EP0095402B1 - Method and alloy for the hot dip galvanizing of silicon steel, and galvanized articles - Google Patents

Method and alloy for the hot dip galvanizing of silicon steel, and galvanized articles Download PDF

Info

Publication number
EP0095402B1
EP0095402B1 EP83400916A EP83400916A EP0095402B1 EP 0095402 B1 EP0095402 B1 EP 0095402B1 EP 83400916 A EP83400916 A EP 83400916A EP 83400916 A EP83400916 A EP 83400916A EP 0095402 B1 EP0095402 B1 EP 0095402B1
Authority
EP
European Patent Office
Prior art keywords
bath
germanium
weight
alloy
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83400916A
Other languages
German (de)
French (fr)
Other versions
EP0095402A1 (en
Inventor
Jean-Louis Caillerie
Rémy Decaens
Armand Limare
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Miniere et Metallurgique de Penarroya
Original Assignee
Societe Miniere et Metallurgique de Penarroya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Miniere et Metallurgique de Penarroya filed Critical Societe Miniere et Metallurgique de Penarroya
Priority to AT83400916T priority Critical patent/ATE26308T1/en
Publication of EP0095402A1 publication Critical patent/EP0095402A1/en
Application granted granted Critical
Publication of EP0095402B1 publication Critical patent/EP0095402B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to the galvanization of objects formed from steel, in particular of a type containing silicon at a concentration of up to 0.45% by weight. More specifically, the invention relates to a galvanizing process, galvanized objects formed by its implementation, as well as an alloy used for the implementation of this process.
  • the hot dip galvanizing of steels containing less than 0.04% by weight of silicon does not pose significant problems concerning the quality of the coating formed.
  • the main properties of the coatings formed are a shiny appearance, good corrosion resistance, good adhesion to the substrate and a thickness of the order of 70 to 90 and up to 120 micrometers.
  • French Patent No. 2,366,376 describes a galvanizing process suitable for treating steel having a low to medium silicon content, which can reach 0.2% by weight at most. This process requires, before the actual galvanization, a very careful treatment of the surfaces, including in particular an additional pickling operation with concentrated hydrochloric acid, in addition to the conventional processes.
  • the alloy bath used for this galvanizing contains aluminum, in an amount up to 0.5% by weight, magnesium in an amount up to 0.1% by weight, lead in an amount between 0.005 and 2% in weight and tin in quantity up to 2% by weight.
  • This process although it constitutes an important advance and that it is used on an industrial scale for the galvanization of semi-quenched and quenched silicon steels, however has certain drawbacks, in particular those related to the low fluidity of the bath. In particular, it often causes significant flow restraint and the filling of small holes formed in the parts. In addition, the drapes and drops that often form at the edge of the pieces make it necessary to take them back before marketing. Finally, this process requires the temperature to be fixed at a value at least equal to 450 ° C., which causes the formation of a large quantity of ash.
  • This process certainly allows the galvanization of steels containing up to 0.2% silicon with thicknesses greater than or equal to the standards in force, without having to maintain a narrow range of aluminum in the molten bath. It is not the same when we want to galvanize steels containing more than 0.2% silicon.
  • the invention relates to a galvanizing process which, unlike the above process, is suitable even for parts with a high silicon content of up to 0.45% by weight of silicon, in the presence of a small amount of germanium incorporated in the bath.
  • the bath also advantageously comprises lead and possibly aluminum. It is found in fact that germanium has a significant influence on the reactions of the iron-zinc couple, in the presence or absence of aluminum. It is further noted that the combination of lead and germanium gives the galvanizing bath a very high fluidity and surface tension which allow the implementation of the galvanization at a lower temperature than that which is commonly used, in particular close to 440 ° C.
  • the invention relates to a method of galvanizing steel objects, of the type which comprises the treatment of the surface of the objects to be galvanized, consisting of normal operations for treating the surfaces before galvanization, in particular degreasing, pickling , rinsing and fluxing, then immersing them in a galvanizing bath; this process includes adjusting the composition of the bath so that it contains 0.005 to 0.2% by weight of germanium, and adjusting the temperature of the bath to a value between about 440 and 460 ° C, preferably between 440 and 450 ° C.
  • composition of the bath is advantageously adjusted so that the bath contains 0.5 to 1.5% by weight of lead, and preferably also 0.001 to 0.05% by weight of aluminum.
  • the composition of the galvanizing bath is adjusted so that this bath contains, in weight percentages, 0.03 to 0.15% germanium and 0.8 to 1.2% lead, advantageously in the presence from 0.001 to 0.01% aluminum.
  • This adjustment of the composition of the bath is preferably carried out by adding suitable quantities of at least one master alloy.
  • the aforementioned process is suitable not only for steels having medium or high silicon contents but also for steels containing very little, in particular effervescent steels.
  • the invention also relates to articles of galvanized steel, of the type which comprises a body of effervescent steel, semi-calmed or calmed with silicon, forming a substrate, and a galvanized coating with a laminated structure comprising, from of the substrate, a layer of intermetallic compounds 2 of iron and zinc, and an outer layer 3 having substantially a constant composition; the layer of intermetallic compounds contains germanium, the concentration of which varies in the thickness of this layer, this concentration being maximum in layer 2.
  • Said body of silicon quenched steel forms a substrate, the galvanized coating of which has a stratified structure in which 0.005 to 0.2% of germanium is dispersed practically throughout its thickness. .
  • the thickness of the coating formed on these galvanized steel objects is advantageously between 60 and 120 micrometers.
  • the invention also relates to an alloy intended for the implementation of the abovementioned process, that is to say for the dip galvanization of steel objects whose silicon content is less than 0.45%, this alloy containing, in addition to zinc and in weight percentages, 0.5 to 1.5% lead, 0.005 to 0.2% germanium and 0.001 to 0.05% aluminum.
  • this alloy contains, in weight percentages, 0.9 to 1.2% of lead, 0.03 to 0.15% of germanium and 0.001 to 0.01% of aluminum.
  • Figure 1 is a schematic section, at a magnification of about 1000, of a part of a galvanized object according to the invention.
  • This object comprises a substrate 1 of steel, for example of a semi-calm or calm steel.
  • This substrate carries a coating which comprises a layer 2 of intermetallic compounds and an external layer 3 (known by the specialist under the name of eta layer) whose surface has not been shown and which has a substantially uniform composition.
  • Layer 2 is represented with two sublayers 4 (known by the specialist under the name of delta layer) and 5 (known by the specialist under the name of dzeta layer) with different crystallographic characteristics.
  • FIG. 2 represents the variation of the concentration of germanium in the layer of intermetallic compounds represented in FIG. 1.
  • the abscissae correspond to the distances measured from the sublayer 6.
  • Curve 7 represents the variation of the concentration of germanium in in the case of a galvanized object for a short immersion time, for example of the order of one minute at 440 ° C. In this case, the maximum of the concentration is in the sublayer 4.
  • layer 2 When the structure represented in FIG. 1 is obtained after a longer immersion time, of the order of five minutes for example, layer 2 then has a greater thickness but substantially the same constitution, and the germanium distribution curve, identified by the reference 8 in FIG. 2, indicates a maximum concentration in the sublayer 5.
  • this maximum is found in one of the sublayers 4 and 5, in general close to their interface, but always in the layer of intermetallic compounds 2 and at a distance from the interfaces. on the one hand with the body 1 of steel and on the other hand with the outer layer 3 of substantially uniform composition.
  • germanium This behavior of germanium is original insofar as on the one hand the technical literature does not refer to it and on the other hand this behavior is distinguished from that of other elements of addition of zinc baths, and in particular of that of aluminum. It is known that this reduces the reactivity of zinc vis-à-vis silicon steels. In particular, it has been found that the aluminum additions modify the reaction kinetics, and in particular its order. On the contrary, germanium appears to have only a very limited effect on the order of the reaction kinetics.
  • germanium especially combined with lead, in the weight percentages indicated, is more an adsorption of germanium at the interface of iron and zinc, and a regularization of reactions on both sides of this interface.
  • the germanium then diffuses on both sides of this interface, as the layer 2 of intermetallic compounds is formed on both sides; diffusion can ultimately cause a nearly uniform distribution of germanium when the immersion time is long enough, especially in the presence of a large amount of silicon which accelerates the reactions.
  • the scope of the invention is in no way limited by this interpretation.
  • the alloy has a fluidity and a surface tension which are excellent so that the temperature of the bath can be maintained at 440 ° C only, then that the temperature usually required is 450 to 470 ° C.
  • the dripping of the rooms poses hardly any problems thanks to the fluidity of the bath.
  • the coatings have exceptional shine and have excellent adhesion to the substrate.
  • the thickness of zinc coatings on steels containing more than 0.2% is generally less than 70 micrometers and almost independent of the residence time in the zinc bath and commonly used galvanizing temperatures.
  • germanium in increasing quantity in the zinc bath containing 400 to 500 grams per ton of aluminum increases the thickness of the zinc coatings obtained on steels to more than 0.2% of silicon.
  • germanium therefore exerts a beneficial effect on the galvanization of steels with more than 0.2% of silicon in a bath of zinc or of alloy containing aluminum.
  • This zinc containing lead and germanium allows a reduction in the galvanizing temperature of the order of ten degrees without altering the productivity of the galvanizer which, in the case of a conventional zinc without germanium is in generally limited to a temperature of 450 ° C when it galvanizes loads of significant weight compared to the volume of zinc contained in the tank.
  • the combination of the elements Pb, Ge, AI in the alloy makes it possible to galvanize practically any type of steel at temperatures from 440 to 450 ° C approximately with thicknesses between 70 and 200 micrometers.
  • the aluminum content should be between 250 and 350 grams per tonne while at 450 ° C, aluminum should be between 400 and 500 grams per tonne.
  • 100 ⁇ 100 millimeter test pieces having a thickness of 3 to 5 millimeters are used, formed from three different grades of steel, steel A being of effervescent type, steel B being a steel quenched with silicon, and steel C being a steel with a high silicon content. More precisely, the designation of these steels is as follows:
  • test pieces undergo, before the actual galvanization, that is to say the immersion in the bath of molten zinc, a conventional surface treatment.
  • This treatment first comprises a degreasing at 70 ° C in an aqueous solution at 50 grams per liter of NaOH and 50 grams per liter of Na 2 C0 3 .
  • the test pieces are then rinsed with running water at room temperature.
  • test pieces are then undergo pickling in 50% commercial hydrochloric acid, in the presence of a well-known inhibitor "Socospar" C 51, for 30 to 45 minutes. Then, the test pieces are rinsed with running water, at room temperature.
  • the next treatment operation is fluxing at 80 ° C, in a solution of 200 grams per liter of zinc chloride and 200 grams per liter of NH 4 CI.
  • the test pieces are then dried in an oven at 100 ° C and are ready to be used for galvanizing.
  • the galvanization is carried out by immersing the test pieces, for the times indicated, in a bath contained in a 50 kilogram crucible, with a capacity of one ton.
  • the temperature of the galvanizing bath is indicated for each example and it is adjusted to plus or minus 2 ° C.
  • composition of the galvanizing baths is indicated in the table below.
  • the bath used in Examples 1 and 2 only contains traces of germanium and therefore does not allow the implementation of the invention. It is a classic bath with composition Z 7, French standard A 53-101. This standard specifies in particular the following composition:
  • the coating has a suitable thickness and appearance only in the case of effervescent steels.
  • the coating has a large thickness which continues to grow even after long periods of immersion, and it has a gray or mottled appearance. These coatings are much too thick when the immersion time is long.
  • Example 3 all the coatings obtained in Examples 3, 4 and 5, that is to say made according to the invention, have a shiny appearance. Their thicknesses are suitable for conventional galvanizing coatings. However, in Example 4, the thicknesses obtained with steels B and C are excessive for the only immersion time tested. This too great thickness is attributed to a too high reactivity, due to the temperature of 450 ° C. which proves to be too high in the case of these test conditions. Consequently, it is preferable that the temperature of the bath be reduced to 440 ° C. Example 5 differs from Example 4 only in this reduction in temperature. It is then noted that, even in the case of calm steels and with a high silicon content, the coatings obtained have a thickness which is perfectly suitable under industrial operating conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Disclosed herein is an alloy for galvanizing objects of steel which have a concentration of silicon lower than 0.45% by weight. The alloy consists essentially of 0.5 to 1.5% by weight of lead, 0.005 to 0.2% by weight of germanium and the balance zinc. The alloy may further contain 0.001 to 0.05% by weight aluminum.

Description

La présente invention concerne la galvanisation des objets formés d'acier, notamment d'un type contenant du silicium à une concentration pouvant atteindre 0,45% en poids. Plus précisément, l'invention concerne un procédé de galvanisation, des objets galvanisés formés par sa mise en oeuvre, ainsi qu'un alliage utilisé pour la mise en oeuvre de ce procédé.The present invention relates to the galvanization of objects formed from steel, in particular of a type containing silicon at a concentration of up to 0.45% by weight. More specifically, the invention relates to a galvanizing process, galvanized objects formed by its implementation, as well as an alloy used for the implementation of this process.

La galvanisation au trempé des aciers contenant moins de 0,04% en poids de silicium ne pose pas de problèmes importants concernant la qualité du revêtement formé. En particulier, les principales propriétés que possèdent les revêtements formés sont un aspect brillant, une bonne résistance à la corrosion, une bonne adhérence au substrat et une épaisseur de l'ordre de 70 à 90 et pouvant atteindre 120 micromètres.The hot dip galvanizing of steels containing less than 0.04% by weight of silicon does not pose significant problems concerning the quality of the coating formed. In particular, the main properties of the coatings formed are a shiny appearance, good corrosion resistance, good adhesion to the substrate and a thickness of the order of 70 to 90 and up to 120 micrometers.

On a constaté depuis longtemps que la galvanisation d'aciers contenant plus de 0,04% en poids de silicium posait des problèmes. Ces aciers sont connus dans la technique sous les noms d'aciers semi-calmés, contenant jusqu'à 0,1% de silicium environ, d'aciers calmés, dont la teneur en silicium est comprise entre 0,1 et 0,2%, et d'aciers à haute teneur en silicium.It has long been found that the galvanizing of steels containing more than 0.04% by weight of silicon posed problems. These steels are known in the art under the names of semi-quenched steels, containing up to about 0.1% of silicon, of quenched steels, the silicon content of which is between 0.1 and 0.2% , and steels with high silicon content.

Lors de la galvanisation de ces types d'aciers à l'aide des bains normalement utilisés pour les aciers effervescents (moins de 0,04% de silicium), on constate que les revêtements de zinc ont souvent un aspect grisé qui est un indice de la formation de composés intermétalliques donnant une fragilité au revêtement. Celui-ci non seulement n'a pas un aspect brillant, mais encore résiste mal à la corrosion et adhère mal au substrat. Très souvent, les revêtements formés ont une épaisseur excessive, du plusieurs centaines de micromètres.When galvanizing these types of steels using the baths normally used for effervescent steels (less than 0.04% of silicon), it is noted that zinc coatings often have a gray appearance which is an index of the formation of intermetallic compounds giving a brittleness to the coating. Not only does it not have a shiny appearance, it also has poor corrosion resistance and poor adhesion to the substrate. Very often, the coatings formed have an excessive thickness, of several hundred micrometers.

On a déjà cherché à résoudre ces problèmes posés par la galvanisation des aciers contenant du silicium. On a par exemple utilisé un préchauffage des objets à galvaniser dans un bain de sels fondus ainsi qu'une galvanisation à haute température, en creuset céramique. La mise en oeuvre de ces procédés est très coûteuse, et ils ne donnent pas de résultats reproductibles. En outre, la galvanisation à haute température provoque la formation d'une quantité de cendres très importante.Attempts have already been made to resolve these problems posed by the galvanization of steels containing silicon. For example, preheating of the objects to be galvanized was used in a bath of molten salts as well as high temperature galvanization in a ceramic crucible. The implementation of these methods is very expensive, and they do not give reproducible results. In addition, high temperature galvanization causes the formation of a very large quantity of ash.

Le brevet français n° 2.366.376 décrit un procédé de galvanisation convenant au traitement d'acier ayant une teneur faible à moyenne en silicium, pouvant atteindre 0,2% en poids au maximum. Ce procédé nécessite, avant la galvanisation proprement dite, un traitement des surfaces très soigné, comprenant notamment une opération supplémentaire de décapage par de l'acide chlorhydrique concentré, en plus des procédés classiques. Le bain d'alliage utilisé pour cette galvanisation contient de l'aluminium, en quantité pouvant atteindre 0,5% en poids, du magnésium en quantité pouvant atteindre 0,1 % en poids, du plomb en quantité comprise entre 0,005 et 2% en poids et de l'étain en quantité pouvant atteindre 2% en poids.French Patent No. 2,366,376 describes a galvanizing process suitable for treating steel having a low to medium silicon content, which can reach 0.2% by weight at most. This process requires, before the actual galvanization, a very careful treatment of the surfaces, including in particular an additional pickling operation with concentrated hydrochloric acid, in addition to the conventional processes. The alloy bath used for this galvanizing contains aluminum, in an amount up to 0.5% by weight, magnesium in an amount up to 0.1% by weight, lead in an amount between 0.005 and 2% in weight and tin in quantity up to 2% by weight.

Ce procédé, bien qu'il constitue un progrès important et qu'il soit utilisé à l'échelle industrielle pour la galvanisation des aciers semi-calmés et calmés au silicium, présente cependant certains inconvénients, notamment ceux liés à la faible fluidité du bain. En particulier, il provoque souvent une retenue importante de flux et l'obturation des petits trous formés dans les pièces. En outre, les drap aux et les gouttes qui se forment souvent au bord des pièces obligent à reprendre ces dernières avant commercialisation. Enfin, ce procédé nécessite la fixation de la température à une valeur au moins égale à 450°C, ce qui provoque la formation d'une quantité importante de cendres.This process, although it constitutes an important advance and that it is used on an industrial scale for the galvanization of semi-quenched and quenched silicon steels, however has certain drawbacks, in particular those related to the low fluidity of the bath. In particular, it often causes significant flow restraint and the filling of small holes formed in the parts. In addition, the drapes and drops that often form at the edge of the pieces make it necessary to take them back before marketing. Finally, this process requires the temperature to be fixed at a value at least equal to 450 ° C., which causes the formation of a large quantity of ash.

Ce procédé permet certes la galvanisation des aciers contenant jusqu'à 0,2% de silicium avec des épaisseurs supérieurs ou égales aux normes en vigueur, sans avoir à maintenir une fourchette étroite d'aluminium dans le bain en fusion. Il n'en est pas de même lorsqu'on veut galvaniser les aciers contenant plus de 0,2% de silicium.This process certainly allows the galvanization of steels containing up to 0.2% silicon with thicknesses greater than or equal to the standards in force, without having to maintain a narrow range of aluminum in the molten bath. It is not the same when we want to galvanize steels containing more than 0.2% silicon.

L'invention concerne un procédé de galvanisation qui, contrairement au procédé précité, convient même aux pièces à forte teneur en silicium pouvant atteindre 0,45% en poids de silicium, en présence d'une faible quantité de germanium incorporée au bain. Le bain comporte aussi avantageusement du plomb et éventuellement de l'aluminium. On constate en effet que le germanium a une influence importante sur les réactions du couple fer-zinc, en présence ou en absence d'aluminium. On constate en outre que la combinaison du plomb et du germanium donne au bain de galvanisation une fluidité et une tension superficielle très élevées qui permettent la mise en oeuvre de la galvanisation à une température plus faible que celle qui est couramment utilisée, notamment voisine de 440°C.The invention relates to a galvanizing process which, unlike the above process, is suitable even for parts with a high silicon content of up to 0.45% by weight of silicon, in the presence of a small amount of germanium incorporated in the bath. The bath also advantageously comprises lead and possibly aluminum. It is found in fact that germanium has a significant influence on the reactions of the iron-zinc couple, in the presence or absence of aluminum. It is further noted that the combination of lead and germanium gives the galvanizing bath a very high fluidity and surface tension which allow the implementation of the galvanization at a lower temperature than that which is commonly used, in particular close to 440 ° C.

Plus précisément, l'invention concerne un procédé de galvanisation d'objets d'acier, du type qui comprend le traitement de la surface des objets à galvaniser, consistant en des opérations normales de traitement des surfaces avant galvanisation, notamment un dégraissage, un décapage, un rinçage et un fluxage, puis leur immersion dans un bain de galvanisation; ce procédé comprend le réglage de la composition du bain afin que celui-ci contienne 0,005 à 0,2% en poids de germanium, et le réglage de la température du bain à une valeur comprise entre environ 440 et 460°C, de préférence entre 440 et 450°C.More specifically, the invention relates to a method of galvanizing steel objects, of the type which comprises the treatment of the surface of the objects to be galvanized, consisting of normal operations for treating the surfaces before galvanization, in particular degreasing, pickling , rinsing and fluxing, then immersing them in a galvanizing bath; this process includes adjusting the composition of the bath so that it contains 0.005 to 0.2% by weight of germanium, and adjusting the temperature of the bath to a value between about 440 and 460 ° C, preferably between 440 and 450 ° C.

La composition du bain est avantageusement réglée de manière que le bain contienne 0,5 à 1,5% en poids de plomb, et de préférence aussi 0,001 à 0,05% en poids d'aluminium.The composition of the bath is advantageously adjusted so that the bath contains 0.5 to 1.5% by weight of lead, and preferably also 0.001 to 0.05% by weight of aluminum.

Dans un exemple particulièrement avantageux, la composition du bain de galvanisation est réglée de manière que ce bain contienne, en pourcentages pondéraux, 0,03 à 0,15% de germanium et 0,8 à 1,2% de plomb, avantageusement en présence de 0,001 à 0,01% d'aluminium.In a particularly advantageous example, the composition of the galvanizing bath is adjusted so that this bath contains, in weight percentages, 0.03 to 0.15% germanium and 0.8 to 1.2% lead, advantageously in the presence from 0.001 to 0.01% aluminum.

Ce réglage de la composition du bain est de préférence réalisé par addition de quantités convenables d'au moins un alliage-mère.This adjustment of the composition of the bath is preferably carried out by adding suitable quantities of at least one master alloy.

Le procédé précité convient non seulement aux aciers ayant des teneurs moyennes ou élevées en silicium mais aussi aux aciers n'en contenant que très peu, notamment aux aciers effervescents.The aforementioned process is suitable not only for steels having medium or high silicon contents but also for steels containing very little, in particular effervescent steels.

On a aussi constaté que la mise en oeuvre du procédé de galvanisation selon l'invention permettait la formation d'objets d'acier galvanisé dans lesquels le germanium a une répartition particulière caractéristique.It has also been found that the implementation of the galvanizing process according to the invention allows the formation of galvanized steel objects in which the germanium has a particular characteristic distribution.

Plus précisément, l'invention concerne aussi des objets d'acier galvanisé, du type qui comprend un corps d'acier effervescent, semi-calmé ou calmé au silicium, formant un substrat, et un revêtement de galvanisation à structure stratifiée comprenant, à partir du substrat, une couche de composés intermétalliques 2 du fer et du zinc, et une couche externe 3 ayant sensiblement une composition constante; la couche de composés intermétalliques contient du germanium dont la concentration varie dans l'épaisseur de cette couche, cette concentration étant maximale dans la couche 2.More specifically, the invention also relates to articles of galvanized steel, of the type which comprises a body of effervescent steel, semi-calmed or calmed with silicon, forming a substrate, and a galvanized coating with a laminated structure comprising, from of the substrate, a layer of intermetallic compounds 2 of iron and zinc, and an outer layer 3 having substantially a constant composition; the layer of intermetallic compounds contains germanium, the concentration of which varies in the thickness of this layer, this concentration being maximum in layer 2.

Ledit corps d'acier calmé au silicium dont la teneur élevée en silicium peut atteindre 0,45% en poids forme un substrat dont le revêtement de galvanisation à structure stratifiée dans laquelle 0,005 à 0,2% de germanium est dispersé pratiquement dans toute son épaisseur.Said body of silicon quenched steel, the high silicon content of which can reach 0.45% by weight, forms a substrate, the galvanized coating of which has a stratified structure in which 0.005 to 0.2% of germanium is dispersed practically throughout its thickness. .

L'épaisseur du revêtement formé sur ces objets d'acier galvanisé est avantageusement comprise entre 60 et 120 micromètres.The thickness of the coating formed on these galvanized steel objects is advantageously between 60 and 120 micrometers.

L'invention concerne aussi un alliage destiné à la mise en oeuvre du procédé précité, c'est-à-dire à la galvanisation au trempé d'objets d'acier dont la teneur en silicium est inférieure à 0,45%, cet alliage contenant, en plus du zinc et en pourcentages pondéraux, 0,5 à 1,5% de plomb, 0,005 à 0,2% de germanium et 0,001 à 0,05% d'aluminium. De.préférence, cet alliage contient, en pourcentages pondéraux, 0,9 à 1,2% de plomb, 0,03 à 0,15% de germanium et 0,001 à 0,01% d'aluminium.The invention also relates to an alloy intended for the implementation of the abovementioned process, that is to say for the dip galvanization of steel objects whose silicon content is less than 0.45%, this alloy containing, in addition to zinc and in weight percentages, 0.5 to 1.5% lead, 0.005 to 0.2% germanium and 0.001 to 0.05% aluminum. Preferably, this alloy contains, in weight percentages, 0.9 to 1.2% of lead, 0.03 to 0.15% of germanium and 0.001 to 0.01% of aluminum.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description d'exemples particuliers de mise en oeuvre et de la description détaillée qui va suivre, faite en référence au dessin annexé sur lequel:

  • - la figure 1 est une coupe schématique très agrandie d'une partie d'un objet galvanisé selon l'invention;
  • - la figure 2 est un graphique représentant, en unités arbitraires, la variation de la concentration du germanium dans une couche du revêtement d'un objet galvanisé selon l'invention.
Other characteristics and advantages of the invention will emerge more clearly from the description of particular examples of implementation and from the detailed description which follows, given with reference to the appended drawing in which:
  • - Figure 1 is a very enlarged schematic section of part of a galvanized object according to the invention;
  • - Figure 2 is a graph showing, in arbitrary units, the variation of the concentration of germanium in a layer of the coating of a galvanized object according to the invention.

La figure 1 est une coupe schématique, à un grandissement de l'ordre de 1 000, d'une partie d'un objet galvanisé selon l'invention. Cet objet comporte un substrat 1 d'acier, par exemple d'un acier semi-calmé ou calmé. Ce substrat porte un revêtement qui comprend une couche 2 de composés intermétalliques et une couche externe 3 (connue par le spécialiste sous le nom de couche eta) dont on n'a pas représenté la surface et qui a une composition sensiblement uniforme. La couche 2 est représentée avec deux sous-couches 4 (connue par le spécialiste sous le nom de couche delta) et 5 (connue par le spécialiste sous le nom de couche dzeta) de caractéristiques cristallographiques différentes. En outre, surtout pour des temps d'immersion importants, on note la présente d'une mince sous-couche supplémentaire 6 (connue par le spécialiste sous le nom de couche gamma) directement au contact du substrat d'acier 1. L'ensemble de ces sous-couches 4, 5 et éventuellement 6 forme la "couche de composés intermétalliques".Figure 1 is a schematic section, at a magnification of about 1000, of a part of a galvanized object according to the invention. This object comprises a substrate 1 of steel, for example of a semi-calm or calm steel. This substrate carries a coating which comprises a layer 2 of intermetallic compounds and an external layer 3 (known by the specialist under the name of eta layer) whose surface has not been shown and which has a substantially uniform composition. Layer 2 is represented with two sublayers 4 (known by the specialist under the name of delta layer) and 5 (known by the specialist under the name of dzeta layer) with different crystallographic characteristics. In addition, especially for long immersion times, we note the presence of a thin additional sub-layer 6 (known by the specialist under the gamma layer) directly in contact with the steel substrate 1. The assembly of these sublayers 4, 5 and possibly 6 forms the "layer of intermetallic compounds".

La figure 2 représente la variation de la concentration du germanium dans la couche de composés intermétalliques représentée sur la figure 1. Les abscisses correspondent aux distances mesurées à partir de la sous-couche 6. La courbe 7 représente la variation de la concentration du germanium dans les cas d'un objet galvanisé pendant un temps d'immersion court, par exemple de l'ordre d'une minute à 440°C. Dans ce cas, le maximum de la concentration se trouve dans la sous-couche 4. Lorsque la structure représentée sur la figure 1 est obtenue après un plus long temps d'immersion, de l'ordre de cinq minutes par exemple, la couche 2 a alors une plus grande épaisseur mais sensiblement la même constitution, et la courbe de répartition du germanium, repérée par la référence 8 sur la figure 2, indique un maximum de concentration dans la sous-couche 5.FIG. 2 represents the variation of the concentration of germanium in the layer of intermetallic compounds represented in FIG. 1. The abscissae correspond to the distances measured from the sublayer 6. Curve 7 represents the variation of the concentration of germanium in in the case of a galvanized object for a short immersion time, for example of the order of one minute at 440 ° C. In this case, the maximum of the concentration is in the sublayer 4. When the structure represented in FIG. 1 is obtained after a longer immersion time, of the order of five minutes for example, layer 2 then has a greater thickness but substantially the same constitution, and the germanium distribution curve, identified by the reference 8 in FIG. 2, indicates a maximum concentration in the sublayer 5.

On constate de façon caractéristique, selon l'invention, que ce maximum se trouve dans l'une des sous-couches 4 et 5, en général à proximité de leur interface, mais toujours dans la couche de composés intermétalliques 2 et à distance des interfaces d'une part avec le corps 1 d'acier et d'autre part avec la couche externe 3 de composition sensiblement uniforme.It is characteristic to note, according to the invention, that this maximum is found in one of the sublayers 4 and 5, in general close to their interface, but always in the layer of intermetallic compounds 2 and at a distance from the interfaces. on the one hand with the body 1 of steel and on the other hand with the outer layer 3 of substantially uniform composition.

Dans le cas des aciers à teneur élevée en silicium, par exemple comprise entre 0,2 et 0,45% en poids, on n'observe une structure du type représenté sur la figure 1 que lorsque le temps d'immersion est très court. Après quelques minutes d'immersion, le germanium diffuse et a une répartition beaucoup plus régulière dans toute l'épaisseur de la sous-couche 2. Celle-ci est d'ailleurs beaucoup moins bien définie et on ne note plus la structure stratifiée représentée sur la figure 1, mais une structure polyphasée.In the case of steels with a high silicon content, for example between 0.2 and 0.45% by weight, a structure of the type shown in FIG. 1 is observed only when the immersion time is very short. After a few minutes of immersion, the germanium diffuses and has a much more regular distribution throughout the thickness of the under-layer 2. This is, moreover, much less well defined and the stratified structure represented on Figure 1, but a polyphase structure.

Ce comportement du germanium est original dans la mesure où d'une part la littérature technique n'y fait pas référence et où d'autre part ce comportement se distingue de celui d'autres éléments d'addition des bains de zinc, et notamment de celui de l'aluminium. On sait que celui-ci réduit la réactivité du zinc vis-à-vis des aciers au silicium. En particulier, on a constaté que les additions d'aluminium modifiaient la cinétique de réaction, et notamment son ordre. Au contraire, le germanium ne paraît avoir qu'un effet très limité sur l'ordre de la cinétique de réaction.This behavior of germanium is original insofar as on the one hand the technical literature does not refer to it and on the other hand this behavior is distinguished from that of other elements of addition of zinc baths, and in particular of that of aluminum. It is known that this reduces the reactivity of zinc vis-à-vis silicon steels. In particular, it has been found that the aluminum additions modify the reaction kinetics, and in particular its order. On the contrary, germanium appears to have only a very limited effect on the order of the reaction kinetics.

Il semble que l'action du germanium, surtout combinée au plomb, dans les pourcentages pondéraux indiqués, soit plus une adsorption du germanium à l'interface du fer et du zinc, et une régularisation des réactions de part et d'autre de cet interface. Le germanium diffuse ensuite de part et d'autre de cet interface, au fur et à mesure que la couche 2 de composés intermétalliques se forme de part et d'autre; la diffusion peut provoquer finalement une répartition presqu'uniforme du germanium lorsque la durée d'immersion est suffisamment grande, surtout en présence d'une quantité importante de silicium qui accélère les réactions. Cependant, il faut noter que la portée de l'invention n'est nullement limitée par cette interprétation.It seems that the action of germanium, especially combined with lead, in the weight percentages indicated, is more an adsorption of germanium at the interface of iron and zinc, and a regularization of reactions on both sides of this interface. The germanium then diffuses on both sides of this interface, as the layer 2 of intermetallic compounds is formed on both sides; diffusion can ultimately cause a nearly uniform distribution of germanium when the immersion time is long enough, especially in the presence of a large amount of silicon which accelerates the reactions. However, it should be noted that the scope of the invention is in no way limited by this interpretation.

Quelle que soit l'interprétation du comportement du germanium, surtout en présence de plomb, on constate que l'alliage possède une fluidité et une tension superficielle qui sont excellentes si bien que la température du bain peut être maintenue à 440°C seulement, alors que la température habituellement nécessaire est de 450 à 470°C. L'égouttage des pièces ne pose guère de problèmes grâce à la fluidité du bain. Les revêtements ont une brillance exceptionnelle et ils ont une excellente adhérence au substrat.Whatever the interpretation of the behavior of germanium, especially in the presence of lead, we find that the alloy has a fluidity and a surface tension which are excellent so that the temperature of the bath can be maintained at 440 ° C only, then that the temperature usually required is 450 to 470 ° C. The dripping of the rooms poses hardly any problems thanks to the fluidity of the bath. The coatings have exceptional shine and have excellent adhesion to the substrate.

Des études de cinétique de formation des couches d'alliages fer-zinc ont montré que dans un bain contenant de l'aluminium entre 350 et 500 grammes par tonne, la présence de germanium entrainait une augmentation de la cinétique de réaction fer-zinc pour des durées d'immersion lors de la galvanisation supérieures à cinq minutes, en particulier sur les aciers contenant plus de 0,2% de silicium.Kinetic studies of the formation of layers of iron-zinc alloys have shown that in a bath containing aluminum between 350 and 500 grams per tonne, the presence of germanium led to an increase in the kinetics of iron-zinc reaction for immersion times during galvanizing greater than five minutes, in particular on steels containing more than 0.2% of silicon.

Dans le cas d'un zinc contenant 400 à 500 grammes par tonne d'aluminium, l'épaisseur des revêtements de zinc sur aciers contenant plus de 0,2% est en général inférieure à 70 micromètres et quasiment indépendante du temps de séjour dans le bain de zinc et des températures de galvanisation couramment employées.In the case of a zinc containing 400 to 500 grams per tonne of aluminum, the thickness of zinc coatings on steels containing more than 0.2% is generally less than 70 micrometers and almost independent of the residence time in the zinc bath and commonly used galvanizing temperatures.

La présence de germanium en quantité croissante dans le bain de zinc contenant 400 à 500 grammes par tonne d'aluminium augmente l'épaisseur des revêtements de zinc obtenue sur les aciers à plus de 0,2% de silicium.The presence of germanium in increasing quantity in the zinc bath containing 400 to 500 grams per ton of aluminum increases the thickness of the zinc coatings obtained on steels to more than 0.2% of silicon.

Cette addition de germanium excerce donc un effet bénéfique sur la galvanisation des aciers à plus de 0,2% de silicium dans un bain de zinc ou d'alliage contenant de l'aluminium.This addition of germanium therefore exerts a beneficial effect on the galvanization of steels with more than 0.2% of silicon in a bath of zinc or of alloy containing aluminum.

La tension superficielle et la fluidité de ce zinc contenant du plomb et du germanium permet un abaissement de la température de galvanisation de l'ordre de dix degrés sans altérer la productivité du galvanisateur qui, dans le cas d'un zinc classique sans germanium est en général limité à une température de 450°C lorsqu'il galvanise des charges de poids importants par rapport au volume de zinc contenu dans la cuve.The surface tension and fluidity of this zinc containing lead and germanium allows a reduction in the galvanizing temperature of the order of ten degrees without altering the productivity of the galvanizer which, in the case of a conventional zinc without germanium is in generally limited to a temperature of 450 ° C when it galvanizes loads of significant weight compared to the volume of zinc contained in the tank.

La possibilité de travailler à plus basse température en présence de germanium dans un bain contenant du plomb est favorable à la galvanisation des aciers contenant du silicium. En effet, à 440°C, les cinétiques de réaction fer-zinc sont plus faibles que celles obtenues à 450°C sur les aciers contenant du silicium.The possibility of working at a lower temperature in the presence of germanium in a bath containing lead is favorable to the galvanization of steels containing silicon. Indeed, at 440 ° C, the kinetics of iron-zinc reaction are lower than those obtained at 450 ° C on steels containing silicon.

La combinaison des éléments Pb, Ge, AI dans l'alliage permet de galvaniser pratiquement n'importe quels types d'aciers à des températures de 440 à 450°C environ avec des épaisseurs comprises entre 70 et 200 micromètres.The combination of the elements Pb, Ge, AI in the alloy makes it possible to galvanize practically any type of steel at temperatures from 440 to 450 ° C approximately with thicknesses between 70 and 200 micrometers.

Lorsque l'on galvanise les aciers à 440°C, la teneur en aluminium doit être comprise entre 250 et 350 grammes par tonne alors qu'à 450°C, l'aluminium doit être compris entre 400 et 500 grammes par tonne.When galvanizing steels at 440 ° C, the aluminum content should be between 250 and 350 grams per tonne while at 450 ° C, aluminum should be between 400 and 500 grams per tonne.

Les exemples de réalisation de la présente invention, non limitatifs, suivants ont pour but de mettre les spécialistes à même de déterminer aisément les conditions opératoires qu'il convient d'utiliser dans chaque cas particulier.The following nonlimiting exemplary embodiments of the present invention are intended to enable specialists to easily determine the operating conditions which should be used in each particular case.

On utilise dans ces exemples des éprouvettes de 100x100 millimètres, ayant une épaisseur de 3 à 5 millimètres, formées de trois nuances différentes d'acier, l'acier A étant de type effervescent, l'acier B étant un acier calmé au silicium, et l'acier C étant un acier à teneur élevée en silicium. Plus précisement, la désignation de ces aciers est la suivante:

Figure imgb0001
In these examples, 100 × 100 millimeter test pieces having a thickness of 3 to 5 millimeters are used, formed from three different grades of steel, steel A being of effervescent type, steel B being a steel quenched with silicon, and steel C being a steel with a high silicon content. More precisely, the designation of these steels is as follows:
Figure imgb0001

Toutes les éprouvettes subissent, avant la galvanisation proprement dite, c'est-à-dire l'immersion dans le bain de zinc fondu, un traitement classique de surface. Ce traitement comprend d'abord un dégraissage à 70°C dans une solution aqueuse à 50 grammes par litre de NaOH et 50 grammes par litre de Na2C03. Les éprouvettes sont alors rincées à l'eau courante à température ambiante.All the test pieces undergo, before the actual galvanization, that is to say the immersion in the bath of molten zinc, a conventional surface treatment. This treatment first comprises a degreasing at 70 ° C in an aqueous solution at 50 grams per liter of NaOH and 50 grams per liter of Na 2 C0 3 . The test pieces are then rinsed with running water at room temperature.

Elles subissent alors un décapage dans l'acide chlorhydrique du commerce à 50%, en présence d'un inhibiteur bien connu "Socospar" C 51, pendant 30 à 45 minutes. Ensuite, les éprouvettes subissent un rinçage à l'eau courante, à température ambiante.They then undergo pickling in 50% commercial hydrochloric acid, in the presence of a well-known inhibitor "Socospar" C 51, for 30 to 45 minutes. Then, the test pieces are rinsed with running water, at room temperature.

L'opération suivante du traitement est un fluxage à 80°C, dans une solution à 200 grammes par litre de chlorure de zinc et 200 grammes par litre de NH4CI. Les éprouvettes sont ensuite séchées à l'étuve à 100°C et sont prêtes à être utilisées pour la galvanisation.The next treatment operation is fluxing at 80 ° C, in a solution of 200 grams per liter of zinc chloride and 200 grams per liter of NH 4 CI. The test pieces are then dried in an oven at 100 ° C and are ready to be used for galvanizing.

La galvanisation est réalisée par immersion des éprouvettes, pendant les temps indiqués, dans un bain contenu dans un creuset de 50 kilogrammes, ayant une capacité d'une tonne. La température du bain de galvanisation est indiquée pour chaque exemple et elle est réglée à plus ou moins 2°C.The galvanization is carried out by immersing the test pieces, for the times indicated, in a bath contained in a 50 kilogram crucible, with a capacity of one ton. The temperature of the galvanizing bath is indicated for each example and it is adjusted to plus or minus 2 ° C.

La composition des bains de galvanisation est indiquée dans le tableau qui suit.

Figure imgb0002
The composition of the galvanizing baths is indicated in the table below.
Figure imgb0002

Le bain utilisé dans les exemples 1 et 2 ne comporte que des traces de germanium et ne permet donc pas la mise en oeuvre de l'invention. Il s'agit d'un bain classique de composition Z 7, norme française A 53-101. Cette norme spécifie notamment la composition suivante:

Figure imgb0003
The bath used in Examples 1 and 2 only contains traces of germanium and therefore does not allow the implementation of the invention. It is a classic bath with composition Z 7, French standard A 53-101. This standard specifies in particular the following composition:
Figure imgb0003

Les normes suivantes définissent des qualités de zinc voisines du zinc Z 7:

Figure imgb0004
The following standards define qualities of zinc close to zinc Z 7:
Figure imgb0004

Les résultats des exemples figurent dans le tableau suivant.

Figure imgb0005
The results of the examples are shown in the following table.
Figure imgb0005

On note d'abord que, dans le bain classique (exemples 1 et 2) le revêtement a une épaisseur et un aspect convenables uniquement dans le cas des aciers effervescents. Dans le cas des aciers contenant du silicium, le revêtement a une grande épaisseur qui continue à croître même après de longues périodes d'immersion, et il a un aspect gris ou marbré. Ces revêtements sont beaucoup trop épais lorsque le temps d'immersion est grand.It is first noted that, in the conventional bath (examples 1 and 2) the coating has a suitable thickness and appearance only in the case of effervescent steels. In the case of steels containing silicon, the coating has a large thickness which continues to grow even after long periods of immersion, and it has a gray or mottled appearance. These coatings are much too thick when the immersion time is long.

Au contraire, tous les revêtements obtenus dans les exemples 3, 4 et 5, c'est-à-dire réalisés selon l'invention, ont un aspect brillant. Leurs épaisseurs convienent aux revêtements classiques de galvanisation. Cependant, dans l'exemple 4, les épaisseurs obtenues avec les aciers B et C sont excessives pour le seul temps d'immersion essayé. On attribue cette trop grande épaisseur à une réactivité trop élevée, due à la température de 450°C qui se révèle trop importante dans le cas de ces conditions d'essai. En conséquence, il est préférable que la température du bain soit réduite à 440°C. L'exemple 5 ne diffère de l'exemple 4 que par cette réduction de la température. On note alors que, même dans le cas des aciers calmés et à haute teneur en silicium, les revêtements obtenus ont une épaisseur convenant parfaitement dans les conditions d'exploitation industrielle.On the contrary, all the coatings obtained in Examples 3, 4 and 5, that is to say made according to the invention, have a shiny appearance. Their thicknesses are suitable for conventional galvanizing coatings. However, in Example 4, the thicknesses obtained with steels B and C are excessive for the only immersion time tested. This too great thickness is attributed to a too high reactivity, due to the temperature of 450 ° C. which proves to be too high in the case of these test conditions. Consequently, it is preferable that the temperature of the bath be reduced to 440 ° C. Example 5 differs from Example 4 only in this reduction in temperature. It is then noted that, even in the case of calm steels and with a high silicon content, the coatings obtained have a thickness which is perfectly suitable under industrial operating conditions.

Exemple 6Example 6

La galvanisation d'un acier neuf contenant 0,38% de silicium à 450°C pour une durée d'immersion de 5 minutes dans un bain contenant 1% du plomb et des teneurs en aluminium et germanium variables a donné les résultats suivants:

Figure imgb0006
Galvanizing a new steel containing 0.38% silicon at 450 ° C for an immersion time of 5 minutes in a bath containing 1% lead and variable aluminum and germanium contents gave the following results:
Figure imgb0006

Le même acier galvanisé à 450°C pendant 10 minutes dans un bain contenant 1% de plomb et des teneurs en aluminium et en germanium variables a donné les résultats suivants:

Figure imgb0007
The same steel galvanized at 450 ° C for 10 minutes in a bath containing 1% lead and varying aluminum and germanium contents gave the following results:
Figure imgb0007

Ainsi, ces résultats montrent les principaux avantages de l'invention. Plus précisément, l'incorporation de germanium, avantageusement en présence de plomb, permet la formation de revêtements tout à fait satisfaisants et correspondant aux conditions fixées par les utilisateurs, même dans le cas d'aciers ayant une teneur élevée en silicium, pouvant atteindre 0,45%. Ensuite, ce revêtement est obtenu sans utilisation d'un traitement particulièrement élaboré puisqu'il met en oeuvre les seules opérations utilisées habituellement pour la galvanisation des aciers sans silicium. Ensuite, la température du bain est avantageusement réduite à 440°C seulement. Dans ces conditions, la quantité de cendres formées est réduite et le rendement du bain est accru:

  • Enfin, l'aspect des objets galvanisés est excellent car non seulement le revêtement est brillant, mais encore ce dernier ne forme pas de gouttes ou de drapeaux le long des bords des objets.
Thus, these results show the main advantages of the invention. More specifically, the incorporation of germanium, advantageously in the presence of lead, allows the formation of completely satisfactory coatings and corresponding to the conditions set by the users, even in the case of steels having a high silicon content, up to 0 , 45%. Then, this coating is obtained without using a particularly elaborate treatment since it implements the only operations usually used for the galvanization of steels without silicon. Then, the bath temperature is advantageously reduced to 440 ° C only. Under these conditions, the quantity of ash formed is reduced and the yield of the bath is increased:
  • Finally, the appearance of galvanized objects is excellent because not only is the coating shiny, but the latter also does not form drops or flags along the edges of the objects.

Claims (17)

1. Process for galvanising steel objects, of a type which comprises:
- surface treatment of the objects to be galvanised, consisting of normal surface treatment before galvanisation, then
- their immersion in a galvanising bath,

characterised in that it comprises
- adjustment of the composition of the bath in order that the latter contains 0.006 to 0.2% in weight of germanium, and adjustment of the temperature of the bath to a value of between approximately 440 and 460°C.
2. Process according to claim 1, characterised in that it comprises in addition adjustment of the composition of the bath in such a way that the bath contains 0.5 to 1.5% in weight of lead.
3. Process according to claim 2, characterised in that it comprises in addition adjustment of the composition of the bath in such a way that the bath contains 0.001 to 0.05% in weight of aluminium.
4. Process according to any one of the above claims, characterised in that the adjustment of the composition of the galvanising bath is effected in such a way that the latter contains, in weight percentages, 0.03 to 0.15% of germanium and 0.8 to 1.2% of lead and 0.001 to 0.05% in weight of aluminium.
5. Process according to claim 4, characterised in that it comprises in addition adjustment of the composition of the bath so that the latter contains 0.001 to 0.01% in weight of aluminium.
6. Process according to any one of the above claims, characterised in that the objects are constituted of a steel chosen from a group which comprises unkilled, semi-killed and killed steels and steels with a high silicon content which may reach 0.45% in weight.
7. Process according to any one of the above claims, characterised in that the adjustment of the temperature of the bath to a value of between approximately 440 and 450°C.
8. Process according to any one of the above claims, characterised in that the adjustment of the composition of the bath is effected by the introduction of suitable quantities of at least one master alloy.
9. Galvanised steel object, of a type which comprises:
- a body made of unkilled, semi-killed, silicon-killed steel or steel with a high silicon content, forming a substratum, and
- a galvanisation coating, having a laminated structure and comprising-apart from the substratum-a layer 2 of intermetallic alloys of iron and zinc and an external layer 3 having a uniform structure,

characterised in that the layer of intermetallic alloys contains germanium, the concentration of which varies throughout the thickness of this layer, this concentration being maximum in layer 2.
10. Galvanised steel object according to claim 9, characterised by the fact that the body of silicon-killed steel or steel with a high silicon content which may reach 0.45% in weight and by the fact that the galvanisation coating, having a laminated structure, contains 0.005 to 0.2% germanium dispersed virtually throughout its thickness.
11. Galvanised steel object, characterised in that it is prepared by the implementation of a process according to claims 1, 3 and 4, taken separately, and in that the thickness of the coating formed is between 70 and 200 micrometres.
12. Alloy intended for the hot-dip galvanisation of steel objects, the silicon content of which is below 0.45% in weight, characterised by the fact that it contains, in weight percentages, 0.5 to 1.5% of lead, 0.005 to 0.2% of germanium and optionally 0.001 to 0.05% of aluminium, the remainder of the alloy being constituted of a zinc corresponding to one of the standards selected from the group Z 7, HZ 2, UNE 37301, ASTM 86, JIS H 2107, UNIMET 111/025, DIN 1706 and RS 3436.
13. Alloy according to claim 12, characterised in that it contains, in weight percentages, 0.9 to 1.2% of lead and 0.03 to 0.15% of germanium.
14. Alloy according to one of claims 12 and 13, characterised in that it contains 0.001 to 0.01% of aluminium.
15. Use for hot-dip galvanisation of an alloy containing, in weight percentages, 0.5 to 1.5% of lead, 0.005 to 0.2% of germanium and 0.000 (sic) to 0.05% of aluminium, the remainder of the alloy being constituted of a zinc corresponding to one of the selected standards in the group Z 7, HZ 2, UNE 37301, ASTM 86, JIS H 2107, UNIMET 111/025, DIN 1706 and RS 3436.
16. Use for hot-dip galvanisation according to claim 15, characterised by the fact that the said alloy contains, in weight percentages, 0.9 to 1.2% of lead and 0.03 to 0.15% of germanium.
17. Use for hot-dip galvanisation according to claim 16, characterised by the fact that the said alloy contains 0.001 to 0.01% of aluminium.
EP83400916A 1982-05-05 1983-05-05 Method and alloy for the hot dip galvanizing of silicon steel, and galvanized articles Expired EP0095402B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83400916T ATE26308T1 (en) 1982-05-05 1983-05-05 PROCESSES AND ALLOYS FOR HOT GALVANIZING OF SILICON STEELS AND GALVANIZED ARTICLES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8207772 1982-05-05
FR8207772A FR2526445A1 (en) 1982-05-05 1982-05-05 METHOD AND ALLOY FOR STEEL GALVANIZATION AND GALVANIZED OBJECT

Publications (2)

Publication Number Publication Date
EP0095402A1 EP0095402A1 (en) 1983-11-30
EP0095402B1 true EP0095402B1 (en) 1987-04-01

Family

ID=9273737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400916A Expired EP0095402B1 (en) 1982-05-05 1983-05-05 Method and alloy for the hot dip galvanizing of silicon steel, and galvanized articles

Country Status (9)

Country Link
US (2) US4636354A (en)
EP (1) EP0095402B1 (en)
JP (1) JPS58207363A (en)
AT (1) ATE26308T1 (en)
CA (1) CA1193154A (en)
DE (1) DE3370654D1 (en)
ES (1) ES8405849A1 (en)
FR (1) FR2526445A1 (en)
GR (1) GR79280B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2097784C (en) * 1993-06-04 1997-03-04 Martin Gagne Alloy for after-fabrication hot-dip galvanizing
US5849408A (en) * 1993-12-27 1998-12-15 Nippon Mining & Metals Co., Ltd. Hot-dip zinc plating product
CN100362123C (en) * 2006-02-16 2008-01-16 无锡麟龙铝业有限公司 Galvanized steel sheet coating material and its production method
US20100304184A1 (en) * 2009-06-01 2010-12-02 Thomas & Betts International, Inc. Galvanized weathering steel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2197622A (en) * 1937-04-22 1940-04-16 American Rolling Mill Co Process for galvanizing sheet metal
US3245765A (en) * 1962-03-08 1966-04-12 Armco Steel Corp Process of improving general corrosion resistance of zinc coated strip
BE691851A (en) * 1966-12-27 1967-06-27
DE1558489A1 (en) * 1967-06-15 1970-07-02 Erdmann Jesnitzer Dr Ing Habil Zinc alloys suitable for single-stage etching
FR2366376A1 (en) * 1976-10-01 1978-04-28 Dreulle Noel ALLOY INTENDED FOR THE QUENCH GALVANIZATION OF STEELS, INCLUDING STEELS CONTAINING SILICON, AND GALVANIZATION PROCESS SUITABLE FOR THIS ALLOY
EP0046458A1 (en) * 1980-08-14 1982-03-03 Th. Goldschmidt AG Process for high-temperature galvanizing
US4389463A (en) * 1981-07-23 1983-06-21 United Technologies Corporation Zinc-aluminum hot dip coated ferrous article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Le Zinc, sa métallurgie, ses applications, pages 29-30, 72, Centre technique du Zinc, 1968 *

Also Published As

Publication number Publication date
FR2526445B1 (en) 1984-09-07
ATE26308T1 (en) 1987-04-15
EP0095402A1 (en) 1983-11-30
JPS58207363A (en) 1983-12-02
ES522090A0 (en) 1984-06-16
DE3370654D1 (en) 1987-05-07
US4636354A (en) 1987-01-13
FR2526445A1 (en) 1983-11-10
CA1193154A (en) 1985-09-10
GR79280B (en) 1984-10-22
ES8405849A1 (en) 1984-06-16
US4699815A (en) 1987-10-13

Similar Documents

Publication Publication Date Title
JPH04147954A (en) Production of hot-dip galvanized steel sheet
WO2016120669A1 (en) Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve corrosion resistance
WO1987005337A1 (en) Fluoride-free flux compositions for the hot galvanizing in aluminium-containing zinc baths
EP0095402B1 (en) Method and alloy for the hot dip galvanizing of silicon steel, and galvanized articles
WO2016120671A1 (en) Method for the production of a coated metal sheet, comprising the application of an aqueous solution containing an amino acid, and associated use in order to improve tribological properties
EP0037143A1 (en) Hot dip coating process
CZ266498A3 (en) Bath and dipping galvanization process
JPH03229846A (en) Galvanized material and galvanizing method
EP0594520A1 (en) Galvanized steel products and method of making
US2782493A (en) Aluminum coated ferrous article
BE882256A (en) GALVANIZATION PROCESS
EP0042636A2 (en) Surface treatment of surfaces protected by a metallic coating
EP0579642B1 (en) Galvanizing method and zinc alloy for use therein
EP0870069A1 (en) Method for galvanising a steel sheet containing oxidizable alloying elements
EP0111039A1 (en) Process for the high speed continuous galvanizing and annealing of a metallic wire
EP0664838B1 (en) Continuous galvanizing method
WO2005080635A1 (en) Sn-zn alloy hot dip plated steel sheet
CA2565931C (en) Hot galvanizing bath for parts made of any grade of steel
JP2952577B2 (en) Prevention method of peeling of hot-dip galvanized layer of Si low concentration carbon steel.
FR2549090A1 (en) Process for protecting a metal surface by electrolytic deposition of a thick layer of microfissured chromium and articles obtained
JP2001226789A (en) Producing method for high tensile strength hot dip galvanized steel sheet
BE883724A (en) PROCESS FOR HOT COATING OF SILICON STEELS
BE825281A (en) SURFACE TREATMENT OF ALUMINUM AND ALUMINUM ALLOYS
FR2776672A1 (en) METHOD FOR GALVANIZING STEEL SHEETS
JPH04154949A (en) Production of zn-al alloy plated steel wire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19831027

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 26308

Country of ref document: AT

Date of ref document: 19870415

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: VETTOR GALLETTI DI SAN CATALDO

REF Corresponds to:

Ref document number: 3370654

Country of ref document: DE

Date of ref document: 19870507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19890508

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890509

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890517

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890529

Year of fee payment: 7

Ref country code: AT

Payment date: 19890529

Year of fee payment: 7

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890531

Year of fee payment: 7

Ref country code: GB

Payment date: 19890531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890606

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890714

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900505

Ref country code: AT

Effective date: 19900505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900531

Ref country code: CH

Effective date: 19900531

Ref country code: BE

Effective date: 19900531

BERE Be: lapsed

Owner name: SOC. MINIERE ET METALLURGIQUE DE PENARROYA

Effective date: 19900531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19901201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83400916.9

Effective date: 19910115