EP0094053A1 - Plasma method for making a dielectric rod - Google Patents

Plasma method for making a dielectric rod Download PDF

Info

Publication number
EP0094053A1
EP0094053A1 EP83104464A EP83104464A EP0094053A1 EP 0094053 A1 EP0094053 A1 EP 0094053A1 EP 83104464 A EP83104464 A EP 83104464A EP 83104464 A EP83104464 A EP 83104464A EP 0094053 A1 EP0094053 A1 EP 0094053A1
Authority
EP
European Patent Office
Prior art keywords
rod
face
mode
microwave
dielectric rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83104464A
Other languages
German (de)
French (fr)
Other versions
EP0094053B1 (en
Inventor
Hans Beerwald
Günter Böhm
Günter Glomski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glaswerke AG filed Critical Schott Glaswerke AG
Publication of EP0094053A1 publication Critical patent/EP0094053A1/en
Application granted granted Critical
Publication of EP0094053B1 publication Critical patent/EP0094053B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/01Other methods of shaping glass by progressive fusion or sintering of powdered glass onto a shaping substrate, i.e. accretion, e.g. plasma oxidation deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1476Means for heating during or immediately prior to deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01291Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process
    • C03B37/01294Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process by delivering pulverulent glass to the deposition target or preform where the powder is progressively melted, e.g. accretion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0148Means for heating preforms during or immediately prior to deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers

Definitions

  • the invention relates to a plasma process for producing a dielectric rod from gaseous starting materials, in which the rod grows in the axial direction by deposition on the end face.
  • Such processes have the purpose of producing high-purity glass or ceramic materials in rod form, in particular preforms made of quartz glass, from which optical waveguides for communications technology are drawn.
  • the invention is based on the object of restricting the reaction zone and thus the plasma zone to one layer on the end face of the rod to be produced and installing the nozzle system outside the plasma zone.
  • microwave energy is passed over the rod to the end face and maintains a gas discharge on the end face into which the starting material flows as a gas jet by means of one or more nozzles.
  • the rod is to be arranged coaxially in an electrically conductive tube according to a further embodiment of the invention.
  • the tube can e.g. B. be a graphite tube or a quartz tube which is coated on the inside with graphite or is designed with temperature-resistant metal foil.
  • the methods proposed in DE-AS 2837261 for mandrels can be applied.
  • the inside diameter of the tube must be large enough that the excited waveguide mode is capable of spreading in the section in which the dielectric rod is located; but it must not be so large that the excited waveguide mode is also capable of spreading in the empty tube above the end face. In this range, the cutoff frequency of the waveguide mode should be higher than the microwave frequency used.
  • the advantages achieved by the invention are, in particular, that there is no need for plasma-generating devices on the nozzles, that the nozzle system can be located outside the reaction zone, and thus finer and more complicated nozzle systems can be installed. The risk of deposition on the nozzles is lower.
  • the rotation of the rod to be produced can be dispensed with.
  • Microwave power of approximately 2 kW at the frequency 2.45 GHz is fed into the coaxial line system 1 as a normal line wave.
  • the empty tube section 2 the inside diameter of which is 120 mm, the rotationally symmetrical E 01 waveguide mode is excited, which spreads toward the narrowed cross section filled with quartz glass.
  • the quartz glass body 3 is conical towards the generator.
  • the narrowed cross section with a diameter of 60 mm there is a thick quartz glass pane 4 protruding into the graphite tube 5 as the starting member for the quartz rod 6 to be produced. Above the end face of the starting member or the growing rod, the strength of the microwave field quickly subsides. Therefore, only a short plasma zone 7 forms on the end face.
  • the starting materials for the rod flow as a gas jet into the plasma zone.
  • the molecules are dissociated and new molecules that represent the rod material form on the end face.
  • the nozzle system is slidably mounted in the vacuum vessel 9 so that its distance from the end face of the growing rod can be kept constant.
  • the electrical length between the end face and the microwave generator is kept constant with a variable phase shifter.
  • the gas pressure at the pump nozzle 10 is approximately 1 mbar.
  • nozzle systems according to DE-AS 2715333, DE-OS 2913726 and DE-OS 2919619 can also be used. Since these nozzle systems are not rotationally symmetrical, it is necessary to let the rod or the nozzle systems rotate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Plasma Technology (AREA)

Abstract

Die Erfindung betrifft ein Plasmaverfahren zur Herstellung eines dielektrischen Stabes (6) aus gasförmigen Ausgangsmaterialien, bei dem der Stab (6) durch Abscheidung auf die Stirnfläche des Stabes (6) in Achsrichtung wächst, indem über den Stab (6) zu seiner Stirnfläche hin Mikrowellenenergie geleitet wird, die an der Stirnfläche eine Gasentladung (7) aufrechterhält, in welche mittels eines konzentrischen Düsensystems (8) das Ausgangsmaterial als Gasstrahl einströmt.The invention relates to a plasma process for producing a dielectric rod (6) from gaseous starting materials, in which the rod (6) grows in the axial direction by deposition on the end face of the rod (6), by means of microwave energy via the rod (6) towards its end face is directed, which maintains a gas discharge (7) on the end face, into which the starting material flows as a gas jet by means of a concentric nozzle system (8).

Description

Die Erfindung betrifft ein Plasmaverfahren zur Herstellung eines dielektrischen Stabes aus gasförmigen Ausgangsmaterialien, bei dem der Stab durch Abscheidung auf die Stirnfläche in Achsrichtung wächst.The invention relates to a plasma process for producing a dielectric rod from gaseous starting materials, in which the rod grows in the axial direction by deposition on the end face.

Solche Verfahren haben den Zweck, hochreine Glas- oder Keramikwerkstoffe in Stabform herzustellen insbesondere Vorformlinge aus Quarzglas, aus denen optische Wellenleiter für die Nachrichtentechnik gezogen werden.Such processes have the purpose of producing high-purity glass or ceramic materials in rod form, in particular preforms made of quartz glass, from which optical waveguides for communications technology are drawn.

Derartige Verfahren sind in folgenden Schriften offenbart: DE-AS 2715333, DE-OS 2835326, DE-OS 2913726 und DE-OS 2919619. Diese Schriften behandeln die Herstellung von Vorformlingen aus Quarzglas, die ein Gradientenindex-Profil aufweisen, was durch radial veränderte Dotierung des Stabes erreicht wird. Die hierfür benötigten Düsensysteme und Düsenbewegungen sowie die Zuführung des Dotierungsmaterials nehmen in diesen Schriften einen breiten Raum ein. Der Vorteil des Plasmaverfahrens gegenüber dem Verfahren mit Flammenhydrolyse ist erkannt. Die Düsen werden z. T. mit einer plasmaerzeugenden Vorrichtung versehen und als Plasmabrenner ausgebildet. Das Anfangsglied des Stabes, meist eine runde Platte, ist mit einem Antrieb versehen, der den Stab bei seiner Herstellung rotieren läßt.Such methods are disclosed in the following documents: DE-AS 2715333, DE-OS 2835326, DE-OS 2913726 and DE-OS 2919619. These documents deal with the production of preforms from quartz glass which have a gradient index profile, which is due to radially changed doping of the rod is reached. The nozzle systems and nozzle movements required for this as well as the supply of the doping material occupy a large space in these documents. The advantage of the plasma process over the process with flame hydrolysis has been recognized. The nozzles are e.g. T. provided with a plasma generating device and designed as a plasma torch. The initial link of the rod, usually a round plate, is provided with a drive that rotates the rod during its manufacture.

Der Erfindung liegt die Aufgabe zu Grunde, die Reaktionszone und damit die Plasmazone auf eine Schicht an der Stirnfläche des herzustellenden Stabes zu beschränken und das Düsensystem außerhalb der Plasmazone zu installieren.The invention is based on the object of restricting the reaction zone and thus the plasma zone to one layer on the end face of the rod to be produced and installing the nozzle system outside the plasma zone.

Diese Aufgabe wird erfindungsmäßig dadurch gelöst, daß über den Stab zur Stirnfläche hin Mikrowellenenergie geleitet wird, die an der Stirnfläche eine Gasentladung aufrecht erhält, in die mittels einer oder mehrerer Düsen das Ausgangsmaterial als Gasstrahl einströmt.This object is achieved in accordance with the invention in that microwave energy is passed over the rod to the end face and maintains a gas discharge on the end face into which the starting material flows as a gas jet by means of one or more nozzles.

Um die Wellenleitereigenschaft des Stabes zu verbessern und um Zündung der Gasentladung am Düsensystem zu vermeiden ist nach einer weiteren Ausbildung der Erfindung der Stab koaxial in einem elektrisch leitfähigen Rohr anzuordnen. Das Rohr kann z. B. ein Graphitrohr sein oder ein Quarzrohr, das innen mit Graphit beschichtet ist oder mit temperaturbeständiger Metallfolie ausgelegt ist. Für die Innenbeschichtung mit Graphit können z. B. die in DE-AS 2837261 für Dorne vorgeschlagenen Verfahren angewandt werden. Der Innendurchmesser des Rohres muß so groß sein, daß die angeregte Hohlleitermode in dem Abschnitt, in dem der dielektrische Stab sich befindet, ausbreitungsfähig ist; er darf aber nicht so groß sein, daß die angeregte Hohlleitermode im leeren Rohr oberhalb der Stirnfläche auch ausbreitungsfähig ist. In diesem Bereich soll die Grenzfrequenz der Hohlleitermode höher sein als die benutzte Mikrowellenfrequenz.In order to improve the waveguide property of the rod and to avoid ignition of the gas discharge on the nozzle system, the rod is to be arranged coaxially in an electrically conductive tube according to a further embodiment of the invention. The tube can e.g. B. be a graphite tube or a quartz tube which is coated on the inside with graphite or is designed with temperature-resistant metal foil. For the interior coating with graphite z. B. the methods proposed in DE-AS 2837261 for mandrels can be applied. The inside diameter of the tube must be large enough that the excited waveguide mode is capable of spreading in the section in which the dielectric rod is located; but it must not be so large that the excited waveguide mode is also capable of spreading in the empty tube above the end face. In this range, the cutoff frequency of the waveguide mode should be higher than the microwave frequency used.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, daß auf plasmaerzeugende Vorrichtungen an den Düsen verzichtet werden kann, daß das Düsensystem sich außerhalb der Reaktionszone befinden kann und damit feinere und kompliziertere Düsensysteme installiert werden können. Die Gefahr der Abscheidung auf den Düsen ist geringer. Bei Anwendung einer rotationssymmetrischen oder drehenden Mikrowellenmode gemäß Patentanspruch 3 und eines rotationusymmetrischen Düsensystems kann auf die Rotation des herzustellenden Stabes verzichtet werden.The advantages achieved by the invention are, in particular, that there is no need for plasma-generating devices on the nozzles, that the nozzle system can be located outside the reaction zone, and thus finer and more complicated nozzle systems can be installed. The risk of deposition on the nozzles is lower. When using a rotationally symmetrical or rotating microwave mode according to claim 3 and a rotationally symmetrical nozzle system, the rotation of the rod to be produced can be dispensed with.

Ein Ausführungsbeispiel der Erfindung gemäß Patentansprüchen 2 und 3 ist als Längsschnitt in der Zeichnung dargestellt und wird im folgenden näher beschrieben.An embodiment of the invention according to claims 2 and 3 is shown as a longitudinal section in the drawing and is described in more detail below.

In das koaxiale Leitungssystem 1 wird Mikrowellenleistung von etwa 2 kW bei der Frequenz 2,45 GHz als normale Leitungswelle eingespeist. Im leeren Rohrabschnitt 2, dessen Innendurchmesser 120 mm beträgt, wird die rotationssymmetrische E01-Hohlleitermode angeregt, die sich zum verengten, mit Quarzglas gefüllten Querschnitt hin ausbreitet. Zur Erzielung eines reflexionsfreien Übergangs zum kleinen Querschnitt ist der Quarzglaskörper 3 zum Generator hin kegelförmig ausgebildet. Im verengten Querschnitt mit 60 mm Durchmesser befindet sich eine in das Graphitrohr 5 hineinragende dicke Quarzglasscheibe 4 als Anfangsglied für den herzustellenden Quarzstab 6. Oberhalb der Stirnfläche des Anfangsgliedes bzw. des wachsenden Stabes klingt die Stärke des Mikrowellenfeldes rasch ab. Deshalb bildet sich an der Stirnfläche nur eine kurze Plasmazone 7 aus. Mittels des konzentrischen Düsensystems 8, das ähnlich ist dem in DE-OS 2835326 vorgeschlagenen, strömen die Ausgangsmaterialien für den Stab als Gasstrahl in die Plasmazone. Hier werden die Moleküle dissoziiert und an der Stirnfläche bilden sich neue Moleküle, die das Stabmaterial darstellen. Durch Variation der eingegebenen Gasgemische, des Durchsatzes in den Düsenkanälen und des Abstandes der Düsen von der Stirnfläche kann eine Einstellung gefunden werden, die zur Herstellung eines Stabes mit gewünschtem radialen Brechungsindex-Profil führt. Das Düsensystem ist im Vakuumkessel 9 verschiebbar angebracht, so daß sein Abstand zur Stirnfläche des wachsenden Stabes konstant gehalten werden kann. Die elektrische Länge zwischen Stirnfläche und Mikrowellengenerator wird mit einem veränderlichen Phasenschieber konstant gehalten. Der Gasdruck am Pumpstutzen 10 beträgt etwa 1 mBar.Microwave power of approximately 2 kW at the frequency 2.45 GHz is fed into the coaxial line system 1 as a normal line wave. In the empty tube section 2, the inside diameter of which is 120 mm, the rotationally symmetrical E 01 waveguide mode is excited, which spreads toward the narrowed cross section filled with quartz glass. In order to achieve a reflection-free transition to the small cross section, the quartz glass body 3 is conical towards the generator. In the narrowed cross section with a diameter of 60 mm there is a thick quartz glass pane 4 protruding into the graphite tube 5 as the starting member for the quartz rod 6 to be produced. Above the end face of the starting member or the growing rod, the strength of the microwave field quickly subsides. Therefore, only a short plasma zone 7 forms on the end face. By means of the concentric nozzle system 8, which is similar to that proposed in DE-OS 2835326, the starting materials for the rod flow as a gas jet into the plasma zone. Here the molecules are dissociated and new molecules that represent the rod material form on the end face. By varying the gas mixtures entered, the throughput in the nozzle channels and the distance of the nozzles from the end face, an adjustment can be found which leads to the production of a rod with the desired radial refractive index profile. The nozzle system is slidably mounted in the vacuum vessel 9 so that its distance from the end face of the growing rod can be kept constant. The electrical length between the end face and the microwave generator is kept constant with a variable phase shifter. The gas pressure at the pump nozzle 10 is approximately 1 mbar.

Selbstverständlich können auch Düsensysteme entsprechend DE-AS 2715333, DE-OS 2913726 und DE-OS 2919619 angewandt werden. Da diese Düsensysteme nicht rotationssymmetrisch sind, ist es jedoch notwendig, den Stab oder die Düsensysteme rotieren zu lassen.Of course, nozzle systems according to DE-AS 2715333, DE-OS 2913726 and DE-OS 2919619 can also be used. Since these nozzle systems are not rotationally symmetrical, it is necessary to let the rod or the nozzle systems rotate.

Claims (3)

1. Plasmaverfahren zur Herstellung eines dielektrischen Stabes aus gasförmigen Ausgangsmaterialien, bei dem der Stab durch Abscheidung auf die Stirnfläche in Achsrichtung wächst, dadurch gekennzeichnet, daß über den Stab zur Stirnfläche hin Mikrowellenenergie geleitet wird, die an der Stirnfläche eine Gasentladung aufrecht erhält, in die mittels einer oder mehrerer Düsen das Ausgangsmaterial als Gasstrahl einströmt,1. Plasma process for producing a dielectric rod from gaseous starting materials, in which the rod grows by deposition on the end face in the axial direction, characterized in that microwave energy is passed over the rod towards the end face and maintains a gas discharge on the end face, into which the starting material flows in as a gas jet by means of one or more nozzles, 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Stab sich koaxial in einem elektrisch leitfähigen Rohr befindet, das so dimensioniert ist, daß die angeregte Hohlleitermode sich nur in dem Rohrabschnitt, in dem sich der dielektrische Stab befindet, ausbreiten kann, während im leeren Rohr oberhalb der Stirnfläche die Hohlleitergrenzfrequenz höher ist als die verwendete Mikrowellenfrequenz.2. The method according to claim 1, characterized in that the rod is coaxially in an electrically conductive tube which is dimensioned so that the excited waveguide mode can only spread in the tube section in which the dielectric rod is located, while in empty tube above the end face, the waveguide cutoff frequency is higher than the microwave frequency used. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet , daß eine rotationssymmetrische Mikrowellenmode, z. B. eine Eon-Mode, oder eine drehende nicht rotationssymmetrische Mikrowellenmode, z. B. eine auf der Achse zirkularpolarisierte H-Mode, verwendet wird.3. The method according to claim 1 or 2, characterized in that a rotationally symmetrical microwave mode, for. B. e o n mode, or a rotating non-rotationally symmetrical microwave mode, z. B. a circularly polarized H-mode on the axis is used.
EP83104464A 1982-05-12 1983-05-06 Plasma method for making a dielectric rod Expired EP0094053B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3217839 1982-05-12
DE19823217839 DE3217839A1 (en) 1982-05-12 1982-05-12 PLASMA PROCESS FOR PRODUCING A DIELECTRIC ROD

Publications (2)

Publication Number Publication Date
EP0094053A1 true EP0094053A1 (en) 1983-11-16
EP0094053B1 EP0094053B1 (en) 1986-10-15

Family

ID=6163368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83104464A Expired EP0094053B1 (en) 1982-05-12 1983-05-06 Plasma method for making a dielectric rod

Country Status (4)

Country Link
US (1) US4508554A (en)
EP (1) EP0094053B1 (en)
JP (1) JPS5922654A (en)
DE (2) DE3217839A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2151609A (en) * 1983-12-21 1985-07-24 Gen Electric Plc Manufacture of optical fibre preforms
EP0257587A1 (en) * 1986-08-29 1988-03-02 AT&T Corp. Methods of soot overcladding an optical preform
EP0263469A1 (en) * 1986-10-07 1988-04-13 Linde Aktiengesellschaft Method for thermally coating surfaces

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196956A (en) * 1986-11-04 1988-05-11 Toyo Kohan Co Ltd Process and apparatus for the production of rapidly solidified powders of high melting point ceramics
US4854263B1 (en) * 1987-08-14 1997-06-17 Applied Materials Inc Inlet manifold and methods for increasing gas dissociation and for PECVD of dielectric films
US4973345A (en) * 1987-10-13 1990-11-27 British Telecommunications Public Limited Company Surface treatments for optical fibre preforms
JPH01183432A (en) * 1988-01-18 1989-07-21 Sumitomo Electric Ind Ltd Heating of quartz glass tube
US5593948A (en) * 1994-04-28 1997-01-14 Basf Corporation Highly concentrated, solid acifluoren powders and processes for making dry form solid acifluorfen powders
US6928839B2 (en) 2002-08-15 2005-08-16 Ceramoptec Industries, Inc. Method for production of silica optical fiber preforms

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2313327A1 (en) * 1975-06-06 1976-12-31 Quartz & Silice VERY HIGH PURITY GLASS PREPARATION PROCESS USED IN PARTICULAR FOR THE MANUFACTURE OF OPTICAL FIBERS
DE2605483A1 (en) * 1976-02-12 1977-08-18 Licentia Gmbh Photoconductor having radially decreasing refractive index - formed on heated rotating glass rod using heat decomposing gases
US4135901A (en) * 1974-12-18 1979-01-23 Sumitomo Electric Industries, Ltd. Method of manufacturing glass for optical waveguide
FR2418777A1 (en) * 1978-03-03 1979-09-28 Hitachi Ltd METHOD OF MANUFACTURING AN OPTICAL FIBER PREFORM
EP0072069A1 (en) * 1981-08-03 1983-02-16 Koninklijke Philips Electronics N.V. Method of producing preforms for drawing optical fibres and apparatus for the continuous production of optical fibres

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121341A (en) * 1976-04-06 1977-10-12 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber base materials and production apparatus fo r the same
US4125389A (en) * 1977-02-10 1978-11-14 Northern Telecom Limited Method for manufacturing an optical fibre with plasma activated deposition in a tube
JPS5927728B2 (en) * 1977-08-11 1984-07-07 日本電信電話株式会社 Manufacturing method of sooty glass rod
US4231774A (en) * 1978-04-10 1980-11-04 International Telephone And Telegraph Corporation Method of fabricating large optical preforms
GB1574115A (en) * 1978-05-18 1980-09-03 Standard Telephones Cables Ltd Optical fibre manufacture
US4417911A (en) * 1981-02-27 1983-11-29 Associated Electrical Industries Limited Manufacture of optical fibre preforms

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135901A (en) * 1974-12-18 1979-01-23 Sumitomo Electric Industries, Ltd. Method of manufacturing glass for optical waveguide
FR2313327A1 (en) * 1975-06-06 1976-12-31 Quartz & Silice VERY HIGH PURITY GLASS PREPARATION PROCESS USED IN PARTICULAR FOR THE MANUFACTURE OF OPTICAL FIBERS
DE2605483A1 (en) * 1976-02-12 1977-08-18 Licentia Gmbh Photoconductor having radially decreasing refractive index - formed on heated rotating glass rod using heat decomposing gases
FR2418777A1 (en) * 1978-03-03 1979-09-28 Hitachi Ltd METHOD OF MANUFACTURING AN OPTICAL FIBER PREFORM
EP0072069A1 (en) * 1981-08-03 1983-02-16 Koninklijke Philips Electronics N.V. Method of producing preforms for drawing optical fibres and apparatus for the continuous production of optical fibres

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2151609A (en) * 1983-12-21 1985-07-24 Gen Electric Plc Manufacture of optical fibre preforms
EP0257587A1 (en) * 1986-08-29 1988-03-02 AT&T Corp. Methods of soot overcladding an optical preform
US4941905A (en) * 1986-08-29 1990-07-17 American Telephone And Telegraph Company, At&T Technologies, Inc. Methods of soot overcladding an optical preform
EP0263469A1 (en) * 1986-10-07 1988-04-13 Linde Aktiengesellschaft Method for thermally coating surfaces

Also Published As

Publication number Publication date
DE3217839A1 (en) 1983-11-17
DE3366906D1 (en) 1986-11-20
US4508554A (en) 1985-04-02
JPS5922654A (en) 1984-02-04
EP0094053B1 (en) 1986-10-15

Similar Documents

Publication Publication Date Title
DE4340224C2 (en) Device for generating plasma using microwave radiation
EP0036191B1 (en) Plasma coating the insides of tubular glass blanks
DE69630377T2 (en) MICROWAVE CONTROLLED PLASMA SPRAYER AND SPRAYING METHOD
DE2647121C2 (en) Method of making an optical fiber preform
EP1415321B1 (en) Device for the coating of objects
DE19813199A1 (en) Plasma generator with microwave waveguide
DE2601288B2 (en) Gas etching device
EP0094053B1 (en) Plasma method for making a dielectric rod
DE3204846A1 (en) PLASMA PROCESS FOR THE INTERNAL COATING OF GLASS TUBES
EP0806052A1 (en) Plasma reactor
DE3222189A1 (en) Plasma process for coating the interior of tubes with dielectric material
DE4203369C2 (en) Method and device for producing preforms for optical fibers
DE4107753C2 (en) Method for operating a plasma processing device
EP3011807B1 (en) Device and method for handling process gases in a plasma stimulated by high frequency electromagnetic waves
EP0849769A2 (en) Process and device for externally coating lamps
EP0963141B1 (en) Device for plasma generation
DE2712993A1 (en) METHOD OF MAKING A FIBER OPTICAL TRANSMISSION LINE
DE4034211C1 (en) Coating interior of pipe-glass tube - comprises coupling HF energy to tube using resonator to deliver pulsed microwave discharges
EP0742994B1 (en) Plasma-generating device
DE10341239B4 (en) ECR plasma source with linear plasma outlet
DE102009044496A1 (en) Device for generating plasma by means of microwaves
DE102018132338B3 (en) PARTICLE-FREE METHOD FOR SIGNIFICANTLY REDUCING THE SURFACE WEIGHT OF TUBE, CAPILLARY AND HOLLOW FIBERS FROM SILICA, HIGHLY GLASSES AND OPTICAL GLASSES, AND CLEANING CAVITY SURFACES OF TUBE, CAPILLARY AND HOLLOWING BASES FROM SILICATING GLASS OR OPTICAL GLASSES HIGHLY SILENCED
WO1992006224A1 (en) Component-coating process and device
DE4036858A1 (en) Appts. for producing plasma coating beam - by using electrode-free high frequency electric field to heat up gas and produce the plasma
DE60212667T2 (en) METHOD FOR SEPARATING ONE OR MORE GLASS LAYERS ON THE OUTDOOR SURFACE OF A STABLE GLASS PRE-FORM AND APPARATUS FOR IMPLEMENTING THE PROCESS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19840509

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3366906

Country of ref document: DE

Date of ref document: 19861120

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920413

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920416

Year of fee payment: 10

Ref country code: DE

Payment date: 19920416

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920531

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930506

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST