EP0088717B1 - Method to optimize the operation of a furnace - Google Patents

Method to optimize the operation of a furnace Download PDF

Info

Publication number
EP0088717B1
EP0088717B1 EP83630042A EP83630042A EP0088717B1 EP 0088717 B1 EP0088717 B1 EP 0088717B1 EP 83630042 A EP83630042 A EP 83630042A EP 83630042 A EP83630042 A EP 83630042A EP 0088717 B1 EP0088717 B1 EP 0088717B1
Authority
EP
European Patent Office
Prior art keywords
furnace
oxygen
flow rate
fuel
exhaust gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83630042A
Other languages
German (de)
French (fr)
Other versions
EP0088717A1 (en
Inventor
François Krippler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arcelor Luxembourg SA
Original Assignee
Arbed SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arbed SA filed Critical Arbed SA
Publication of EP0088717A1 publication Critical patent/EP0088717A1/en
Application granted granted Critical
Publication of EP0088717B1 publication Critical patent/EP0088717B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/06Preheating gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/08Preheating the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/02Measuring filling height in burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/10Measuring temperature stack temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/04Air or combustion gas valves or dampers in stacks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/10Air or combustion gas valves or dampers power assisted, e.g. using electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Definitions

  • the invention relates to a method for optimizing the operation of an oven, in particular an industrial oven for heating metallic materials (Pit oven, beam oven, pushing oven etc.). It more particularly relates to the optimization of the ratio between the fuel and the oxidizer, with the aim of having in the exhaust gases only compounds which are neither oxidizing nor oxidizable.
  • the detector is in the form of a measuring cell which is mounted in a chamber of small dimensions, in which the temperature is kept constant at around 800 ° C.
  • a pump sucks the fumes to be analyzed through a sampling probe fitted with filters and discharges them through the analysis chamber.
  • the depth of the sample can be obtained using refractory tubes, which are cut to the desired length.
  • the disadvantages consist in a complex sampling and treatment of smoke with probes, filters, purges and valves which require a lot of maintenance and which represent as many possibilities of faults as for example the air intake in the vacuum lines.
  • the object of the invention is to propose a method for regulating an oven which does not have the defects described above, namely a limited lifetime of the measuring cells, high installation and purchase costs and reliability. of questionable operation.
  • the advantages obtained by the invention essentially consist in that the optimal ratio between the fuel and the oxidant is not determined by means of fragile gas analysis devices, but by electronic components which calculate the optimal conditions of operation based on the characteristics of the oven which have been carefully noted once and for all. These characteristics can be checked once a year or in the event of operating anomalies. The costs of implementing the system are reduced and the apparatus requires practically no maintenance.
  • FIG. 1 shows a Pit 1 furnace comprising a device 2 for evacuating combustion fumes which pass through two heat exchangers 3 and 4 used to preheat the fuel. and the oxidizer.
  • the fuel in this case is blast furnace gas (brought in via line 5a) enriched with natural gas (brought through line 5b) so as to maintain a constant PCI (intrinsic calorific value).
  • PCI intrinsic calorific value
  • the constant energy capacity of the fuel is ensured by a dosing system 5c. It should be noted in passing that when using pure natural gas or liquid fuel, there is no preheating.
  • the fuel flow is controlled by a fan 6a and by a valve 6c controlled by a servo motor 6b.
  • This device is preferably located upstream of the exchanger 4.
  • oxidizer it is possible to use air optionally enriched with oxygen, the flow rate of which is likewise controlled by a fan 7a and a valve 7c controlled by a servo-motor 7b.
  • the valve 7c is located between the heat exchanger 3 and a flow meter 15.
  • the fuel and the oxidizer are then supplied via the lines 8 resp. 9 to burner 10 of the oven.
  • a pressure sensor 11 monitors the pressure inside the oven and transmits the measured values to a pressure regulating system 12a controlling a servo-motor 12b, which acts on a valve 12c, preferably mounted downstream of the exchanger heat 4, in the flue evacuation chimney.
  • the temperature of the combustion fumes is continuously monitored upstream and downstream of the heat exchangers 3,4 by the sensors 13 b and 13 c and safety devices 16a and 16b bring ambient air into the device. smoke evacuation 2 when the measured temperatures exceed predetermined limits. It should also be noted that the temperature of the fuel as well as that of the oxidizer are measured downstream of the heat exchangers 3 and 4, by the sensors 13d, 13e.
  • this curve has been represented for an excess of oxygen of 0.4% with the air flow rate on the abscissa and the combustible gas flow rate on the ordinate.
  • the oven temperature was kept constant at 1320 ° C.
  • this curve can be of any shape, it can be seen that it is linear in the present case.
  • the Applicant has found that this response curve is always close to a straight line in the normal operating ranges of a Pit furnace. This circumstance simplifies the automation of the operation of this oven, but in no way limits the scope of the invention which is in fact independent of the shape of this curve.
  • the gas analyzer 17 is short-circuited and the oven is operated automatically.
  • the data defining the residual quantity of oxygen or of CO desired in the combustion fumes is entered into the calculation system 24.
  • the device 22 is adjusted to the desired temperature.
  • the actual oven temperature, measured using the sensor 18, is compared to the desired temperature in a comparator 21 which transmits, depending on the result, an opening or closing signal to the servomotor 7b coupled to the valve 7c.
  • the actual air flow is measured using a flow meter 15, connected to a flow-voltage converter (analog or digital) 23 which communicates the measurement result to the calculation system 24.
  • the system 24 transmits to the regulator 25, for each oxidant flow rate measured, the fuel flow rate required to have combustion in accordance with the residual oxygen or CO concentration desired in the combustion fumes.
  • the calculation system 24 is also connected to the temperature sensor 18 so that it bases its calculations on the data which are in agreement not with the chosen temperature, but with the instantaneous temperature of the oven. .
  • the calculation system 24 can be reduced to a simple analog circuit in which the measured air flow is multiplied by a factor equal to the slope of the line shown in fig. 2 and we subtract a fixed value depending on where the line crosses the ordinate axis.
  • the operation of the oven is based on a single response curve corresponding to the chosen operating temperature of the oven and instantaneous variations in the temperature of the oven are not taken into account.
  • the optimum value of fuel which corresponds to the measured air flow is transmitted to the regulator 25 which acts on a servo-motor 6b connected to the valve 6c.
  • the actual fuel flow is on monitored using the flow meter 14 and compared, after conversion in the flow-voltage converter 26, to the set value calculated by the device 24.
  • the fuel flow rate was adjusted in accordance with the oxidant flow rate. The reverse is also true.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

L'invention concerne un procédé pour optimiser le fonctionnement d'un four, notamment d'un four industriel servant à réchauffer des matières métalliques (four Pit, four à longeron, four poussant etc.). Elle concerne plus spécialement l'optimisation du rapport entre le combustible et le comburant, dans le but d'avoir dans les gaz d'échappement uniquement des composés qui ne sont ni oxydants, ni oxydables.The invention relates to a method for optimizing the operation of an oven, in particular an industrial oven for heating metallic materials (Pit oven, beam oven, pushing oven etc.). It more particularly relates to the optimization of the ratio between the fuel and the oxidizer, with the aim of having in the exhaust gases only compounds which are neither oxidizing nor oxidizable.

L'optimisation de ce rapport est essentielle d'un point de vue énergétique et métallurgique. Pour assurer une combustion complète, il est en effet courant de faire fonctionner des fours servant à réchauffer des lingots en acier avec un excès d'oxygène (0,2 à 0,5%). Or la demanderesse a constaté que cet excès d'oxygène ne se retrouve qu'en partie dans les gaz d'échappement, la quantité restante d'oxygène ayant oxydé le métal, ce qui peut entraîner des pertes de poids de l'ordre de 2%. Si par contre on réduit l'apport d'oxygène, l'oxydation du métal est diminuée, mais la combustion n'est plus complète.Optimizing this report is essential from an energy and metallurgical point of view. To ensure complete combustion, it is common practice to operate ovens used to heat steel ingots with an excess of oxygen (0.2 to 0.5%). However, the Applicant has found that this excess oxygen is only partially found in the exhaust gases, the remaining quantity of oxygen having oxidized the metal, which can cause weight losses of the order of 2 %. If, on the other hand, the supply of oxygen is reduced, the oxidation of the metal is reduced, but the combustion is no longer complete.

Il est évident qu'un réglage manuel du rapport entre l'oxydant et le combustible ne donne pas de résultats probants. Aussi a-t-on développé des systèmes de régulation automatiques (voir à ce sujet p. ex. le brevet US-A-3.284.615, et en particulier colonne 4, lignes 57-65). Malheureusement le fonctionnement des régulateurs est basé sur une équation du type: combustible = comburant x constante c.-à.-d. que l'on admet l'existence d'un rapport fixe entre le combustible et le comburant, quel que soit le régime de fonctionnement du four. Or par suite des caractéristiques complexes d'un four (carneau, pouvoir calorifique des gaz, température du produit qui est en train de chauffer), cette équation n'est vérifiée que pour un régime de fonctionnement du four bien déterminé.It is obvious that a manual adjustment of the ratio between the oxidant and the fuel does not give convincing results. Also automatic regulation systems have been developed (see on this subject for example the patent US-A-3,284,615, and in particular column 4, lines 57-65). Unfortunately the operation of regulators is based on an equation of the type: fuel = oxidizer x constant i.e. that one admits the existence of a fixed relationship between the fuel and the oxidizer, whatever the operating regime of the furnace. However, due to the complex characteristics of an oven (flue, calorific value of the gases, temperature of the product which is heating), this equation is only verified for a well-defined operating regime of the oven.

D'après l'article «New Control System + one boiler x multiple fuels = lower costs» paru dans la revue «Instruments & Control Systems», vol. 49, no 6, juin 1976, pages 25-32, il est connu de mesurer le pourcentage d'oxygène dans les gaz d'échappement pour optimiser le rapport entre les débits de combustible et de comburant.According to the article "New Control System + one boiler x multiple fuels = lower costs" published in the review "Instruments & Control Systems", vol. 49, no 6, June 1976, pages 25-32, it is known to measure the percentage of oxygen in the exhaust gases to optimize the ratio between the flow rates of fuel and oxidant.

A côté de l'oxygène, il est indiqué de déterminer également le CO et le C02. Pour effectuer cette analyse il existe principalement deux systèmes qui se distinguent surtout par le montage du détecteur:

  • dans un premier système le détecteur se présente sous forme d'un long tube réfractaire abritant une cellule de détection et un thermocouple. Le détecteur doit se trouver en contact direct avec les gaz à analyser et être disposé de préférence au milieu du carneau. Etant donné l'épaisseur des parois du carneau recouvertes de réfractaires, cette dernière condition est difficilement réalisable par suite de la longueur des tubes réfractaires offerts sur le marché. Les variations de température auxquelles cette sonde est soumise influencent fortement les résultats de mesure, de sorte qu'une correction en fonction de la température est indispensable.
In addition to oxygen, it is also advisable to determine CO and C0 2 . To carry out this analysis, there are mainly two systems which are distinguished above all by the mounting of the detector:
  • in a first system, the detector is in the form of a long refractory tube housing a detection cell and a thermocouple. The detector must be in direct contact with the gases to be analyzed and preferably be placed in the middle of the flue. Given the thickness of the flue walls covered with refractories, this last condition is difficult to achieve owing to the length of the refractory tubes offered on the market. The temperature variations to which this probe is subjected strongly influence the measurement results, so a correction as a function of the temperature is essential.

A ceci vient s'ajouter une technique compliquée de montage de ces détecteurs qui ne supportent aucun choc thermique et qui doivent habituellement être remplacés sans qu'on puisse arrêter le four. Après chaque remplacement de détecteur il faut refaire un étalonnage délicat.To this is added a complicated technique for mounting these detectors which do not withstand any thermal shock and which usually have to be replaced without the oven being able to be stopped. After each detector replacement, a delicate calibration must be repeated.

Dans un deuxième système, le détecteur se présente sous forme d'une cellule de mesure qui est montée dans une chambre de petites dimensions, dans laquelle la température est tenue constante à environ 800°C. Une pompe aspire les fumées à analyser à travers une sonde de prélèvement munie de filtres et les refoule à travers la chambre d'analyse. Dans ce système la profondeur du prélèvement est réalisable à l'aide de tubes réfractaires, que l'on coupe à la longueur voulue.In a second system, the detector is in the form of a measuring cell which is mounted in a chamber of small dimensions, in which the temperature is kept constant at around 800 ° C. A pump sucks the fumes to be analyzed through a sampling probe fitted with filters and discharges them through the analysis chamber. In this system, the depth of the sample can be obtained using refractory tubes, which are cut to the desired length.

La correction des résultats d'analyse en fonction de la température n'est pas nécessaire. Le remplacement du détecteur ne pose pas le problème du choc thermique. L'étalonnage se fait assez facilement en injectant un gaz de composition connue dans la chambre d'analyse.Correction of the analysis results as a function of temperature is not necessary. Replacing the detector does not pose the problem of thermal shock. The calibration is done quite easily by injecting a gas of known composition into the analysis chamber.

Les désavantages consistent en un prélèvement et traitement complexe des fumées avec sondes, filtres, purges et vannes qui nécessitent beaucoup d'entretien et qui représentent autant de possibilités de défauts comme p.ex. l'aspiration d'air dans les conduites en dépression.The disadvantages consist in a complex sampling and treatment of smoke with probes, filters, purges and valves which require a lot of maintenance and which represent as many possibilities of faults as for example the air intake in the vacuum lines.

L'invention a pour but de proposer un procédé de régulation d'un four qui ne présente pas les défauts précédemment décrits, à savoir une durée de vie limitée des cellules de mesure, des frais d'installation et d'achat élevés et une fiabilité de fonctionnement douteuse.The object of the invention is to propose a method for regulating an oven which does not have the defects described above, namely a limited lifetime of the measuring cells, high installation and purchase costs and reliability. of questionable operation.

Ce but est atteint grâce au procédé tel qu'il est caractérisé dans la revendication 1. Des exécutions préférentielles de l'invention sont décrites dans les revendications dépendantes 2-4.This object is achieved by the method as characterized in claim 1. Preferential embodiments of the invention are described in dependent claims 2-4.

Les avantages obtenus par l'invention consistent essentiellement en ce que le rapport optimal entre le combustible et le comburant n'est pas déterminé par l'intermédiaire de dispositifs fragiles d'analyse de gaz, mais par des composants électroniques qui calculent les conditions optimales de fonctionnement à partir des caractéristiques du four qui auront été relevées soigneusement une fois pour toutes. Ces caractéristiques peuvent être vérifiées une fois par an ou bien en cas d'anomalies de fonctionnement. Les frais de réalisation du système sont réduits et l'appareillage ne nécessite pratiquement pas d'entretien.The advantages obtained by the invention essentially consist in that the optimal ratio between the fuel and the oxidant is not determined by means of fragile gas analysis devices, but by electronic components which calculate the optimal conditions of operation based on the characteristics of the oven which have been carefully noted once and for all. These characteristics can be checked once a year or in the event of operating anomalies. The costs of implementing the system are reduced and the apparatus requires practically no maintenance.

L'invention sera exposée plus en détail à l'aide de figures qui en représentent seulement un mode d'exécution.

  • La figure 1 montre un schéma de principe illustrant la régulation d'un four Pit.
  • La figure 2 montre un diagramme de combustion optimal relevé sur un four Pit.
The invention will be explained in more detail with the aid of figures which represent only one embodiment.
  • Figure 1 shows a block diagram illustrating the regulation of a Pit furnace.
  • Figure 2 shows an optimal combustion diagram taken from a Pit oven.

Sur la figure 1 est représenté un four Pit 1 comportant un dispositif d'évacuation 2 des fumées de combustion qui traversent deux échangeurs de chaleur 3 et 4 servant à préchauffer le combustible et le comburant. Le combustible est dans le cas présent du gaz de haut-fourneau (amené par la conduite 5a) enrichi en gaz naturel (amené par la conduite 5b) de sorte à maintenir un PCI (pouvoir calorifique intrinsèque) constant. La capacité énergétique constante du combustible est assurée par un système doseur 5c. Notons au passage que lorsqu'on utilise du gaz naturel pur ou un fuel liquide on ne procède pas à un préchauffage.FIG. 1 shows a Pit 1 furnace comprising a device 2 for evacuating combustion fumes which pass through two heat exchangers 3 and 4 used to preheat the fuel. and the oxidizer. The fuel in this case is blast furnace gas (brought in via line 5a) enriched with natural gas (brought through line 5b) so as to maintain a constant PCI (intrinsic calorific value). The constant energy capacity of the fuel is ensured by a dosing system 5c. It should be noted in passing that when using pure natural gas or liquid fuel, there is no preheating.

Le débit du combustible est contrôlé par un ventilateur 6a et par une vanne 6c commandée par un servo-moteur 6b. Ce dispositif est situé de préférence en amont de l'échangeur 4.The fuel flow is controlled by a fan 6a and by a valve 6c controlled by a servo motor 6b. This device is preferably located upstream of the exchanger 4.

Comme comburant on peut utiliser de l'air éventuellement enrichi en oxygène dont le débit est pareillement contrôlé par un ventilateur 7a et une vanne 7c commandée par un servo-moteur 7b. La vanne 7c est située entre l'échangeur de chaleur 3 et un débitmètre 15. Le combustible et le comburant sont ensuite amenés par les conduites 8 resp. 9 au brûleur 10 du four. Un capteur de pression 11 surveille la pression régnant à l'intérieur du four et transmet les valeurs mesurées à un système régulateur de pression 12a commandant un servo-moteur 12b, qui agit sur une vanne 12c, montée de préférence en aval de l'échangeur de chaleur 4, dans la cheminée d'évacuation des fumées de combustion.As oxidizer, it is possible to use air optionally enriched with oxygen, the flow rate of which is likewise controlled by a fan 7a and a valve 7c controlled by a servo-motor 7b. The valve 7c is located between the heat exchanger 3 and a flow meter 15. The fuel and the oxidizer are then supplied via the lines 8 resp. 9 to burner 10 of the oven. A pressure sensor 11 monitors the pressure inside the oven and transmits the measured values to a pressure regulating system 12a controlling a servo-motor 12b, which acts on a valve 12c, preferably mounted downstream of the exchanger heat 4, in the flue evacuation chimney.

La température des fumées de combustion est surveillée en permanence en amont et en aval des échangeurs de chaleur 3,4 par les capteurs 13 b et 13 c et des dispositifs de sécurité 16a et 16b font entrer de l'air ambiant dans le dispositif d'évacuation des fumées 2 lorsque les températures mesurées dépassent des limites fixées d'avance. Notons encore que la température du combustible ainsi que celle du comburant sont mesurées en aval des échangeurs de chaleur 3 et 4, par les capteurs 13d, 13e.The temperature of the combustion fumes is continuously monitored upstream and downstream of the heat exchangers 3,4 by the sensors 13 b and 13 c and safety devices 16a and 16b bring ambient air into the device. smoke evacuation 2 when the measured temperatures exceed predetermined limits. It should also be noted that the temperature of the fuel as well as that of the oxidizer are measured downstream of the heat exchangers 3 and 4, by the sensors 13d, 13e.

Pour la mise en ceuvre de l'invention on procède ensuite de façon suivante:

  • On fait fonctionner le four à sa température d'utilisation normale, qui est dans le cas présent d'environ 1300°C. On surveille la composition des fumées d'échappement à l'aide d'un analyseur de gaz 17 du genre décrit précédemment. On ajuste de façon connue le rapport entre le combustible et le comburant de sorte à avoir une concentration résiduelle d'oxygène choisie d'avance. Lorsqu'on introduit p.ex. une charge de lingots froids dans le four, la température mesurée par l'intermédiaire du capteur 18 chute. On augmente de façon connue le débit de combustible et de comburant et on ajuste leur rapport en fonction des mesures faites par l'analyseur de gaz 17 de sorte à retrouver la concentration résiduelle d'oxygène voulue. Au fur et à mesure que le lingot chauffe, la demande d'énergie diminue et il y a de nouveaux réglages à faire. On trace ensuite pour une température constante du four le diagramme qui montre quel débit de combustible correspond à quel débit de comburant pour obtenir une concentration résiduelle d'oxygène ou de CO donnée dans les fumées de combustion.
To implement the invention, the procedure is then as follows:
  • The oven is operated at its normal operating temperature, which in this case is about 1300 ° C. The composition of the exhaust fumes is monitored using a gas analyzer 17 of the type described above. The ratio between the fuel and the oxidizer is adjusted in a known manner so as to have a residual oxygen concentration chosen in advance. When, for example, a load of cold ingots is introduced into the oven, the temperature measured by means of the sensor 18 drops. The flow rate of fuel and oxidizer is increased in known manner and their ratio is adjusted according to the measurements made by the gas analyzer 17 so as to find the desired residual oxygen concentration. As the ingot heats up, the demand for energy decreases and there are new adjustments to be made. A diagram is then drawn for a constant temperature of the furnace which shows which flow of fuel corresponds to which flow of oxidant in order to obtain a given residual concentration of oxygen or of CO in the combustion fumes.

Sur la figure 2 on a représenté cette courbe pour un excès d'oxygène de 0,4% avec en abscisses le débit d'air et en ordonnées le débit de gaz combustibles. La température du four a été gardée constante à 1320°C. Bien qu'a priori cette courbe puisse être de forme quelconque on constate qu'elle est linéaire dans le cas présent. La demanderesse a trouvé que cette courbe de réponse est toujours proche d'une droite dans les gammes de fonctionnement normales d'un four Pit. Cette circonstance simplifie l'automatisation du fonctionnement de ce four, mais ne limite en rien l'envergure de l'invention qui est en fait indépendante de la forme de cette courbe.In FIG. 2, this curve has been represented for an excess of oxygen of 0.4% with the air flow rate on the abscissa and the combustible gas flow rate on the ordinate. The oven temperature was kept constant at 1320 ° C. Although a priori this curve can be of any shape, it can be seen that it is linear in the present case. The Applicant has found that this response curve is always close to a straight line in the normal operating ranges of a Pit furnace. This circumstance simplifies the automation of the operation of this oven, but in no way limits the scope of the invention which is in fact independent of the shape of this curve.

Une fois qu'on a relevé et éventuellement emmagasiné dans le système de calcul 24 la/les courbes de réponse pour la/les températures et concentrations résiduelles d'oxygène ou de CO en considération, on court-circuite l'analyseur des gaz 17 et on fait fonctionner le four de manière automatique. On entre les données définissant la quantité résiduelle d'oxygène ou de CO désirée dans les fumées de combustion dans le système de calcul 24. Le dispositif 22 est réglé à la température désirée. On compare la température réelle du four, mesurée grâce au capteur 18, à la température désirée dans un comparateur 21 qui transmet, selon le résultat, un signal d'ouverture ou de fermeture au servo-moteur 7b couplé à la vanne 7c.Once the response curves for the temperature (s) and residual oxygen or CO concentration (s) under consideration have been noted and possibly stored in the calculation system 24, the gas analyzer 17 is short-circuited and the oven is operated automatically. The data defining the residual quantity of oxygen or of CO desired in the combustion fumes is entered into the calculation system 24. The device 22 is adjusted to the desired temperature. The actual oven temperature, measured using the sensor 18, is compared to the desired temperature in a comparator 21 which transmits, depending on the result, an opening or closing signal to the servomotor 7b coupled to the valve 7c.

Le débit réel de l'air est mesuré à l'aide d'un débitmètre 15, relié à un convertisseur (analogique ou digital) débit-tension 23 qui communique le résultat de mesure au système de calcul 24. Le système 24 transmet au régulateur 25, pour chaque débit de comburant mesuré, le débit de combustible exigé pour avoir une combustion en accord avec la concentration résiduelle d'oxygène ou de CO désirée dans les fumées de combustion. Pour optimiser davantage le fonctionnement du four, on relie également le système de calcul 24 au capteur de température 18 de sorte qu'il base ses calculs sur les données qui sont en accord non pas avec la température choisie, mais avec la température instantanée du four.The actual air flow is measured using a flow meter 15, connected to a flow-voltage converter (analog or digital) 23 which communicates the measurement result to the calculation system 24. The system 24 transmits to the regulator 25, for each oxidant flow rate measured, the fuel flow rate required to have combustion in accordance with the residual oxygen or CO concentration desired in the combustion fumes. To further optimize the operation of the oven, the calculation system 24 is also connected to the temperature sensor 18 so that it bases its calculations on the data which are in agreement not with the chosen temperature, but with the instantaneous temperature of the oven. .

Dans l'exemple d'un four Pit, tel qu'il a été décrit précédemment, dans lequel il existe une simple relation linéaire entre les débits de combustible et de comburant pour avoir une combustion optimale, le système de calcul 24 peut se réduire à un simple circuit analogique dans lequel on multiplie le débit d'air mesuré par un facteur égal à la pente de la droite représentée en fig. 2 et on retranche une valeur fixe dépendant de l'endroit où la droite traverse l'axe des ordonnées. Dans ce cas on base le fonctionnement du four sur une unique courbe de réponse correspondant à la température de fonctionnement choisie du four et on ne tient pas compte des variations instantanées de la température de celui-ci.In the example of a Pit furnace, as described above, in which there is a simple linear relationship between the flow rates of fuel and of oxidant in order to have optimal combustion, the calculation system 24 can be reduced to a simple analog circuit in which the measured air flow is multiplied by a factor equal to the slope of the line shown in fig. 2 and we subtract a fixed value depending on where the line crosses the ordinate axis. In this case, the operation of the oven is based on a single response curve corresponding to the chosen operating temperature of the oven and instantaneous variations in the temperature of the oven are not taken into account.

La valeur optimale de combustible qui correspond au débit d'air mesuré est transmise au régulateur 25 qui agit sur un servo-moteur 6b relié à la vanne 6c. Le débit réel du combustible est surveillé à l'aide du débitmètre 14 et comparé, après conversion dans le convertisseur débit - tension 26, à la valeur de consigne calculée par le dispositif 24. Le régulateur 25, qui compare ces deux valeurs, transmet ensuite un signal de correction au servo-moteur.The optimum value of fuel which corresponds to the measured air flow is transmitted to the regulator 25 which acts on a servo-motor 6b connected to the valve 6c. The actual fuel flow is on monitored using the flow meter 14 and compared, after conversion in the flow-voltage converter 26, to the set value calculated by the device 24. The regulator 25, which compares these two values, then transmits a correction signal to the servo -engine.

Nous remarquons que le débit d'air n'est pas directement asservi dans l'exemple décrit, bien qu'un asservissement soit réalisable avec des moyens réduits, étant donné qu'on mesure ce débit de toute façon. Ceci provient du fait que le débit d'air est indirectement asservi par l'intermédiaire de la température mesurée dans le four.We note that the air flow is not directly controlled in the example described, although a control is achievable with reduced means, since we measure this flow anyway. This is due to the fact that the air flow is indirectly controlled by the temperature measured in the oven.

Dans l'exemple décrit, on a ajusté le débit de combustible en accord avec le débit de comburant. La façon inverse de procéder est tout aussi valable.In the example described, the fuel flow rate was adjusted in accordance with the oxidant flow rate. The reverse is also true.

On peut évidemment pour des fours polyvalents mettre en mémoire dans le système de calcul 24 une multitude de diagrammes combustible - comburant pour des excès d'oxygène et de CO différents et passer ensuite aisément d'un régime de fonctionnement à un autre par de simples réglages électroniques.It is obviously possible for multipurpose ovens to store in the calculation system 24 a multitude of fuel diagrams - oxidant for different oxygen and CO excess and then to easily switch from one operating regime to another by simple adjustments. electronic.

Claims (4)

1. Method to optimize the operation of an industrial furnace used for heating metallic material such as a soaking pit, a pusher type furnace or a walking beam type furnace, wherein the ratio of the fuel flow rate to the oxydant is adjusted in order to maintain a set residual amount of oxygen or carbon monoxyde in the exhaust gases, characterized in that at the start the working characteristics of the furnace are established for different temperatures, different furnace loads and different residual amounts of oxygen or carbon monoxyde in the exhaust gases, in that these characteristics are memorized, in that during normal furnace operation the actual furnace temperature and the oxydant flow rate are measured and in that the fuel flow rate is adjusted in conformity with the memorized characteristics in order to have the desired residual amount of oxygen or carbon monoxyde in the exhaust gases.
2. Method according to claim 1, characterized in that the working characteristics are established under variable load conditions, whereby the furnace temperature and the residual amount of oxygen or carbon monoxyde in the exhaust gases are maintained constant.
3. Method according to claim 1 or 2, characterized in that the working characteristics are established at every usual working temperature of the furnace as well as for every residual amount of oxygen or carbon monoxyde in the exhaust gases.
4. Method according to one of the claims 1-3, modified in that the fuel instead of the oxydant flow rate is measured and in that the oxydant flow rate instead of the fuel flow rate is adjusted.
EP83630042A 1982-03-09 1983-03-07 Method to optimize the operation of a furnace Expired EP0088717B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU83989A LU83989A1 (en) 1982-03-09 1982-03-09 METHOD AND DEVICE FOR OPTIMIZING THE OPERATION OF AN OVEN
LU83989 1982-03-09

Publications (2)

Publication Number Publication Date
EP0088717A1 EP0088717A1 (en) 1983-09-14
EP0088717B1 true EP0088717B1 (en) 1987-11-19

Family

ID=19729830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83630042A Expired EP0088717B1 (en) 1982-03-09 1983-03-07 Method to optimize the operation of a furnace

Country Status (3)

Country Link
EP (1) EP0088717B1 (en)
DE (1) DE3374591D1 (en)
LU (1) LU83989A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner
DE3870611D1 (en) * 1988-05-07 1992-06-04 Honeywell Bv CONTROL DEVICE FOR GAS BURNERS.
FR2712961B1 (en) * 1993-11-26 1995-12-22 Lorraine Laminage Real-time adjustment of a fuel burner with variable characteristics, in particular for metallurgical heating furnaces.
US6213758B1 (en) 1999-11-09 2001-04-10 Megtec Systems, Inc. Burner air/fuel ratio regulation method and apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284615A (en) * 1956-09-24 1966-11-08 Burroughs Corp Digital control process and system
US4097218A (en) * 1976-11-09 1978-06-27 Mobil Oil Corporation Means and method for controlling excess air inflow
FI772751A (en) * 1976-12-14 1978-06-15 Measurex Corp EFFECTIVENESS AND EFFECTIVENESS OF EFFECTIVENESS FUNCTIONS
DE2950689A1 (en) * 1979-12-17 1981-06-25 Servo-Instrument, in Deutschland Alleinvertrieb der BEAB-Regulatoren GmbH u. Co KG, 4050 Mönchengladbach CONTROL DEVICE FOR THE COMBUSTION AIR AMOUNT OF A FIREPLACE
DE3010147A1 (en) * 1980-03-15 1981-09-24 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Industrial gas-fired burner digital control - controls air feed in dependence on variable gas feed responsive to output demand

Also Published As

Publication number Publication date
EP0088717A1 (en) 1983-09-14
DE3374591D1 (en) 1987-12-23
LU83989A1 (en) 1983-11-17

Similar Documents

Publication Publication Date Title
EP0971171B1 (en) Combustion method of a combustible with a combustive rich in oxygen
EP0949477A1 (en) Operation process for a furnace and device therefore
CH618265A5 (en)
EP0675357B1 (en) Method for characterising a gaseous mixture by catalytic oxidation
FR2794803A1 (en) METHOD AND DEVICE FOR REGULATING THE FRACTION OF RECYCLED EXHAUST GASES IN AN ENGINE
EP0088717B1 (en) Method to optimize the operation of a furnace
EP2507551A1 (en) Method for correcting the combustion settings of a set of combustion chambers and apparatus implementing the method
FR2798466A1 (en) SENSOR FOR DETERMINING THE CONCENTRATION OF THE COMPONENTS OF A GAS MIXTURE
EP0661499B1 (en) Real time control of a burner for gases with differing characteristices, especially for a metallurgical furnace for reheating
EP0561723B1 (en) Process and installation for post combustion air flow rate regulation of a metallurgical reactor fume collecting device
FR2463174A1 (en) METHOD FOR OPERATING A BATTERY OF COKEFACTION OVENS
EP2933637A1 (en) Method and system for determining a moisture content of an organic material used as fuel
JP4365036B2 (en) Method and apparatus for determining soot load in combustion chamber
FR2539230A1 (en) Method for determining the content of unburnt material in residual products from combustion of a fuel and device for implementing the said method
FR2993601A1 (en) METHOD AND DEVICE FOR MANAGING AN EXHAUST GAS PROBE
EP0114009B1 (en) Method and apparatus for determining the explosion rate of a gas
EP0889311B1 (en) Tightness testing of radiant tubes in industrial furnaces
EP0864953B1 (en) Monitoring installation for an atmosphere generating apparatus
FR2707769A1 (en) Gas flow measurement or regulation device.
EP0221799A1 (en) Gas burner combustion regulation method and apparatus for a heat or force generator, especially a boiler or the like, to obtain a specific combustion
FR2842251A1 (en) Process for measuring pollutants in internal combustion engine exhaust gas comprises injecting the exhaust gases from a main channel into a junction, adjusting a prescribed oxygen content in the junction
EP1069203A2 (en) Probe for continuously regulating the gaseous atmosphere in nitriding or nitrocarburizing processes in atmospheric or low pressure ovens
WO2002088680A1 (en) Method for controlling a product treated in an oven and oven equipped with control means
WO2010119220A1 (en) Method and device for measuring the dew point temperature of a gaseous element
FR2542090A1 (en) Method for determining heat losses by unburnt residues and device for implementation thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT LU NL

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19840309

17Q First examination report despatched

Effective date: 19860127

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19871119

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19871119

REF Corresponds to:

Ref document number: 3374591

Country of ref document: DE

Date of ref document: 19871223

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920309

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930331

BERE Be: lapsed

Owner name: ARBED S.A.

Effective date: 19930331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST