
EP0179161A1 (en) * 1983-10-05 1986-04-30 Richard Vetter Channel for removing flue gases of a boiler device
GB2172098A (en) * 1985-03-06 1986-09-10 Sigri Gmbh Process for the dissolution of salt deposits in a heat exchanger
GB2186958A (en) * 1986-01-14 1987-08-26 Sogea Heat recuperators
EP0262274A1 (en) * 1986-09-22 1988-04-06 Emile Percevaut Recuperator of heat from flue gases from different furnaces capable of cleaning these gases

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726353A (en) * 1985-08-01 1988-02-23 Raytheon Company High condensing recuperative furnace
DE102012104979A1 (en) 2012-06-10 2013-12-12 Christian Gierl Method for recovering heat from flue gases, involves supplying condensate in latter of two heat exchangers through gravitational influence before entering flue gas stream, where heat transfer medium temperature or -flow rate is regulated

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031862A (en) * 1976-03-10 1977-06-28 Smith Frank J Economizer
FR2342476A1 (en) * 1976-02-26 1977-09-23 Telliez Raymond Recovering heat from combustion gases - using intermediate heat transfer fluid, eliminating corrosion risk and reducing operating costs
DE2803909A1 (en) * 1977-02-02 1978-08-03 Johannes Hendricus Wedzinga Room air heater and humidifier - has condenser with twin turbine fans for flue gases and room air, also condensate collector
DE2912986A1 (en) * 1978-04-07 1979-10-11 Rupert Ing Krispler Furnace exhaust heat recovery system - uses double wall jacket with condensate removal channels forming heat transfer flow passage
DE2820826A1 (en) * 1978-05-12 1979-11-15 Schneider Kg Ask A Furnace fire heat recovery system - has pipes passing across heat exchanger housing which tapers towards fume outlet
FR2483065A1 (en) * 1980-05-23 1981-11-27 Meca Const Recovery of heat from mixt. of waste steam and air - which is drawn by suction fan through condenser to obtain hot water usable in mfg. processes or for heating

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2720397A1 (en) * 1977-05-06 1978-11-09 Helmut Ing Grad Junkers Gas fired central heating boiler - uses flue gas socket with connected cooler to collect gas condensate
US4227647A (en) * 1977-05-25 1980-10-14 Leif Eriksson Device for cooling chimney gases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2342476A1 (en) * 1976-02-26 1977-09-23 Telliez Raymond Recovering heat from combustion gases - using intermediate heat transfer fluid, eliminating corrosion risk and reducing operating costs
US4031862A (en) * 1976-03-10 1977-06-28 Smith Frank J Economizer
DE2803909A1 (en) * 1977-02-02 1978-08-03 Johannes Hendricus Wedzinga Room air heater and humidifier - has condenser with twin turbine fans for flue gases and room air, also condensate collector
DE2912986A1 (en) * 1978-04-07 1979-10-11 Rupert Ing Krispler Furnace exhaust heat recovery system - uses double wall jacket with condensate removal channels forming heat transfer flow passage
DE2820826A1 (en) * 1978-05-12 1979-11-15 Schneider Kg Ask A Furnace fire heat recovery system - has pipes passing across heat exchanger housing which tapers towards fume outlet
FR2483065A1 (en) * 1980-05-23 1981-11-27 Meca Const Recovery of heat from mixt. of waste steam and air - which is drawn by suction fan through condenser to obtain hot water usable in mfg. processes or for heating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0179161A1 (en) * 1983-10-05 1986-04-30 Richard Vetter Channel for removing flue gases of a boiler device
EP0164098A2 (en) * 1984-06-06 1985-12-11 Willy Ufer Heat exchanger
EP0164098A3 (en) * 1984-06-06 1986-12-03 Willy Ufer Heat exchanger
GB2172098A (en) * 1985-03-06 1986-09-10 Sigri Gmbh Process for the dissolution of salt deposits in a heat exchanger
GB2186958A (en) * 1986-01-14 1987-08-26 Sogea Heat recuperators
EP0262274A1 (en) * 1986-09-22 1988-04-06 Emile Percevaut Recuperator of heat from flue gases from different furnaces capable of cleaning these gases

Also Published As

Publication number Publication date
DK153182C (en) 1988-11-14
DK153182B (en) 1988-06-20
EP0096823A3 (en) 1984-02-15
ATE12543T1 (en) 1985-04-15
DE3360088D1 (en) 1985-05-09
DK266483A (en) 1983-12-12
EP0096823B1 (en) 1985-04-03
DE3222069A1 (en) 1983-12-15
DK266483D0 (en) 1983-06-10

Similar Documents

Publication Publication Date Title
DE2701938C2 (en) Method and device for recovering the solvent from the exhaust air of dry cleaning machines
DE2936684A1 (en) METHOD FOR EXCHANGING HEAT AND A DEVICE FOR CARRYING OUT THIS METHOD
DE3734292A1 (en) METHOD AND ARRANGEMENT FOR CONDENSING COMBUSTION GASES
EP1108187B1 (en) Method and apparatus for the reduction of pollutant emissions of small heating systems
DE4240196A1 (en) Process for cooling and cleaning gas containing ultrafine particles, in particular top gas or generator gas, and device for carrying it out
DE2314732A1 (en) HEAT EXCHANGER
DE2512233A1 (en) Hot water boiler with calorifier - has economiser using intermediate water moving in counterflow as heat transfer medium (NL220976)
EP0096823B1 (en) Method for the recuperation of heat from flue gases
EP0077851A2 (en) Gas cooling device for a coal gasification plant
DE3715394C2 (en) Method and device for reducing dust deposits which form on heating surfaces which are exposed to flue gases containing sulfur dioxide
DE3334743A1 (en) MELTING DEVICE
DE3716610C2 (en)
DD284081A5 (en) PROCESS FOR COOLING A FLUID
DE69829870T2 (en) DEVICE FOR COOLING GASES
DE2832359A1 (en) PROCEDURE OR PLANT FOR DRIVING OFF SOLVED, CORROSIVE GAS COMPONENTS FROM AQUEOUS SOLUTIONS
EP1236011B1 (en) Absorption cooling device
DE2924460A1 (en) DEVICE FOR CONCENTRATING AND / OR PURIFYING MINERAL ACIDS
DE2109324C3 (en) Exhaust gas cleaning device
WO1981000277A1 (en) Process for purifying the exhaust gases of a combustion engine and purifying device for carrying out such process
DE2841026A1 (en) Flue gas purificn. - by deposition of fused and evaporated components in turbulent passage channels
DE2924505A1 (en) DEVICE FOR CONCENTRATING AND / OR PURIFYING MINERAL ACIDS
DE19925967C2 (en) Process for purifying a gas containing a foreign substance
DE3603117C2 (en)
DE3507882A1 (en) METHOD FOR SOLVING SALT CRUST IN A HEAT EXCHANGER
DE4411177A1 (en) Method and apparatus for increasing the efficiency of a waste-heat boiler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU NL

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU NL

17P Request for examination filed

Effective date: 19840210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR LI LU NL

REF Corresponds to:

Ref document number: 12543

Country of ref document: AT

Date of ref document: 19850415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3360088

Country of ref document: DE

Date of ref document: 19850509

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920629

Year of fee payment: 10

Ref country code: CH

Payment date: 19920629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920630

Year of fee payment: 10

Ref country code: LU

Payment date: 19920630

Year of fee payment: 10

Ref country code: AT

Payment date: 19920630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920703

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920717

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930607

Ref country code: AT

Effective date: 19930607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930630

Ref country code: CH

Effective date: 19930630

Ref country code: BE

Effective date: 19930630

BERE Be: lapsed

Owner name: DEUTSCHE FORSCHUNGS- UND VERSUCHSANSTALT FUR LUFT

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST