EP0087914A1 - Detergenszusammensetzung - Google Patents

Detergenszusammensetzung Download PDF

Info

Publication number
EP0087914A1
EP0087914A1 EP83300931A EP83300931A EP0087914A1 EP 0087914 A1 EP0087914 A1 EP 0087914A1 EP 83300931 A EP83300931 A EP 83300931A EP 83300931 A EP83300931 A EP 83300931A EP 0087914 A1 EP0087914 A1 EP 0087914A1
Authority
EP
European Patent Office
Prior art keywords
carbon atoms
alkyl
surfactant
composition according
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83300931A
Other languages
English (en)
French (fr)
Other versions
EP0087914B1 (de
Inventor
Charles F. Bleil
John B. Welch, Iii
Lawrence A. Gilbert
Benny S. Yam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27408136&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0087914(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to AT83300931T priority Critical patent/ATE22700T1/de
Publication of EP0087914A1 publication Critical patent/EP0087914A1/de
Application granted granted Critical
Publication of EP0087914B1 publication Critical patent/EP0087914B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/60Sulfonium or phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/40Monoamines or polyamines; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/86Mixtures of anionic, cationic, and non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/42Amino alcohols or amino ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/42Amino alcohols or amino ethers
    • C11D1/44Ethers of polyoxyalkylenes with amino alcohols; Condensation products of epoxyalkanes with amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/523Carboxylic alkylolamides, or dialkylolamides, or hydroxycarboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain one hydroxy group per alkyl group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/526Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 are polyalkoxylated
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides

Definitions

  • This invention relates to detergent compositions containing specific alkyl sulfate, specific sulfonate and cationic detergent surfactants for use in washing textiles.
  • the compositions can be in any form, such as granules, liquids, tablets or pastes.
  • the detergent compositions within the invention contain a detergency builder and/or a nonionic surfactant and/or a fatty acid soap and/or enzymes.
  • Cationic surfactants have been incorporated in detergent compositions for purposes other than cleaning; for example, for a germicidal or sanitization benefit, a fabric softening benefit or a static control benefit. More recently it has been disclosed that cationic surfactants in combination with anionic and/or nonionic surfactants are effective for cleaning purposes.
  • Patent 4,235,759 discloses liquid detergent compositions that are superior in detergency containing an alkyl polyoxyalkylene ether sulfate anionic surfactant and a mono- long chain alkyl quaternary ammonium cationic surfactant wherein the molar ratio of anionic surfactant:cationic surfactant is from 8:1 to 1:1.
  • U.S. Patent 4,321,165, Smith et al discloses solid detergent compositions containing from 2% to 60% of a surfactant system consisting of a water-soluble anionic surfactant, an alkoxylated alcohol nonionic surfactant and a water-soluble quaternary ammonium cationic surfactant wherein the ratio of anionic surfactant:cationic surfactant is from 5:1 to 1:3 and the ratio of nonionic surfactant:cationic surfactant is from 100:1 to 2:3. It is disclosed that such compositions have improved greasy soil removal capabilities.
  • European Patent Application 0,026,529, Spadini et al discloses detergent compositions containing from 3% to 40% of an anionic surfactant, from 0.5% to 15% of a mono- long chain alkyl quaternary ammonium compound or an aliphatic amine and from 1.5% to 45% of an impalpable smectite-type clay wherein the molar ratio of the nitrogenous compound: anionic surfactant is less than 1. It is stated that such compositions clean well and also act as textile softeners.
  • U.S. Patent 4,333,862, Smith et al discloses liquid detergent compositions containing from about 10% to about 82% of an anionic surfactant, from about 10% to about 82% of an alkoxylated alcohol nonionic surfactant and from about 4% to about 35% of a water-soluble quaternary salt cationic surfactant. It is disclosed that such combinations exhibit improved cleaning performance on greasy and oily soils.
  • Another object of the present invention is to provide detergent compositions that provide such benefits over a wide range of washing temperatures.
  • the present invention comprises a detergent composition containing, by weight:
  • This invention comprises detergent compositions containing an essential three component detergent surfactant system consisting of specific alkyl sulfate, specific sulfonate and cationic detergent surfactants.
  • This specific three component surfactant system is an extremely effective detergent. It is particularly effective on organic soils, for example, lipid, greasy and oily soils. Also, the use of such system results in an unusually low level of soil redeposition. Soil redeposition results when soil that is removed from the textiles into the wash liquor during the wash process is redeposited onto the textiles.
  • the detergent compositions within the invention provide the desired superior performance over a broad range of wash water conditions.
  • the wash water temperature can range from 5°C. to 95°C. It is preferred that the initial pH of the wash liquor; i.e., the detergent composition and wash water mixture, be greater than 8 and most preferably from 9 to - 11.
  • the detergent compositions within the invention can be in any form, such as granules, liquids, tablets or pastes, but the granular compositions are preferred.
  • the granules can range in density from .15 grams/ cubic centimeter to .8 grams/cubic centimeter.
  • the detergent compositions within the invention provide the desired superior performance on organic soils because the alkyl sulfate detergent surfactant and the sulfonate detergent surfactant each form an electro-neutral complex with the cationic surfactant.
  • the mechanism of organic soil removal is believed to be based upon the surfactant adsorbing to the soil surface to reduce the soil/water interfacial tension to such an extent that the mechanical action of the washing process removes soil from the textile surface. Since the complexes formed are electrically neutral and, therefore, do not repel each other, they can pack densely when they adsorb onto the soil surface. This results in a much lower soil/water interfacial tension and thereby extremely effective soil removal.
  • both the alkyl sulfate detergent surfactant and the sulfonate detergent surfactant must be present.
  • experimental evidence indicates that it is essential that the molar ratio of cationic surfactant to sulfonate detergent surfactant be less than 1.5. Otherwise, the desired superior performance is not obtained.
  • the cationic surfactant is an essential component of the compositions within the invention. Without the cationic surfactant, the electro-neutral complex cannot be formed with the alkyl sulfate detergent surfactant and/or the sulfonate detergent surfactant and, therefore, the desired superior performance is not obtained. Though, theoretically, essentially any cationic surfactant can be utilized to provide such benefit, nitrogenous surfactants that are cationic of capable of existing in cationic form are the most practicable. Also, the cationic surfactants within the invention can be saturated or unsaturated.
  • the cationic surfactants within the invention are selected from
  • Preferred cationic surfactants are:
  • nitrogenous surfactants which are described in (i) when Q is N, (ii), (iii) and (iv) are the preferred cationic surfactants.
  • (i), (ii), (iii), and (iv) refer to the compounds in the Summary of the Invention.
  • alkyl quaternary ammonium surfactants which are described in (i), and, in particular, the mono- long chain alkyl and alkoxy quaternary ammonium surfactants, which are described in (i) when R 5 is selected from the same groups as R 4 .
  • the most preferred cationic surfactants are the chloride, bromide and methylsulfate salts of C 8-12 alkyltrimethyl ammonium surfactants, C 8-12 alkylhydroxyethyldimethyl ammonium surfactants, C 8-12 alkylmethyldihydroxyethyl ammonium surfactants, C 10-14 alkoxytrimethyl ammonium surfactants, C 10-14 alkoxydihydroxyethylmethyl ammonium sur- factants and C 10-14 alkox y h y drox y e t h yldimethyl ammonium surfactants.
  • the salts of the cationic surfactants can be prepared by precomplexing the cationic surfactant directly with an anionic detergent surfactant within the invention rather than having such complex be formed in the wash liquor.
  • the preferred cationic surfactants are:
  • Such cationic surfactants are preferred under cold water washing conditions because when they are utilized in combination with the alkyl sulfate detergent surfactant and the sulfonate detergent surfactant the electro-neutral complex formed does not crystallize or become highly viscous. It has been observed that the electro-neutral complex formed under cold water washing conditions with a cationic surfactant such as C 12 trimethyl ammonium chloride results in such complex being crystalline or highly viscous and, thereby, is rendered less effective.
  • nitrogenous surfactants which are described in (i) and (ii) when Q is N, (iii), (iv) and (v) are the preferred cationic surfactants for use under cold water washing conditions.
  • alkyl quaternary ammonium surfactants which are described in (i) and (ii).
  • the most preferred cationic surfactants are the chloride, bromide and methylsulfate salts of the alkyl quaternary ammonium surfactants which are described in (i) when each R 2 is an alkyl group containing from 4 to 10 carbon atoms wherein the sum of the carbon atoms of [R 2 (OR 3 ) m ] 2 is from - 10 carbon atoms and to . 14 carbon atoms and preferably from 10 to . 12 carbon atoms; each m and y are 1 or 0, preferably 0; and each R 4 is selected from methyl and hydroxyethyl.
  • each R is selected from an alkyl group containing at least one carbon atom and ring structures formed by joining each R 5 containing five or six carbon atoms wherein the sum of the carbon atoms of ((R 3 O) m R 5 ] 2 is from 10 to 16 carbon atoms and preferably from 10 to 14 carbon atoms; each m and y are 1 or 0, preferably 0; and each R 4 is selected from methyl and hydroxyethyl.
  • cationic surfactants derived from aliphatic amines have a pKa at least 1/2 unit above the initial pH of the wash liquor. Otherwise, the desired superior performance is not achieved. It is believed that such a pKa and pH limitation. ensures that a substantial portion of such amines are protonated and, thus, exist in cationic form and, therefore, are able to complex with the alkyl sulfate detergent surfactant and sulfonate detergent surfactant.
  • the level of cationic surfactant within the invention is related to the level of sulfonate detergent surfactant.
  • the molar ratio of cationic surfactant: sulfonate detergent surfactant is at most 1.5 and preferably less than 1. It is desirable to have some molar excess sulfonate detergent surfactant present because it is effective at stripping fabric softeners that have been deposited on the textile surface in previous wash cycles.
  • the sum of the equimolar levels of cationic surfactant and sulfonate detergent surfactant is preferably at least 2%, more preferably above 5% and most preferably above 10% of the total level of anionic detergent surfactant present. Such excess of anionic detergent surfactant is preferred to ensure proteinaceous and particulate soil removal and the suspension in the wash liquor of the soil removed from the textiles.
  • the level of cationic surfactant within the invention is from 1/4% to 12%, preferably from 1/2% to _ 8% and most preferably from 1/2% to 6%.
  • the alkyl sulfate detergent surfactant is an essential component of the detergent compositions within the invention. Detergent compositions without the alkyl sulfate detergent surfactant do not provide the desired superior performance. Such compositions provide poor particulate soil removal and increased soil redeposition. It is believed that the alkyl sulfate detergent surfactant, in addition to forming the electro-neutral complex with the cationic surfactant, is particularly efficacious for such purposes. Furthermore, only specific alkyl sulfate detergent surfactants provide the desired superior performance. Performance is quite poor with an alkyl sulfate detergent surfactant in which the alkyl chain contains more than 15 carbon atoms in a linear portion of the chain extending from the head group and/or more than four ethoxy groups.
  • the alkyl sulfate detergent surfactants of the present invention are of the general formula: wherein R is an alkyl chain having from 8 to 18 carbon atoms, saturated or unsaturated, wherein the longest linear portion of the alkyl chain extending from the head group is 15 carbon atoms or less on the average, M is a cation which makes the compound water-soluble, especially an alkali metal, ammonium or substituted ammonium cation and x is from 0 to about 4.
  • the preferred substituted ammonium cations are the mono- and diethanol ammonium cations.
  • the alkyl sulfate detergent surfactants are not ethoxylated.
  • the preferred alkyl sulfate detergent surfactants are the sodium and potassium salts of C 12-15 primary and C 12-18 secondary alkyl sulfates.
  • the most preferred alkyl sulfate detergent surfactants are the sodium and potassium salts of C12-15 linear and methyl branched alkyl sulfates.
  • the preferred alkyl sulfate detergent surfactants are the secondary and shorter alkyl chain alkyl sulfate detergent surfactants within the invention.
  • the level of alkyl sulfate detergent surfactant within the present invention is from 2% to 50%, preferably from 3% to 30% and most preferably from 5% to 20%.
  • compositions within the invention are an essential component of the compositions within the invention.
  • Compositions without the sulfonate detergent surfactants within the invention do not give the desired superior performance.
  • sulfonate detergent surfactants can be used in the compositions of the invention. However, it is believed that the alkyl chain portion of such surfactants should be saturated. For example, a-olefin sulfonates, which have an unsaturated carbon bond, do not provide the desired superior performance.
  • Suitable sulfonate detergent surfactants are C 9-15 alkyl benzene sulfonates, C 8-24 paraffin sulfonates, C 8-18 alkyl glyceryl ether sulfonates, esters of a-sulfonated fatty acids containing from 6 to 20 carbon atoms in the fatty acid group and from 1 to 10 carbon atoms in the ester group and C 1-6 alkyl or aryl sulfonates containing an ether, ester or amide linkage to a C7-15 alkyl chain.
  • the preferred sulfonate detergent surfactants are the secondary alkyl benzene sulfonates having from 9 to . 15, preferably from 11 to 13 carbon atoms in the alkyl chain.
  • Suitable paraffin sulfonates contain from - to 24 carbon atoms and preferably from 12 to 18 carbon atoms.
  • the alkyl glyceryl ether sulfonates are those ethers of C 8-18 alcohols, e.g., those derived from tallow and coconut oil.
  • Suitable esters of a-sulfonated fatty acids contain from 6 to 20 carbon atoms in the fatty acid group and from 1 to 10 carbon atoms in the ester group.
  • Suitable alkyl sulfonates with an ether, ester or amide linkage have the general formula: R 7 - A - R 8 -SO 3 wherein R7 is an alkyl chain having 7 to 15 carbon atoms, R 8 is an alkyl chain having from 1 to 6 carbon atoms or a benzyl group and A is selected from
  • the shorter alkyl chain sulfonate detergent surfactants are preferred.
  • the level of sulfonate detergent surfactant within the invention is such that the molar ratio of cationic surfactant:sulfonate detergent surfactant is less than 1.5 and preferably less than 1.
  • the sum of the equimolar levels of cationic surfactant and sulfonate detergent surfactant is preferably at least above 2%, more preferably above 5% and most preferably above 10% of the total anionic surfactant present.
  • the level of sulfonate detergent surfactant of the detergent compositions within -the present invention is from .5% to 50%, preferably from . 2% to 30% and most preferably from 3% to 20%.
  • the detergent compositions within the invention contain a detergency builder.
  • the level of detergency builder of the detergent compositions is from 0% to 70%, preferably from 10% to 60% and most preferably from 20% to 50% of a detergency builder.
  • the preferred detergency builders are the water-soluble sequestrants such as tripolyphosphates, hexametaphosphates and higher polymerization species, citrates, nitrilotriacetates and water-soluble polyacetals as disclosed in U.S. Patents 4,144,266 and 4,246,495, and mixtures thereof.
  • the most preferred detergency builders are tripolyphosphates, nitrilotriacetates and water-soluble polyacetals and mixtures thereof.
  • Water-soluble inorganic or organic electrolytes are suitable builders.
  • the electrolytes have an equivalent weight of less than 210, especially less than 100 and include the common alkaline polyvalent calcium ion sequestering agents.
  • the builder can also be water-insoluble calcium ion exchange materials; however, nonlimiting examples of suitable water-soluble, inorganic detergent builders include: alkali metal carbonates, borates, phosphates, bicarbonates, silicates, sulfates and chlorides. Specific examples of such salts include sodium and potassium tetraborates, perborates, bicarbonates, carbonates, percarbonates, orthophosphates, pyrophosphates and sulfates.
  • suitable organic alkaline detergency builders include: (1) water-soluble aminocarboxylates and aminopolyacetates, for example, sodium and potassium glycinates, ethylenediaminetetraacetates and N-(2-hydroxyethyl)nitrilodiacetates and diethylenetriamine- pentaacetates; (2) water-soluble salts of phytic acid, for example, sodium and potassium phytates; (3) water-soluble polyphosphonates, including sodium, potassium, and lithium salts of ethane-1-hydroxy-1, 1-diphosphonic acid; sodium, potassium, and lithium salts of ethylene diphosphonic acid; and the like; (4) water-soluble polycarboxylates such as the salts of lactic acid, succinic acid, malonic acid, maleic acid, citric acid, carboxymethyloxysuccinic acid, 2-oxa-I,1,3-propane tricarboxylic acid, 1,1,2,2-ethane tetracarboxylic acid, cyclopentan
  • a water-soluble material capable of forming a water-insoluble reaction product with water hardness cations preferably in combination with a crystallization seed which is capable of providing growth sites for said reaction product.
  • a further class of detergency builder materials useful in the present invention are insoluble sodium aluminosilicates, particularly those described in Belgian Patent 814,874, issued November 12, 1974.
  • detergent compositions containing sodium aluminosilicates having the formula: wherein z and y are integers equal to at least 6, the molar ratio of z to y is in the range of from 1.0:1 to about 0.5:1, and X is an integer from . 15 to 264, said aluminosilicates having a calcium ion exchange capacity of at least 200 milligrams equivalent/gram and a calcium ion exchange rate of at least 2 grains/ minute/gram.
  • a preferred material is:
  • compositions of the invention can contain a nonionic surfactant.
  • nonionic surfactants for use herein comprise those typical nonionic surfactants well known in the detergency arts.
  • the preferred nonionic surfactants are fatty acid amide surfactants, amine oxide surfactants and ethoxylated alcohols.
  • Suitable fatty acid amide surfactants are ammonia amides, monoethanol amides, diethanol amides and ethoxylated amides.
  • Particularly preferred amides are those where the alkyl group contains from 10 to 16 carbon atoms, such as coconut alkyl monoethanol or diethanol amide.
  • Such compounds are commercially available under the tradenames Super-Amide L-9 and GR, from Onyx Chemical Company, Jersey City, NJ; Super-Amide F-3 from Ryco, Inc., Conshohocken, PA and Gafamide CDD-518, available from GAF Corp., New York, NY.
  • the amine oxide surfactants of the present invention comprise compounds and mixtures of compounds having the formula wherein R is an alkyl, hydroxyalkyl, alkoxyhydroxy- propyl radical, alkoxyhydroxyethyl, alkyl amido or alkyl carboxylate in which the alkyl and alkoxy, respectively, contain from 8 to 18 carbon atoms, R 2 and R 3 are methyl, ethyl, propyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, or together are a heterocyclic, e.g., morpholino structure in which the nitrogen is part of the heterocyclic ring and n is from 0 to 10.
  • R is an alkyl, hydroxyalkyl, alkoxyhydroxy- propyl radical, alkoxyhydroxyethyl, alkyl amido or alkyl carboxylate in which the alkyl and alkoxy, respectively, contain from 8 to 18 carbon atoms
  • R 2 and R 3 are methyl
  • amine oxide surfactants include: dimethyldodecylamine oxide, dimethyltetra- decylamine oxide, ethylmethyltetradecylamine oxide, cetyldimethylamine oxide, dimethylstearylamine oxide, cetylethylpropylamine oxide, diethyldodecylamine oxide, diethyltetradecylamine oxide, dipropyldodecylamine oxide, bix-(2-hydroxyethyl)dodecylamine oxide, bis(2-hydroxyethyl)-3-dodecoxy-2-hydroxypropylamine oxide, (2-hydroxypropyl)methyltetradecylamine oxide, dimethyl- oleylamine oxide, dimethyl-(2-hydroxydodecyl)amine oxide, C8-20 alkyl(alpha-dimethylamine oxide) carboxylate, and the corresponding decyl, hexadecyl and octadecyl homolog
  • the ethoxylated alcohols for use herein have the formula wherein R is an alkyl, hydroxy alkyl, alkylene, hydroxy alkylene acyl, or hydroxy acyl group containing from 8 to 22 carbon atoms or an alkylbenzene group wherein the alkyl group contains from 6 to 15 carbon atoms or mixtures thereof;
  • X is a number from 2 to 30; and
  • R 1 is selected from H, alkyl groups containing from 2 to 4 carbon atoms, acyl groups containing from 2 to 4 carbon atoms and mixtures thereof.
  • the HL B Of these nonionic surfactants is preferably from - 5 to 20, most preferably from 8 to 14.
  • nonionic surfactants are: (1) the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide and propylene glycol, and (2) the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine. These surfactants are marketed by BASF Wyandotte under the tradenames Pluronic and Tetronic respectively.
  • the level of nonionic surfactant that can be present is from 0% to 50%, preferably from .5% to 10% and most preferably from 1% to 5%.
  • compositions of this invention can contain all of the usual components of detergent compositions including the ingredients set forth in U.S. Patent 3,936,537, Baskerville et al.
  • Such components include color speckles, bleaching agents, bleach activators, suds boosters, suds suppressors, antitarnish and/or anticorrosion agents, soil- suspending agents, soil-release agents, dyes, fillers, optical brighteners, germicides, pH adjusting agents, alkalinity sources, hydrotropes, antioxidants, enzymes, enzyme stabilizing agents, perfumes, etc.
  • water soluble salts of fatty acids can be added as part of the surfactant system. Surprisingly, they are most effective under cold water wash conditions. Suitable water soluble salts of fatty acids have from 8 to 18 carbon atoms. The preferred water .soluble salts of fatty acids are the sodium, potassium and magnesium salts of C12-14 fatty acids. They can be present at levels up to 10%.
  • Enzymes are believed to be particularly effective in the detergent compositions of this invention.
  • the enzyme-containing detergent compositions are particularly effective on enzyme sensitive stains such as grass and blood while maintaining greasy and oily soil detergency.
  • Suitable enzymes are those, for example, disclosed in U.S. Patent 4,176,079, Guerry et al (November 27, 1979).
  • the enzymes are included at a level of from .02% to 3%, preferably from .1% to 1%.
  • Nonlimiting examples of bleaching agents are sodium perborate (as the monohydrate or tetrahydrate), sodium percarbonate and other perhydrates, at levels from 5% to 35% by weight of the composition, and activators therefor, such as tetraacetylethylenediamine, tetra- acetylglycouril and others known in the art, and stabilizers therefor, such as magnesium silicate, and ethylenediaminetetraacetate.
  • activators therefor such as tetraacetylethylenediamine, tetra- acetylglycouril and others known in the art
  • stabilizers therefor such as magnesium silicate, and ethylenediaminetetraacetate.
  • Peroxy carboxylic acids for example, such as those disclosed in U.S. Patent 4,091,544, Hutchins (May 30, 1975), are especially useful.
  • Preferred optional ingredients include suds modifiers particularly those of suds suppressing types, exemplified by silicones, and silica-silicone mixtures.
  • U.S. Patents 3,933,672, issued January 20, 1976 to Bartolotta et al, and 4,136,045, issued January 23, 1979 to Gault et al disclose silicone suds controlling agents.
  • the silicone material can be represented by alkylated polysiloxane materials such as silica aerogels and xerogels and hydrophobic silicas of various types.
  • the silicone material can be described as siloxane having the formula: - wherein x is from 20 to 2,000 and R and R are each alkyl or aryl groups, especially methyl, ethyl, propyl, butyl and phenyl.
  • the polydimethylsiloxanes (R and R are methyl) having a molecular weight within the range of from 200 to 2,000,000, and higher, are all useful as suds controlling agents.
  • Additional suitable silicone materials wherein the side chain groups R and R 1 are alkyl, aryl, or mixed alkyl or aryl hydrocarbyl groups exhibit useful suds controlling properties. Examples of the like ingredients include diethyl-, dipropyl-, dibutyl-, methyl-, ethyl-, phenyl- methylpoly-siloxanes and the like.
  • Additional useful silicone suds controlling agents can be represented by a mixture of an alkylated siloxane, as referred to hereinbefore, and solid silica.
  • a preferred silicone suds controlling agent is represented by a hydrophobic silanated (most preferably trimethylsilanated) silica having a particle size in the range from 10 millimicrons to 20 millimicrons and a specific surface area above 50 m 2 /gm. intimately admixed with dimethyl silicone fluid. having a molecular weight in the range from 500 to 200,000 at a weight ratio of silicone to silanated silica of from 19:1 to 1:2.
  • the silicone suds suppressing agent is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non- surface-active detergent-impermeable carrier.
  • Particularly useful suds suppressors are the self- emulsifying silicone suds suppressors, described in U.S. Patent 4,073,118, Gault et al, issued February 21, 1978.
  • DB-544 commercially available from D ow Corning, which is a siloxane/glycol copolymer.
  • Suds modifiers as described above are used at levels of up to approximately 2%, preferably from 0.1 to 1>% by weight of the surfactant.
  • Microcrystalline waxes having 'a melting point in the range from 35°C-115°C and a saponification value of less than 100 represent additional examples of preferred suds control components for use in the subject compositions, and are described in detail in U.S. Patent 4,056,481, Tate, issued November 1, 1977.
  • microcrystalline waxes are substantially water-insoluble, but are water-dispersible in the presence of organic surfactants.
  • Preferred microcrystalline waxes have a melting point from 65°C to 100°C, a molecular weight in the range from 400-1,000; and a penetration value of at least 6, measured at 77°F by ASTM-D1321.
  • Suitable examples of the above waxes include: microcrystalline and oxidized microcrystalline petroleum waxes; Fischer-Tropsch and oxidized Fischer-Tropsch waxes; ozokerite; ceresin; montan wax; beeswax; candelilla; and carbauba wax.
  • Alkyl phosphate esters represent an additional preferred suds control agent for use herein. These preferred phosphate esters are predominantly monostearyl phosphate which, in addition thereto, can contain di-and tristearyl phosphates and monooleyl phosphate, which can contain di- and trioleyl phosphate.
  • alkyl phosphate esters frequently contain some trialkyl phosphate. Accordingly, a preferred phosphate ester can contain, in addition to the monoalkyl ester, e.g., monostearyl phosphate, up to 50 mole percent of dialkyl phosphate and up to 5 mole percent of trialkyl phosphate.
  • a laundry load consisting of one set of the swatches along with six clean terry cloth towels and one terry cloth towel soiled with a mixture of particulate soil and oily soil was placed in a mini-wash system.
  • the load was then washed with a quantity of Composition A that corresponds to detergent concentrations utilized in conventional automatic wash processes.
  • the mini-wash system with such a load simulates a conventional automatic washing process.
  • the wash water had a temperature of 95°F and contained 5 grains/gallon water hardness.
  • This wash process was repeated two more times, once with the second set of swatches and Composition B and once with the third set of swatches and Composition C.
  • Each of the four swatch types was then comparison graded against its identical counterpart that had been washed with a different detergent composition to determine relative soil removal.
  • a grading scale of -4 to 4 was used, with -4 indicating much less soil removal, 0 indicating no difference and 4 indicating much more soil removal.
  • Compositions A and C provided significantly more soil removal than Composition B, which did not contain the essential cationic surfactant.
  • compositions A, B and C provided significantly more soil removal than Composition D which did not contain a sulfonate detergent surfactant within the invention.
  • Composition F provided significantly more soil removal than Composition E. Thus, it appears that sodium C 16 alkyl-4-sulfate cannot "substitute" for a sulfonate detergent surfactant within the invention.
  • ⁇ HWUF Hunter Whiteness Units Filtered
  • composition B had somewhat more soil redeposition than Composition A. This is due to the decreased level of alkyl sulfate detergent surfactant of Composition B.
  • Composition A provided significantly more soil removal than Compositions B and C. It is believed that this is because Compositions B and C did not contain an alkyl sulfate detergent surfactant. Therefore, the alkyl sulfate detergent surfactant is also essential for soil removal.
  • Soil removal capability of Composition A was compared to that of Composition B by determining the Cleaning Index by the same procedure as described in Example I. Such comparison was also made between Compositions C and D. The results were as follows:
  • Composition A provided significantly more soil removal than Composition B and Composition C provided significantly more soil removal than Composition D. This result is due to that the length of the longest portion of the alkyl sulfate detergent surfactant of Compositions B and D is too long.
  • Composition C provided significantly more soil removal than Compositions A and B. It is believed that this is because Composition A and B did not contain a sufficient level of C 13 LAS in order to form a sufficient level of cationic surfactant-alkyl sulfonate detergent surfactant complex.
  • Composition A which contains an optional nonionic surfactant, provided only marginally significantly more soil removal than Composition B.
  • Composition B which contains an amine surfactant, did not remove significantly less soil than Composition A, which contains an alkylammonium surfactant.
  • composition within the invention that contains a water soluble salt of a fatty acid:
  • This composition provides the desired superior performance on conventional soils in addition to being extremely effective on enzyme-sensitive stains.
  • composition within the invention that contains a water soluble salt of a fatty acid:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
EP19830300931 1982-03-01 1983-02-23 Detergenszusammensetzung Expired EP0087914B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83300931T ATE22700T1 (de) 1982-03-01 1983-02-23 Detergenszusammensetzung.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US35374382A 1982-03-01 1982-03-01
US353743 1982-03-01
US38098782A 1982-05-24 1982-05-24
US380987 1982-05-24
US46521183A 1983-02-15 1983-02-15
US465211 1983-02-15

Publications (2)

Publication Number Publication Date
EP0087914A1 true EP0087914A1 (de) 1983-09-07
EP0087914B1 EP0087914B1 (de) 1986-10-08

Family

ID=27408136

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830300931 Expired EP0087914B1 (de) 1982-03-01 1983-02-23 Detergenszusammensetzung

Country Status (6)

Country Link
EP (1) EP0087914B1 (de)
AU (1) AU553957B2 (de)
CA (1) CA1204980A (de)
DE (1) DE3366705D1 (de)
FI (1) FI73728C (de)
GR (1) GR77919B (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0121949A1 (de) * 1983-02-15 1984-10-17 THE PROCTER & GAMBLE COMPANY Anionisch/kationische Detergensmischung mit irregulärer Struktur
EP0151678A1 (de) * 1983-08-12 1985-08-21 THE PROCTER & GAMBLE COMPANY Stabile flüssige Detergenszusammensetzungen
EP0309264A2 (de) * 1987-09-24 1989-03-29 Unilever Plc Zusammensetzung zum Weichspülen von Wäsche
WO1997043371A2 (en) * 1996-05-17 1997-11-20 The Procter & Gamble Company Detergent composition
WO1997044420A2 (en) * 1996-05-17 1997-11-27 The Procter & Gamble Company Detergent composition
WO1997044425A2 (en) * 1996-05-17 1997-11-27 The Procter & Gamble Company Detergent composition
GB2315765A (en) * 1996-08-01 1998-02-11 Procter & Gamble Detergent compositions for laundering clothes with low levels of sulphate and silicates
WO1998051771A1 (en) * 1997-05-16 1998-11-19 The Procter & Gamble Company Detergent compositions
WO1999043775A1 (de) * 1998-02-26 1999-09-02 Henkel Kommanditgesellschaft Auf Aktien Tensidsystem zum einsatz in pulverförmigen bis granularen oder flüssigen wasch- und reinigungsmitteln
EP0757714B1 (de) * 1994-04-25 2001-07-04 The Procter & Gamble Company Stabiles, wässriges waschmittel mit verbesserten weichmachereigenschaften
EP1527155B2 (de) 2002-08-10 2011-04-13 Unilever PLC Waschmittelzusammensetzungen
EP3571275A4 (de) * 2017-01-20 2020-11-04 Ecolab USA Inc. Reinigungszusammensetzungen mit langkettigen anionischen tensiden

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2350008A1 (de) * 1972-10-09 1974-04-18 Procter & Gamble Europ Fluessiges, waessriges reinigungsmittel
DE2648304A1 (de) * 1975-10-31 1977-05-05 Procter & Gamble Europ Fluessiges reinigungsmittel
US4235759A (en) * 1978-06-07 1980-11-25 The Lion Fat & Oil Co., Ltd. Liquid detergent compositions
EP0026528A1 (de) * 1979-09-29 1981-04-08 THE PROCTER & GAMBLE COMPANY Reinigungsmittelzusammensetzungen
EP0026529A1 (de) * 1979-09-29 1981-04-08 THE PROCTER & GAMBLE COMPANY Reinigungsmittelzusammensetzungen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2350008A1 (de) * 1972-10-09 1974-04-18 Procter & Gamble Europ Fluessiges, waessriges reinigungsmittel
DE2648304A1 (de) * 1975-10-31 1977-05-05 Procter & Gamble Europ Fluessiges reinigungsmittel
US4235759A (en) * 1978-06-07 1980-11-25 The Lion Fat & Oil Co., Ltd. Liquid detergent compositions
EP0026528A1 (de) * 1979-09-29 1981-04-08 THE PROCTER & GAMBLE COMPANY Reinigungsmittelzusammensetzungen
EP0026529A1 (de) * 1979-09-29 1981-04-08 THE PROCTER & GAMBLE COMPANY Reinigungsmittelzusammensetzungen

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0121949A1 (de) * 1983-02-15 1984-10-17 THE PROCTER & GAMBLE COMPANY Anionisch/kationische Detergensmischung mit irregulärer Struktur
EP0151678A1 (de) * 1983-08-12 1985-08-21 THE PROCTER & GAMBLE COMPANY Stabile flüssige Detergenszusammensetzungen
EP0309264A2 (de) * 1987-09-24 1989-03-29 Unilever Plc Zusammensetzung zum Weichspülen von Wäsche
EP0309264A3 (de) * 1987-09-24 1989-12-06 Unilever Plc Zusammensetzung zum Weichspülen von Wäsche
US4970028A (en) * 1987-09-24 1990-11-13 Lever Brothers Company Composition for softening fabrics
EP0757714B1 (de) * 1994-04-25 2001-07-04 The Procter & Gamble Company Stabiles, wässriges waschmittel mit verbesserten weichmachereigenschaften
WO1997043371A3 (en) * 1996-05-17 1997-12-24 Procter & Gamble Detergent composition
US6136769A (en) * 1996-05-17 2000-10-24 The Procter & Gamble Company Alkoxylated cationic detergency ingredients
WO1997044425A2 (en) * 1996-05-17 1997-11-27 The Procter & Gamble Company Detergent composition
WO1997044418A1 (en) * 1996-05-17 1997-11-27 The Procter & Gamble Company Detergent composition
WO1997043364A2 (en) * 1996-05-17 1997-11-20 The Procter & Gamble Company Detergent composition
WO1997043364A3 (en) * 1996-05-17 1997-12-24 Procter & Gamble Detergent composition
WO1997044420A3 (en) * 1996-05-17 1997-12-24 Procter & Gamble Detergent composition
WO1997044425A3 (en) * 1996-05-17 1997-12-24 Procter & Gamble Detergent composition
WO1997044420A2 (en) * 1996-05-17 1997-11-27 The Procter & Gamble Company Detergent composition
WO1997043371A2 (en) * 1996-05-17 1997-11-20 The Procter & Gamble Company Detergent composition
GB2315765A (en) * 1996-08-01 1998-02-11 Procter & Gamble Detergent compositions for laundering clothes with low levels of sulphate and silicates
WO1998051771A1 (en) * 1997-05-16 1998-11-19 The Procter & Gamble Company Detergent compositions
WO1999043775A1 (de) * 1998-02-26 1999-09-02 Henkel Kommanditgesellschaft Auf Aktien Tensidsystem zum einsatz in pulverförmigen bis granularen oder flüssigen wasch- und reinigungsmitteln
EP1527155B2 (de) 2002-08-10 2011-04-13 Unilever PLC Waschmittelzusammensetzungen
EP3571275A4 (de) * 2017-01-20 2020-11-04 Ecolab USA Inc. Reinigungszusammensetzungen mit langkettigen anionischen tensiden
US11591546B2 (en) 2017-01-20 2023-02-28 Ecolab Usa Inc. Cleaning compositions employing extended chain anionic surfactants
US12077726B2 (en) 2017-01-20 2024-09-03 Ecolab Usa Inc. Cleaning compositions employing extended chain anionic surfactants

Also Published As

Publication number Publication date
CA1204980A (en) 1986-05-27
GR77919B (de) 1984-09-25
FI830681L (fi) 1983-09-02
FI73728B (fi) 1987-07-31
FI830681A0 (fi) 1983-03-01
EP0087914B1 (de) 1986-10-08
AU553957B2 (en) 1986-07-31
DE3366705D1 (en) 1986-11-13
FI73728C (fi) 1987-11-09
AU1181983A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
US4222905A (en) Laundry detergent compositions having enhanced particulate soil removal performance
US4228042A (en) Biodegradable cationic surface-active agents containing ester or amide and polyalkoxy group
US4260529A (en) Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide
CA1109759A (en) Detergent compositions
CA1157339A (en) Detergent compositions containing an aluminosilicate detergency builder and an unsaturated fatty acid soap
US4228044A (en) Laundry detergent compositions having enhanced particulate soil removal and antiredeposition performance
EP0098021B2 (de) Zusammensetzungen für das Bleichen
US4259217A (en) Laundry detergent compositions having enhanced greasy and oily soil removal performance
US4347168A (en) Spray-dried granular detergent compositions for improved greasy soil removal
CA1138293A (en) Washing and softening compositions
EP0000225A1 (de) Festes Waschmittel zur verbesserten Beseitigung von fetthaltigem Schmutz
US4525292A (en) Bleaching detergent compositions comprising sulfosuccinate bleach promoters
EP0087914B1 (de) Detergenszusammensetzung
EP0040038A2 (de) Körnige Reinigungsmittelzusammensetzungen
US4744911A (en) Dispersible fabric softeners
US4931215A (en) Detergent compositions containing a combination of a co-builder and a builder
JPS6312520B2 (de)
EP0000234A1 (de) Waschmittel mit niedrigem Phosphatgehalt zum Waschen von Geweben
EP0121949A1 (de) Anionisch/kationische Detergensmischung mit irregulärer Struktur
EP0000235A1 (de) Waschmittel mit niedrigem Phosphatgehalt zum Waschen von Geweben
CA1129299A (en) Laundry detergent compositions having enhanced particulate soil removal and antiredeposition performance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840224

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 22700

Country of ref document: AT

Date of ref document: 19861015

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3366705

Country of ref document: DE

Date of ref document: 19861113

ET Fr: translation filed
NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: IN PAT.BUL.24/86,PAGE 3039:SHOULD BE MODIFIED INTO:380987

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19870225

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870228

Year of fee payment: 5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

Effective date: 19870707

NLR1 Nl: opposition has been filed with the epo

Opponent name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: GB

Ref legal event code: 7102

27W Patent revoked

Effective date: 19880304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR2 Nl: decision of opposition
BERE Be: lapsed

Owner name: THE PROCTER & GAMBLE CY

Effective date: 19890228

EUG Se: european patent has lapsed

Ref document number: 83300931.9