EP0082742B1 - Method and device for magnetographic copying - Google Patents

Method and device for magnetographic copying Download PDF

Info

Publication number
EP0082742B1
EP0082742B1 EP82400425A EP82400425A EP0082742B1 EP 0082742 B1 EP0082742 B1 EP 0082742B1 EP 82400425 A EP82400425 A EP 82400425A EP 82400425 A EP82400425 A EP 82400425A EP 0082742 B1 EP0082742 B1 EP 0082742B1
Authority
EP
European Patent Office
Prior art keywords
developer
dots
magnetic
magnetised
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82400425A
Other languages
German (de)
French (fr)
Other versions
EP0082742A3 (en
EP0082742A2 (en
Inventor
Jean-Jacques Eltgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bull SA
Original Assignee
Bull SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bull SA filed Critical Bull SA
Publication of EP0082742A2 publication Critical patent/EP0082742A2/en
Publication of EP0082742A3 publication Critical patent/EP0082742A3/en
Application granted granted Critical
Publication of EP0082742B1 publication Critical patent/EP0082742B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G19/00Processes using magnetic patterns; Apparatus therefor, i.e. magnetography

Definitions

  • the present invention relates to a magnetographic printing method which makes it possible to obtain images in two colors on a printing medium. It also relates to a machine for implementing this method.
  • Magnetic printing machines which, in response to signals received from a control unit, make it possible to form images, such as images of characters for example, on a printing medium also consisting of a strip. or a sheet of paper.
  • the printing of the images is carried out by first forming, from the signals received, a latent magnetic image on the surface of a magnetic recording element generally in the form of a rotating drum or an endless belt, this latent image consisting of a set of magnetized zones of very small dimensions .
  • This latent image is then developed by depositing on this surface a powdery developer containing magnetic particles which remain applied only to the magnetized areas of the recording element to form a powder image on the surface of this element. After which, this powder image is transferred to the print medium.
  • the image which is thus formed on the printing medium may appear in two different colors.
  • the printing of a color image on the printing medium is carried out by first forming on the recording element an image latent magnetic corresponding to the parts of the same color of the image to be printed, by developing this latent image by means of a developer having this color, by transferring the powder image thus obtained onto the printing medium, and by repeating this operation as many times as there are colors in the image to be printed.
  • a method has the drawback of requiring a particularly long time for its implementation.
  • the particles which have a determined size (and consequently a given color) are preferentially attracted by the elementary areas whose dimensions correspond to a given force of attraction, so that, after development, each elementary area is covered with particles whose color corresponds to the frequency that was used to form this elementary area.
  • the images or image portions whose hue corresponds to the areas elementary elements of large dimensions have a definition, that is to say a degree of finesse, less good than cells whose hue corresponds to elementary areas of small dimensions.
  • the elementary areas of small dimensions are capable, during development, of attracting only the smallest particles of the developer, it is impossible to prevent that the elementary areas of large dimensions attract not only the large particles. of the developer, but also the smaller particles, which naturally causes color change.
  • the present invention overcomes these drawbacks and proposes a magnetographic printing method as well as a machine using this method, which makes it possible to obtain on a printing medium, in a relatively short time, high quality two-color images, while requiring only two developers having the same particle size and the same magnetic characteristics.
  • FIG. 1A shows, in enlarged section, a magnetic recording element 10, of known type, which can be used for implementing the method of the invention.
  • this magnetic recording element is of a type analogous to that which has been described and represented in French patent No. 2,402,921 and that it comprises a support 11 formed of a material having a high magnetic permeability, such as iron or mild steel, this support being coated with a layer 12 of magnetic material with high coercivity such as, for example, the nickel-cobalt magnetic alloy.
  • this recording element 10 is magnetized transversely by means of one or more recording heads 13 of the type which has been represented in FIG. 3 Referring to FIG.
  • this recording head 13 comprises a magnetic core 14 on which is wound a winding E connected to an electrical excitation circuit which will be described a little later.
  • This magnetic core 14 has substantially the shape of a U and it is profiled so as to present at its ends a recording pole 15 and a flux closing pole 16. These two poles are arranged, as shown in FIG. 3 , near the surface of the magnetic layer 12, so that the magnetic core 14, the support 11 and the two regions 100 and 101 which are included between this core and this support and which are located directly above the poles 15 and 16 form a closed magnetic circuit. It should be noted here that, although in the case illustrated in Figure 3, the poles 15 and 16 are located near the surface of the magnetic layer 12, we could adopt another arrangement in which these two poles would be placed in contact of this surface.
  • FIG. 3 also shows that the width d of a recording pole 15 is very small compared to that D of the flux closing pole 16. Under these conditions, if an electric current is sent to winding E intensity
  • this current creates, inside the magnetic core 14, a magnetic flux whose line of average force is represented by the line of dashed lines 17.
  • the magnetic field is perpendicular to the surface of this layer 12, so that in this portion, the magnetization of the magnetic layer 12 takes place transversely.
  • the magnetic field created by the head 13 causes the appearance of a practically point magnetized zone usually called magnetized point, this magnetized zone remaining even when the winding E then ceases to be traversed by a current.
  • the magnetic layer 12 can be magnetized so that the magnetized zones thus formed constitute a latent magnetic image having a determined configuration, for example the configuration of a character.
  • FIG. 1 For example, FIG. 1
  • the spacing pitch P of the rows and columns of this matrix is at least equal to the transverse dimension L of a magnetized area. Under these conditions, it has been found that, even in the case where this pitch P was substantially equal to this dimension L, the magnetizations presented by two neighboring magnetized zones had practically no influence on each other. It will now be recalled that, in known methods, the image of the recording element is then developed by depositing on the surface of the magnetic layer 12 a powdery developer comprising finely divided particles each formed from an organic thermoplastic resin in which have incorporated a pigment and magnetic particles.
  • the surface of the magnetic layer 12 is subjected to a retouching operation which makes it possible to remove the developer particles which are in excess on this surface, so that, at the end of this operation, only the magnetized areas of this layer remains covered with a developer film, thus forming on the surface of layer 12 a powder image whose configuration corresponds to that of the magnetized zones.
  • This powder image is then transferred to a printing medium generally consisting of a strip of paper.
  • a printing medium generally consisting of a strip of paper.
  • the recording element 10 is magnetized so as to form on its surface magnetized zones which all have the same dimensions and which have magnetization intensities of different amplitudes and magnetic polarities opposite.
  • FIG. 1A only two of these zones, referenced A1 and A2, have been shown for reasons of simplification, but it is understood that the number of these magnetized zones can be absolutely arbitrary.
  • FIG. 1A also shows the north (N) and south (S) magnetic polarities, as well as the respective magnetizations J 1 and J 2 of the areas A1 and A2, each of these magnetizations being represented by an arrow whose length is proportional to the value of this magnetization. It can then be seen in FIG.
  • the magnetizations J 1 and J 2 of the zones A1 and A2 have different values and that they are oriented in opposite directions to each other, so that the magnetic polarity that presents zone A1 on the surface of the recording element 10, that is to say here a south polarity (S), is opposite to that which zone A2 has on this same surface, that is to say say here a north polarity (N). It can also be seen that, in the example illustrated in FIG. 1A, the magnetization J 1 of the zone A1 is greater than the magnetization J 2 of the zone A2.
  • the magnetized zones which are intended to form, on the printing medium, images or parts of images which must appear in one of the two colors chosen have magnetizations which all have the same value J 1 and which are all oriented in the same direction.
  • the magnetization of these zones is oriented in the opposite direction to the magnetizations of the other magnetized zones which are intended to form, on this support, images or image parts which must appear in the other color.
  • the magnetizations of these other zones all have the same value J 2 , J 2 being different from J 1 .
  • the areas A1 and A2 which have been shown in FIG. 1A and which have magnetizations of different values and of opposite directions, are intended to form on the printing paper two punctual spots of different colors.
  • the magnetized area A1 is intended to form a point spot of red color and that the magnetized area A2 is intended to form a point spot of black color.
  • the two magnetized zones A1 and A2 it is possible to use two identical recording heads, of the type which has been represented in FIG. 3, and to excite these two heads with currents of different intensities and such that the direction in which circulates the current in the winding of the first head is inverse to that in which the current flows in the winding of the second head.
  • the recording element 10 having been magnetized in the manner which has just been indicated, a first powdery developer is then deposited on the surface of this element, the tint of which is one of the two colors chosen. In the example described, it will be considered that this first, powdery developer is red in color.
  • This first developer which is brought into contact with the entire surface of the recording element 10, is however only attracted by the magnetized zones of this element, so that, if we manage to leave this revealing that on these areas magnetized, for example by arranging the recording element so that, when this developer is applied to this element, each developer particle is subjected, on the one hand to the action of the attraction force magnetic exerted by the magnetized zones, on the other hand to the action of a gravity force oriented in opposite direction to this magnetic attraction force, each of these magnetized zones is then coated, as shown in FIG. 1B, of a layer 18 of the first developer, the thickness of this layer being all the greater the higher the magnetic attraction force exerted by the magnetized zone on which this layer is deposited.
  • the force with which each of the developer particles which have been deposited on the same magnetized zone is attracted depends not only on the value of the magnetization J of this zone and on the distance h which separates each particle. of this zone, but also of the physical characteristics of this developer, such as the particle size state and the percentage of magnetic particles of this developer.
  • the magnetic force exerted on a developer particle which has been deposited on a magnetized area is all the greater the higher the value of the magnetization J of this area.
  • this magnetic attraction force is all the smaller the greater the distance h which separates this particle from this zone, the variations of this magnetic force Fm as a function of this distance h being illustrated by the curves which have have been shown in FIG. 6. In this FIG.
  • the dashed line curve 81 represents the variations, as a function of h, of the magnetic attraction force exerted by the magnetized zone A1, of magnetization J i .
  • the dashed line curve 82 represents the variations, as a function of h, of the magnetic attraction force exerted by the magnetized zone A2, of magnetization J 2 .
  • the value F G of the force of gravity mentioned above has also been shown, this force being exerted on each particle of developer during the application of this developer on the surface of the element. registration.
  • this recording element 10 is then subjected to a retouching operation intended, not only to remove the residual particles of first developer remaining outside the magnetized zones of this element, but also to remove all the particles of first developer on all the magnetized zones which, such as A2, have the smaller of the two magnetization values J 1 and J 2 .
  • a retouching operation which can be carried out by electrostatic or pneumatic means (suction or blowing of air) each particle of developer remaining on the surface of the recording element 10 is subjected to a constant force, of value F , which is exerted against the magnetic force F m which keeps each particle applied to the magnetized area on which it has been deposited.
  • a second powdery developer is then deposited on the surface of the recording element, the color of which is of the other of the two colors chosen, that is to say ie black in the example described.
  • the filing of this second developer is carried out under the same conditions as those which have been described for the deposition of the first developer, so that, when this deposition is completed, each of the magnetized zones of the recording element 10 is coated, as shown in the figure 1 D, a layer 19 of second developer. On the magnetized zones of stronger magnetization, such as the zone A1, this layer 19 is thus superimposed on the layer 18 of the first developer.
  • the recording element is subjected to a second retouching operation, similar to that described above, but the force of which, of constant value F 2 is less than the force F 1 of the first retouching operation.
  • This second retouching operation is carried out in the presence of a constant magnetic field, of value H, produced by a magnetic field generating device 56, (FIG. 1E) of known type.
  • the magnetic field H which is produced by this device 56 is oriented in the opposite direction to the direction of the larger of the two magnetizations of the magnetized zones, that is to say in the opposite direction to the direction of the magnetization J i .
  • the magnetization of the magnetized zones of greater magnetization is weakened, while that of the other magnetized zones, such as zone A2, is reinforced. This then results in a reduction in the magnetic attraction force exerted by each of the magnetized zones whose magnetization has been weakened, while the attraction force exerted by each of the magnetized zones whose magnetization has been strengthened is increased .
  • the value of the magnetic field H is chosen in such a way that the magnetic force exerted by each magnetized zone of weakened magnetization then becomes equal to that exerted, under the same conditions, by each magnetized zone of reinforced magnetization, the variations of this force magnetic, as a function of the distance h, being, on the diagram of FIG. 6, represented by the curve in solid lines 80.
  • immediate proximity is meant that the distance which separates the paper strip 20 from the surface of the recording element 10 is at most equal to one millimeter.
  • the magnetic field which is produced by the device 21 has the same amplitude H and the same direction as that which is produced by the device 56 so that, under the action of this field, the magnetic force exerted by each of the magnetized zones of the recording element 10 varies, as a function of the distance h, in the manner which, in the diagram of FIG. 6, is illustrated by the curve in solid lines 80.
  • the recording element 10 remains thus subjected to the action of the magnetic field produced by the device 21, the paper strip 20 is then brought into contact with this recording element, then each of the particles of one or the other developer which are found is subjected on this element to the action of a force, called transfer, which has the effect of urging each of these particles towards the paper strip and thus transferring almost all of these particles onto this strip.
  • This transfer operation can moreover be carried out either by pressing the strip of paper 20 on the recording element 10, or by using electrostatic means.
  • the transfer force used during this operation maintains a constant value F T.
  • F. of this force
  • the value FT of this transfer force is chosen so as to allow all or almost all of the particles on the element 10 to be transferred to the paper strip 20. It is of course possible to use a transfer force whose value F T is such that the line of ordinate F T is above the curve 80 and does not intersect this curve . Under these conditions, all of the developer particles are transferred onto the paper strip 20.
  • the value F T of the transfer force is chosen so that the ordinate line F T intersects the above-mentioned curve 80 at a point G whose abscissa e 3 is close to zero.
  • the abscissa e 3 of this point G is substantially equal to 3 ⁇ m. Under these conditions, almost all of the developer particles which were on the recording element 10 are transferred to the paper strip 20, so that at the end of the transfer operation, there remains, on each of the zones of the recording element 10, a layer of developer whose thickness e 3 is practically negligible.
  • the developer layers which have thus been transferred to the paper strip 20 are then subjected to a fixing operation intended to definitively fix these layers on the paper.
  • This operation is carried out at a temperature which makes it possible to bring the two developers constituting these layers, at least in the viscous state.
  • This temperature can be chosen, preferably, so as to cause the fusion of two developers, without however presenting the risk of ignition or carbonization of the paper.
  • the developers used can be of the type which have been described in the French patent application which was filed on March 20, 1980 by the Applicant and published under No. 2,478,839. These developers have the advantage of melting at a temperature below 140 ° C.
  • each of the heaps 34 forms on the paper a punctual spot having the shade of the second developer, that is to say black in the example described, while each of the heaps 35 forms on the paper a spot spot having the color of the first developer, that is to say red in the example described.
  • FIG. 2 shows a magnetographic printing machine which performs printing in two colors according to the printing process which has just been described.
  • the machine which is shown in this figure comprises a magnetic recording element in the form of a magnetic drum 10 similar to that which has been described and shown in the aforementioned French patent No. 2,402,921, this drum being driven in rotation, in the direction indicated by arrow R, by an electric motor 25.
  • the magnetization of the magnetic layer of this drum is ensured by a set of n magnetic heads 13-1 to 13-n arranged one next to the other , and aligned parallel to the axis of rotation of the drum, these heads being placed near the magnetic surface of this drum.
  • These heads which are of the type which has been shown in FIG. 3, are selectively excited by electrical pulses sent by a source of pulses 26 and applied to the windings of these heads via a calibration device and current inversion 27, the structure of which has been shown in detail in FIG. 4.
  • each of the respective windings E-1 to En of magnetic heads 13-1 to 13-n is connected, at one of its ends, to the movable contact blade of the '' a respective one of n first reversing contacts K-1 to Kn, and, at the other end, to the movable blade of one respective of n second reversing contacts L-1 to Ln, via one respective of n relay contacts CB-1 to CB-n.
  • Each of the relay contacts CB-1 to CB-n is controlled by a respective one of n relay coils B-1 to Bn.
  • FIG. 4 shows that each of the reversing contacts K-1 to Kn and L-1 to Ln has two positions designated by the numbers 1 and 2.
  • Position 1 of each of the reversing contacts K-1 to Kn is connected to the positive terminal (+) of a first current generator G1, while the position 1 of each of the change-over contacts L-1 to Ln is connected to the negative terminal (-) of this first generator G1.
  • Position 2 of each of the change-over contacts K-1 to Kn is connected to the negative (-) terminal of a second current generator G2, while position 2 of each of the change-over contacts L-1 to Ln is connected to the positive (+) terminal of this second generator G2.
  • FIG. 4 shows that the movable contact blades of the reversing contacts K-1 to Kn are mechanically coupled so that they can be placed simultaneously in the same position.
  • the relay coils B-1 to Bn can be excited by electrical pulses supplied on the outputs S1 to Sn of the pulse source 26, each of these coils B-1 to Bn being, in fact, connected to a respective one of the outputs S1 to Sn through the respective one of n conductors W1 to Wn.
  • the latent magnetic image necessary for the printing of a character is obtained by selectively exciting, on seven different occasions, five contiguous heads taken from among all of the magnetic heads 13-1 to 13-n, this excitation being carried out by means of pulses delivered at successive instants t 1 , t 2 , t 3 , t 4 , t s , t 6 and t 7 , on five corresponding outputs S1 to Sn of the pulse source 26.
  • the pulse source 26 delivered, at time t 1 a pulse on each of its outputs S2 to S4, at time t 2 a pulse on each of its outputs S1 to S5, at time t 3 a pulse on its output S5, at time t 4 a pulse on each of its outputs S1, S2, S3 and S5, at time t 5 a pulse on each of its outputs S1 to S5, at time t 6 a pulse on each of its outputs S1 to S5, and finally at time t, a pulse on each of its outputs S2 to S4.
  • the reversing contacts K-1 to Kn and L-1 to Ln and the current generators G1 and G2 are intended to determine the direction of orientation and the amplitude of the magnetizations of the magnetized zones on the drum 10; this direction and this amplitude conditioning the color of the spot which will be subsequently formed on the paper by each of these magnetized zones.
  • the first reversing contacts K-1 to Kn, the second reversing contacts L-1 to Ln, the relay contacts CB-1 to CB-n and the windings E-1 to En of magnetic heads are distributed, as as shown in FIG.
  • This current which has an intensity 1 2 lower than that I 1 of the current delivered by the generator G1, then flows in this winding in the direction which, in FIG. 4, is indicated by the arrow 1 2 .
  • the magnetization of the magnetized zone which is formed on the drum 10 by the head provided with this winding is oriented in the direction indicated by the arrow J 2 in FIG. 1A and has the same amplitude as that shown in this FIG. 1A.
  • the positioning of the reversing contacts K-1 to Kn and L-1 to Ln on one or the other of positions 1 and 2, can be carried out, either manually by the operator before any printing operation, or fully automatically, the changeover contacts K-1 to Kn and L-1 to Ln being, in the latter case, controlled by actuation means of known type, excited by the same control unit as that which controls the operation of the pulse source 26. It should also be noted that, depending on the case and applications , some of the reversing contacts K-1 to Kn and L-1 to Ln can be placed in position 2 while the other reversing contacts are placed in position 1, which allows, when printing a line of characters by example, to obtain characters printed in one of the two colors, while the other characters of this line are printed in the other color.
  • the current calibration and reversing device 27 which has been represented in FIG. 2 is constituted, in the example described, by the assembly comprising the generators G1 and G2, the reversing contacts K-1 to Kn and L-1 to Ln, the coils B-1 to Bn and the contacts CB-1 to CB-n, all these elements being connected together as illustrated in FIG. 4.
  • the printing machine produced according to the invention also comprises a first applicator device 40, of known type, which makes it possible to apply to the surface of the drum 10 particles of a first powdery developer contained in a reservoir 49. It will be considered, in the example described, that this first developer is red in color.
  • This first applicator device 40 is established for depositing on each of the magnetized zones of the drum 10 a layer of first developer, 1 thickness of which is, on the magnetization zones J 1 , close to 87 ⁇ m and, on the magnetization zones J 2 , close to 77 pm.
  • this applicator device 40 is of the type of cees which have been described and represented in French patents No.
  • this device comprising, on the one hand, a rotating magnetic element which brings the developer particles of the tank 49 to the vicinity of the surface of the drum 10, on the other hand a deflector interposed between this element and the drum to constitute a trough in which the particles collected by the deflector come to accumulate, this deflector leaving between it and the drum a very small opening of the order of 1 millimeter through which pass particles which have come to be applied against the surface of this drum.
  • the magnetized zones of the drum 10 which have thus been coated with a layer of first developer then pass in front of a retouching device 41 which on the one hand makes it possible to remove the particles of developer remaining on the drum 10 outside the magnetized zones, on the other hand to remove the first developer on the magnetized areas of magnetization J 2 .
  • the retouching device 41 which is used for this operation can be of the electrostatic or pneumatic type. It will be considered that, in the example described, this retouching device 41 is of the type which has been described and shown in French patent N ° 2,411,435 and that it is adjusted so as to leave subsist on each of the zones. magnetized with magnetization J 1 of the drum 10 a layer of first developer whose thickness is practically equal to 40 ⁇ m.
  • the magnetized zones of the drum 10 which have undergone this retouching operation then pass in front of a second applicator device 42, of a type similar to that of the first applicator device, this second applicator device 42 making it possible to deposit particles on the drum 10 of a second powder developer which, being black in the example described, is contained in a reservoir 50.
  • This second applicator device is established for, on the one hand, depositing on each of the magnetized magnetization zones J 2 of the drum 10 a layer second developer having a thickness substantially equal to 77 ⁇ m, on the other hand depositing on each of the already deposited layers of first developer a second layer of second developer, the thickness of this second layer being of the order of 50 ⁇ m.
  • the thickness of the layer of first developer is practically equal to 40 ⁇ m, the total thickness of the two layers is therefore of the order of 90 ⁇ m.
  • the magnetized zones of the drum 10 which are then coated with these layers of developers then pass in front of a magnetic field generating device 56 and in front of a second retouching device 43 similar to the retouching device 41.
  • the magnetic field generating device 56 is made up, in the example described, by a permanent magnet and it is arranged so that the magnetic field which it generates is oriented in the opposite direction to the magnetization J i . This device 56 is also established so that the amplitude H of this magnetic field meets the conditions which have been explained in detail above.
  • the second retouching device 43 in cooperation with this magnetic field generating device 56, makes it possible to reduce the thicknesses of the developer layers which are then located on the magnetized zones of the drum 10, and it is adjusted so that, after the the retouching operation carried out by this device 43, each of the magnetized zones of the drum is coated with a layer having a thickness practically equal to 35 ⁇ m, this layer then comprising only particles of first developer when it is on a zone d magnetization J 1 and only particles of second developer when it is on a magnetization zone J 2 .
  • the machine which has been shown in FIG. 2 comprises a transfer station which, in the example described, comprises a roller 45 over which the paper strip 20 passes.
  • the roller 45 is a pressure roller which makes it possible to apply the paper strip 20 to the drum 10 with a determined value force which in general does not exceed 600 newtons per linear meter. In the example described, this force has been adjusted by springs which have not been shown in the drawings, for reasons of simplification. In the more particularly advantageous embodiment which has been illustrated in FIG.
  • the transfer station further comprises a guide roller 44 which is disposed upstream of the roller 45 with respect to the direction of travel of the drum and the strip of paper, and which makes it possible to bring the paper strip 20 in the immediate vicinity of the surface of the drum 10, a little before this strip is applied against this surface.
  • FIG. 7 indeed shows that the point T where the strip 20 comes into contact with the drum 10 is located between the rollers 44 and 45.
  • the machine shown in FIG. 2 also has a second magnetic field generating device 21 which is arranged at the level of the transfer station, that is to say in the immediate vicinity of the roller 45.
  • this device 21 is constituted by a permanent magnet, but it should be noted however that this magnet could be replaced by any other equivalent device, for example by a magnetic induction coil excited by a direct current.
  • This second generator device 21 is established so that the magnetic field H that it produces is oriented in the same direction and the same amplitude as the magnetic field generated by the first magnetic field generator device 56.
  • the magnetization intensities of the magnetized zones subjected to the action of this magnetic field all take the same value, which makes it possible to transfer onto the paper strip 20, layers all having the same thickness.
  • the force with which the roller 45 presses the strip of paper 20 on the drum 10 is adjusted in such a way that the layers of first and second developers which were deposited on the magnetized zones of the drum 10 are transferred almost entirely on the strip of paper 20.
  • the second magnetic field generating device 21 is preferably placed between the guide roller 44 and the aforementioned point T, but close to this point T. It has in fact been found that this arrangement allows to improve the efficiency of the transfer and the quality of the image formed on the paper during this transfer.
  • the machine which has been shown in FIG. 2 also includes a developer fixing device 46 under which the paper strip 20 passes when the transfer operation which has just been described has been carried out.
  • This fixing device 46 which is constituted, in the example described, by an electrically heated element, is intended to permanently fix the developers which have been transferred, on the strip of paper 20. It should be noted here that this device fixing 46 is adjusted so that these developers undergo a clear melting without causing an ignition or even a deterioration of the paper strip 20, the melting temperature of these developers being, in the example described, lower than 140 ° C. . Under these conditions, each pile as 34 forms when it cools down on the paper a spot spot having the shade of the second developer, while each pile as 35 forms, when cooling on this paper, a point spot having the shade of the first developer.
  • the machine shown in Figure 2 further comprises a cleaning device which, consisting of a brush 47 in the example described, ensures the cleaning of the parts of the surface of the drum which have passed in front of the transfer station. After this cleaning, these parts pass in front of an erasing device 48, of the electromagnetic type, which erases the latent magnetic images carried by these parts, so that these parts are again able to be magnetized when they become then present in front of the set of magnetic heads 13-1 to 13-n.
  • a cleaning device consisting of a brush 47 in the example described, ensures the cleaning of the parts of the surface of the drum which have passed in front of the transfer station. After this cleaning, these parts pass in front of an erasing device 48, of the electromagnetic type, which erases the latent magnetic images carried by these parts, so that these parts are again able to be magnetized when they become then present in front of the set of magnetic heads 13-1 to 13-n.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Description

La présente invention se rapporte à un procédé d'impression magnétographique qui permet d'obtenir des images en deux couleurs sur un support d'impression. Elle concerne également une machine pour la mise en oeuvre de ce procédé.The present invention relates to a magnetographic printing method which makes it possible to obtain images in two colors on a printing medium. It also relates to a machine for implementing this method.

On connaît des machines d'impression magnétographique qui, en réponse à des signaux reçus provenant d'une unité de commande, permettent de former des images, telles que des images de caractères par exemple, sur un support d'impression constitué également par une bande ou une feuille de papier. Dans ces machines d'impression, de type analogue à celle qui a été décrite et représentée dans la demande de brevet français publiée sous le N° 2.305.764, l'impression des images est réalisée en formant d'abord, à partir des signaux reçus, une image magnétique latente sur la surface d'un élément d'enregistrement magnétique ayant généralement la forme d'un tambour rotatif ou d'une courroie sans fin, cette image latente étant constituée d'un ensemble de zones magnétisées de très petites dimensions. Cette image latente est ensuite développée en déposant sur cette surface un révélateur pulvérulent contenant des particules magnétiques qui ne restent appliquées que sur les zones magnétisées de l'élément d'enregistrement pour former une image de poudre sur la surface de cet élément. Après quoi, cette image de poudre est transférée sur le support d'impression.Magnetic printing machines are known which, in response to signals received from a control unit, make it possible to form images, such as images of characters for example, on a printing medium also consisting of a strip. or a sheet of paper. In these printing machines, of a type analogous to that which has been described and represented in the French patent application published under No. 2,305,764, the printing of the images is carried out by first forming, from the signals received, a latent magnetic image on the surface of a magnetic recording element generally in the form of a rotating drum or an endless belt, this latent image consisting of a set of magnetized zones of very small dimensions . This latent image is then developed by depositing on this surface a powdery developer containing magnetic particles which remain applied only to the magnetized areas of the recording element to form a powder image on the surface of this element. After which, this powder image is transferred to the print medium.

Pour certaines applications particulières, il peut être souhaitable que l'image qui est ainsi formée sur le support d'impression apparaisse en deux couleurs différentes. Dans un procédé connu qui a été notamment décrit dans le brevet français N° 1.053.634, l'impression d'une image en couleurs sur le support d'impression est réalisée en formant d'abord sur l'élément d'enregistrement une image magnétique latente correspondant aux parties d'une même couleur de l'image à imprimer, en développant cette image latente au moyen d'un révélateur ayant cette couleur, en transférant sur le support d'impression l'image de poudre ainsi obtenue, et en répétant cette opération autant de fois qu'il y a de couleurs dans l'image à imprimer. Un tel procédé présente cependant l'inconvénient d'exiger un temps particulièrement long pour sa mise en oeuvre. En outre, malgré tout le soin apporté pour cadrer les différentes images de poudre lors de leur transfert sur le support d'impression, il est pratiquement impossible d'éviter que des décalages même très légers se produisent entre les différentes parties d'images ainsi imprimées, ce qui, naturellement, nuit à la netteté de l'image finalement formée sur le support d'impression.For certain particular applications, it may be desirable for the image which is thus formed on the printing medium to appear in two different colors. In a known method which has been described in particular in French patent No. 1,053,634, the printing of a color image on the printing medium is carried out by first forming on the recording element an image latent magnetic corresponding to the parts of the same color of the image to be printed, by developing this latent image by means of a developer having this color, by transferring the powder image thus obtained onto the printing medium, and by repeating this operation as many times as there are colors in the image to be printed. However, such a method has the drawback of requiring a particularly long time for its implementation. In addition, despite all the care taken in framing the different powder images when they are transferred to the printing medium, it is practically impossible to prevent even very slight shifts occurring between the different parts of images thus printed. , which, of course, detracts from the sharpness of the image ultimately formed on the print medium.

Pour remédier à ces inconvénients, on a proposé un procédé d'impression magnétographique qui a été décrit dans le brevet des Etats Unis d'Amérique N° 3 965 478, et qui consiste à former sur la surface de l'élément d'enregistrement une pluralité d'aires élémentaires magnétisées, l'ensemble de ces aires élémentaires constituant une image magnétique latente, chacune de ces aires élémentaires étant obtenue en excitant une tête d'enregistrement magnétique au moyen d'un courant électrique dont la fréquence est choisie en fonction de la couleur que doit donner cette aire élémentaire lorsqu'elle est développée, les dimensions et la force d'attraction magnétique de cette aire élémentaire étant d'ailleurs déterminées par la valeur de la fréquence utilisée. Dans ce procédé, le développement de l'image latente formée sur l'élément d'enregistrement est réalisé au moyen d'un seul révélateur contenant des particules de différentes couleurs et de différentes grosseurs, les particules de même grosseur étant cependant toutes d'une même couleur. Lors du développement de l'image latente, les particules qui ont une grosseur déterminée (et par conséquent une couleur donnée) sont attirées préférentiellement par les aires élémentaires dont les dimensions répondent à une force d'attraction donnée, de sorte que, après développement, chaque aire élémentaire est recouverte de particules dont la couleur correspond à la fréquence que a été utilisée pour former cette aire élémentaire.To overcome these drawbacks, a magnetographic printing process has been proposed which has been described in US Pat. No. 3,965,478, which consists in forming on the surface of the recording element a plurality of magnetized elementary areas, all of these elementary areas constituting a latent magnetic image, each of these elementary areas being obtained by exciting a magnetic recording head by means of an electric current whose frequency is chosen as a function of the color which this elementary area must give when it is developed, the dimensions and the magnetic attraction force of this elementary area being moreover determined by the value of the frequency used. In this method, the development of the latent image formed on the recording element is carried out by means of a single developer containing particles of different colors and of different sizes, the particles of the same size being however all of a same colour. During the development of the latent image, the particles which have a determined size (and consequently a given color) are preferentially attracted by the elementary areas whose dimensions correspond to a given force of attraction, so that, after development, each elementary area is covered with particles whose color corresponds to the frequency that was used to form this elementary area.

Pour la mise en oeuvre d'un tel procédé, il est cependant nécessaire d'utiliser un révélateur dont les particules, de différentes couleurs et de différentes grosseurs, doivent être soigneusement calibrées, les particules de même couleur devant en effet avoir toutes rigoureusement la même grosseur. De plus, ces particules doivent être conditionnées pour ne pas s'agglomérer entre elles, sous peine de provoquer des erreurs de teinte lors du développement de l'image latente magnétique. Dans ces conditions, la fabrication d'un tel révélateur est particulièrement longue, délicate et relativement coûteuse. D'autre part, étant donné que, suivant la couleur qui leur est attribuée, les aires élémentaires formées sur l'élément d'enregistrement n'ont pas toutes les mêmes dimensions, les images ou portions d'image dont la teinte correspond aux aires élémentaires de grandes dimensions présentent une définition, c'est-à-dire un degré de finesse, moins bonne que cells dont la teinte correspond aux aires élémentaires de petites dimensions. Enfin, alors que les aires élémentaires de petites dimensions sont capables, lors du développement, de n'attirer que les particules les moins grosses du révélateur, il est impossible d'empêcher que les aires élémentaires de grandes dimensions attirent, non seulement les grosses particules du révélateur, mais également les particules plus petites, ce qui, naturellement, provoque une altération des couleurs.For the implementation of such a process, it is however necessary to use a developer, the particles of which, of different colors and of different sizes, must be carefully calibrated, the particles of the same color having in fact all to be strictly the same. size. In addition, these particles must be conditioned so as not to agglomerate between them, on pain of causing color errors during the development of the latent magnetic image. Under these conditions, the manufacture of such a developer is particularly long, delicate and relatively expensive. On the other hand, given that, depending on the color assigned to them, the elementary areas formed on the recording element do not all have the same dimensions, the images or image portions whose hue corresponds to the areas elementary elements of large dimensions have a definition, that is to say a degree of finesse, less good than cells whose hue corresponds to elementary areas of small dimensions. Finally, while the elementary areas of small dimensions are capable, during development, of attracting only the smallest particles of the developer, it is impossible to prevent that the elementary areas of large dimensions attract not only the large particles. of the developer, but also the smaller particles, which naturally causes color change.

La présente invention remédie à ces inconvénients et propose un procédé d'impression magnétographique ainsi qu'une machine utilisant ce procédé, qui permet d'obtenir sur un support d'impression, en un temps relativement réduit, des images bicolores de haute qualité, tout en ne nécessitant que deux révélateurs présentant le même état granulométrique et les mêmes caractéristiques magnétiques.The present invention overcomes these drawbacks and proposes a magnetographic printing method as well as a machine using this method, which makes it possible to obtain on a printing medium, in a relatively short time, high quality two-color images, while requiring only two developers having the same particle size and the same magnetic characteristics.

Plus précisément, l'invention concerne un procédé d'impression magnétographique consistant à magnétiser la surface d'un élément d'enregistrement magnétique, suivant une direction perpendiculaire à cette surface, de façon à former un ensemble de points magnétisés constituant une image latente magnétique, à déposer ensuite sur cette surface un révélateur pulvérulent établi pour ne rester appliqué que sur les points magnétisés de ladite surface et former ainsi une image de poudre, et à transférer enfin cette image de poudre sur un support d'impression, ledit procédé étant caractérisé en ce que, pour permettre d'obtenir sur ce support une image en deux couleurs préalablement choisies, il consiste:

  • - magnétiser d'abord la surface de l'élément d'enregistrement pour former des points magnétisés présentant des intensités d'aimantation d'amplitudes différentes et de polarités magnétiques opposées, les points magnétisés destinés à la formation des parties d'image qui, sur le support, doivent apparaître en l'une desdites couleurs ayant tous des intensités d'aimantation de même amplitude Ji et de même sens, la polarité magnétique de ces points étant opposée à celle des autres points magnétisés, ces autres points magnétisés ayant tous des intensités d'aimantation de même amplitude J2 telle que J2< J↑,
  • -à déposer sur cette surface un premier révélateur pulvérulent dont la teinte est celle de la première desdites couleurs;
  • -à éliminer ce premier révélateur de cette surface, à l'exception des points magnétisés dont l'intensité d'aimantation est égale à Ji,
  • - à déposer sur cette surface un second révélateur pulvérulent dont la teinte est celle de la seconde desdites couleurs ayont cependant les mêmes propriétés physiques que le premier révélateur,
  • - à éliminer en partie ce second révélateur de cette surface tout en soumettant cette dernière à l'action d'un champ magnétique constant orienté en sens inverse de l'intensité d'aimantation J1, l'amplitude de ce champ magnétique ayant une valeur telle que les intensités d'aimantations des points magnétisés se trouvent modifiées et prennent pratiquement la même valeur, de sorte que ce second révélateur est éliminé de cette surface, à l'exception des points magnétisés dont l'intensité d'aimantation était égale à J2, chacun de ces derniers points étant ainsi recouvert d'une seule couche dudit second révélateur, tandis que chacun des autres points magnétisés se trouve recouvert d'une seule couche dudit premier révélateur,
  • - et à effectuer, enfin, un transfert de toutes ces couches de révélateurs sur le support d'impression.
More specifically, the invention relates to a magnetographic printing method consisting in magnetizing the surface of a magnetic recording element, in a direction perpendicular to this surface, so as to form a set of magnetized dots constituting a magnetic latent image, then depositing on this surface a powdery developer established to remain applied only on the magnetized points of said surface and thus form a powder image, and finally transferring this powder image on a printing medium, said method being characterized in what, to make it possible to obtain an image in two previously chosen colors, it consists of:
  • - first magnetize the surface of the recording element to form magnetized points having magnetization intensities of different amplitudes and opposite magnetic polarities, the magnetized points intended for the formation of the image parts which, on the support, must appear in one of said colors all having magnetization intensities of the same amplitude J i and of the same direction, the magnetic polarity of these points being opposite to that of the other magnetized points, these other magnetized points all having magnetization intensities of the same amplitude J 2 such that J2 <J ↑,
  • to deposit on this surface a first powdery developer, the color of which is that of the first of said colors;
  • -to eliminate this first developer from this surface, with the exception of magnetized points whose magnetization intensity is equal to J i ,
  • - depositing on this surface a second powdery developer, the color of which is that of the second of said colors, however, have the same physical properties as the first developer,
  • - to partially eliminate this second developer from this surface while subjecting the latter to the action of a constant magnetic field oriented in the opposite direction to the magnetization intensity J 1 , the amplitude of this magnetic field having a value such that the magnetization intensities of the magnetized points are modified and take practically the same value, so that this second developer is eliminated from this surface, with the exception of the magnetized points whose magnetization intensity was equal to J 2 , each of these latter points thus being covered with a single layer of said second developer, while each of the other magnetized points is covered with a single layer of said first developer,
  • - And to carry out, finally, a transfer of all these layers of developers on the printing medium.

L'invention concerne aussi une machine d'impression magnétographique pour la mise en oeuvre du procédé indiqué ci-dessus, cette machine comprenant un élément d'enregistrement pourvu d'une surface d'enregistrement magnétique, une pluralité de têtes magnétiques commandées par des impulsions électriques et établies pour, en réponse à ces impulsions, magnétiser ladite surface suivant une direction perpendiculaire à celle-ci pour former sur cette surface un ensemble de points magnétisés constituant une image magnétique latente, des moyens d'entraînement pour provoquer un déplacement relatif entre l'élément d'enregistrement et les têtes magnétiques, une source d'impulsions établie pour envoyer sélectivement des impulsions électriques auxdites têtes, un dispositif applicateur permettant de déposer un révélateur pulvérulent sur ladite surface d'enregistrement, ce révélateur ne restant appliqué que sur les points magnétisés de cette surface pour former une image de poudre, et un poste de transfert pour transférer ladite image de poudre sur un support d'impression, ladite machine étant caractérisée en ce que, ledit révélateur, dit premier révélateur, comprenant des particules dont la teinte est de l'une des deux couleurs préalablement choisies, elle comprend en outre:

  • - des moyens de calibrage et d'inversion de courant interposés entre les têtes magnétiques et la source d'impulsions pour, d'une part inverser sélectivement le sens du courant des impulsions envoyées par ladite source, d'autre part permettre à chacune de ces impulsions d'être ajustée sélectivement à l'une de deux valeurs d'amplitude prédéterminées et former ainsi sur la surface d'enregistrement une image magnétique latente dont les points magnétisés présentent des intensités d'aimantation d'amplitudes différentes et de polarités magnétiques opposées, les points magnétisés destinés à la formation des parties d'image qui, sur le support, doivent apparaître en l'une desdites couleurs ayant tous des intensités d'aimantation de même amplitude J1 et de même sens, la polarité magnétique de ces points étant opposée à celle des autres points magnétisés, ces autres points magnétisés ayant tous des intensités d'aimantation de même amplitude J2 telle que J2<J1,
  • - un premier dispositif de retouche placé, par rapport au sens de déplacement de la surface, en aval dudit dispositif applicateur et établi pour retirer ledit premier révélateur des points magnétisés dont l'intensité d'aimantation est inférieure à Ji,
  • - un second dispositif applicateur disposé entre le poste de transfert et le premier dispositif applicateur pour déposer un second révélateur pulvérulen sur ladite surface d'enregistrement, ce second révélateur comprenant des particules dont la teinte, est celle de l'autre desdites couleurs ayant cependant les mêmes propriétés physiques que le premier révélateur, ledit second révélateur ne restant appliqué que sur les points magnétisés de ladite surface,
  • - et un second dispositif de retouche placé en aval dudit second dispositif applicateur et comprenant un dispositif générateur de champ magnétique pour appliquer un champ magnétique constant à ladite surface d'enregistrement, ce champ étant orienté en sens inverse de l'intensité d'aimantation J1, l'amplitude de ce champ étant établie pour modifier les amplitudes des intensités d'aimantation des points magnétisés et les rendre pratiquement égales lorsque ces points magnétisés passent devant ledit second dispositif de retouche, de sorte que, après ce passage, chacun des points magnétisés dont l'intensité d'aimantation était égale à J2 est revêtu d'une seule couche du second révélateur alors que chacun des points magnétisés dont l'intensité d'aimantation était égale à J1 est recouvert d'une seule couche du premier révélateur, ces deux révélateurs formant ainsi une image de poudre en deux couleurs sur la surface d'enregistrement.
The invention also relates to a magnetographic printing machine for implementing the method indicated above, this machine comprising a recording element provided with a magnetic recording surface, a plurality of magnetic heads controlled by pulses. electric and established to, in response to these pulses, magnetize said surface in a direction perpendicular thereto to form on this surface a set of magnetized points constituting a latent magnetic image, drive means for causing a relative displacement between the recording element and the magnetic heads, a source of pulses established for selectively sending electrical pulses to said heads, an applicator device making it possible to deposit a powdery developer on said recording surface, this developer remaining applied only to the points magnetized from this surface to form a powder image, and a transfer station ert for transferring said image of powder onto a printing medium, said machine being characterized in that, said developer, said first developer, comprising particles whose hue is one of the two colors previously chosen, it further comprises :
  • - means for calibrating and reversing current interposed between the magnetic heads and the pulse source for, on the one hand selectively reversing the direction of the current of the pulses sent by said source, on the other hand allowing each of these pulses to be selectively adjusted to one of two predetermined amplitude values and thus form on the recording surface a latent magnetic image, the magnetized points of which have magnetization intensities of different amplitudes and of opposite magnetic polarities, the magnetized points intended for the formation of the image parts which, on the support, must appear in one of said colors all having magnetization intensities of the same amplitude J 1 and of the same direction, the magnetic polarity of these points being opposite to that of the other magnetized points, these other magnetized points all having magnetization intensities of the same amplitude J 2 such that J 2 <J 1 ,
  • a first retouching device placed, with respect to the direction of movement of the surface, downstream of said applicator device and established to remove said first developer from magnetized points whose magnetization intensity is less than J i ,
  • - a second applicator device disposed between the transfer station and the first device applicator for depositing a second powder developer on said recording surface, this second developer comprising particles whose color is that of the other of said colors, however having the same physical properties as the first developer, said second developer only remaining applied on the magnetized points of said surface,
  • - And a second retouching device placed downstream of said second applicator device and comprising a magnetic field generating device for applying a constant magnetic field to said recording surface, this field being oriented in the opposite direction to the magnetization intensity J 1 , the amplitude of this field being established to modify the amplitudes of the magnetization intensities of the magnetized points and make them practically equal when these magnetized points pass in front of said second retouching device, so that, after this passage, each of the points magnetized whose magnetization intensity was equal to J 2 is coated with a single layer of the second developer while each of the magnetized points whose magnetization intensity was equal to J 1 is covered with a single layer of the first developer, these two developers thus forming a powder image in two colors on the recording surface.

L'invention sera mieux comprise et d'autres buts, détails et avantages de celle-ci apparaîtront mieux dans la description suivante, donnée à titre d'exemple non limitatif et en se référant aux dessins annexés sur lesquels:

  • - Les figures 1A à 1F: illustrent les différentes phases du procédé d'impression magnétographique selon l'invention;
  • - La figure 2: représente un mode de réalisation d'une machine imprimante qui met en oeuvre le procédé d'impression de l'invention;
  • - La figure 3: est une vue montrant le principe de magnétisation transversal de l'élément d'enregistrement faisant partie de la machine représentée sur la figure 2,
  • - La figure 4: représente un schéma des circuits électriques utilisés pour commander les différentes têtes magnétiques d'enregistrement de la machine représentée à la figure 2,
  • - La figure 5: est une vue montrant la disposition de points magnétisés qui ont été formés sur l'élément d'enregistrement pour constituer l'image magnétique latente d'un caractère,
  • - La figure 6: montre des courbes illustrant la façon dont varie la force d'attraction magnétique exercée par chaque point magnétisé, avant et après l'application du champ magnétique constant qui est utilisé dans le procédé de l'invention;
  • - et la figure 7: représente la structure du poste de transfert de la machine représentée sur la figure 2.
The invention will be better understood and other objects, details and advantages thereof will appear better in the following description, given by way of nonlimiting example and with reference to the appended drawings in which:
  • - Figures 1A to 1F: illustrate the different phases of the magnetographic printing process according to the invention;
  • - Figure 2: shows an embodiment of a printing machine which implements the printing method of the invention;
  • FIG. 3: is a view showing the principle of transverse magnetization of the recording element forming part of the machine shown in FIG. 2,
  • FIG. 4: represents a diagram of the electrical circuits used to control the different magnetic recording heads of the machine represented in FIG. 2,
  • FIG. 5: is a view showing the arrangement of magnetized points which have been formed on the recording element to constitute the latent magnetic image of a character,
  • - Figure 6: shows curves illustrating how varies the magnetic attraction force exerted by each magnetized point, before and after the application of the constant magnetic field which is used in the method of the invention;
  • - And Figure 7: shows the structure of the machine transfer station shown in Figure 2.

La figure 1A montre, en coupe agrandie, un élément d'enregistrement magnétique 10, de type connu, qui peut être utilisé pour la mise en oeuvre du procédé de l'invention. On considèrera, dans l'exemple décrit, que cet élément d'enregistrement magnétique est de type analogue à celui qui a été décrit et représenté dans le brevet français N° 2.402.921 et qu'il comprend un support 11 formé d'un matériau présentant une haute perméabilité magnétique, tel que le fer ou l'acier doux, ce support étant revêtu d'une couche 12 de matériau magnétique à haute coercivité tel que, par exemple, l'alliage magnétique nickel-cobalt. Dans le mode de mise en oeuvre du procédé d'impression selon l'invention, cet élément d'enregistrement 10 est magnétisé transversalement au moyen d'une ou plusieurs têtes d'enregistrement 13 du type de celle qui a été représentée sur la figure 3. Si on se réfère à la figure 3, on voit que cette tête d'enregistrement 13 comprend un noyau magnétique 14 sur lequel est bobiné un enroulement E connecté à un circuit d'excitation électrique qui sera décrit un peu plus loin. Ce noyau magnétique 14 a sensiblement la forme d'un U et il est profilé de manière à présenter à ses extrémités un pôle d'enregistrement 15 et un pôle de fermeture de flux 16. Ces deux pôles sont disposés, comme le montre la figure 3, à proximité de la surface de la couche magnétique 12, de sorte que le noyau magnétique 14, le support 11 et les deux régions 100 et 101 qui sont comprises entre ce noyau et ce support et qui sont situées à l'aplomb des pôles 15 et 16 forment un circuit magnétique fermé. Il faut signaler ici que, bien que dans le cas illustré par la figure 3, les pôles 15 et 16 se trouvent à proximité de la surface de la couche magnétique 12, on pourrait adopter une autre disposition dans laquelle ces deux pôles seraient placés au contact de cette surface.FIG. 1A shows, in enlarged section, a magnetic recording element 10, of known type, which can be used for implementing the method of the invention. It will be considered, in the example described, that this magnetic recording element is of a type analogous to that which has been described and represented in French patent No. 2,402,921 and that it comprises a support 11 formed of a material having a high magnetic permeability, such as iron or mild steel, this support being coated with a layer 12 of magnetic material with high coercivity such as, for example, the nickel-cobalt magnetic alloy. In the embodiment of the printing method according to the invention, this recording element 10 is magnetized transversely by means of one or more recording heads 13 of the type which has been represented in FIG. 3 Referring to FIG. 3, it can be seen that this recording head 13 comprises a magnetic core 14 on which is wound a winding E connected to an electrical excitation circuit which will be described a little later. This magnetic core 14 has substantially the shape of a U and it is profiled so as to present at its ends a recording pole 15 and a flux closing pole 16. These two poles are arranged, as shown in FIG. 3 , near the surface of the magnetic layer 12, so that the magnetic core 14, the support 11 and the two regions 100 and 101 which are included between this core and this support and which are located directly above the poles 15 and 16 form a closed magnetic circuit. It should be noted here that, although in the case illustrated in Figure 3, the poles 15 and 16 are located near the surface of the magnetic layer 12, we could adopt another arrangement in which these two poles would be placed in contact of this surface.

La figure 3 montre encore qui la largeur d d'un pôle d'enregistrement 15 est très petite par rapport à celle D du pôle de fermeture de flux 16. Dans ces conditions, si on envoie dans l'enroulement E un courant électrique d'intensitéFIG. 3 also shows that the width d of a recording pole 15 is very small compared to that D of the flux closing pole 16. Under these conditions, if an electric current is sent to winding E intensity

I, ce courant crée, à l'intérieur du noyau magnétique 14, un flux magnétique dont la ligne de force moyenne est représentée par la ligne de traits interrompus 17. Dans la portion de la couche magnétique 12 qui se trouve dans la région 100 du pôle d'enregistrement 15, le champ magnétique est perpendiculaire à la surface de cette couche 12, de sorte que dans cette portion, la magnétisation de la couche magnétique 12 s'effectue bien transversalement. Dans cette portion, le champ magnétique crée par la tête 13 provoque l'apparition d'une zone magnétisée pratiquement ponctuelle habituellement appelée point magnétisé, cette zone magnétisée subsistant même lorsque l'enroulement E cesse ensuite d'être parcouru par un courant. Au contraire, dans la portion de la couche magnétique 12 qui se trouve dans la région 101 du pôle de fermeture de flux 16, du fait que la largeur de ce pôle 16 est bien plus grande que celle du pôle d'enregistrement 15, la valeur du champ magnétique créé par la tête 13 est très inférieure à celle du champ de saturation de la couche magnétique 12, si bien que ce pôle de fermeture de flux 16 ne peut provoquer, ni la formation d'une zone magnétisée dans la couche 12, ni une modification des zones magnétisés déjà formées dans cette couche. Dans ces conditions, on peut magnétiser la couche magnétique 12 de manière que les zones magnétisées ainsi formées constituent une image magnétique latente ayant une configuration déterminée, par exempte la configuration d'un caractère. A titre d'exemple, on a représenté sur la figure 5 un ensemble de zones magnétisées A disposées suivant une matrice rectangulaire comprenant sept lignes et cinq colonnes et réparties à l'intérieur de cette matrice de façon à constituer l'image du caractère "H". Il faut signaler ici que le pas P d'espacement des lignes et des colonnes de cette matrice est au moins égal à la dimension transversale L d'une zone magnétisée. Dans ces conditions, on a trouvé que, même dans le cas où ce pas P était sensiblement égal à cette dimension L, les aimantations présentées par deux zones magnétisées voisines n'avaient pratiquement aucune influence l'une sur l'autre. On rappelle maintenant que, dans les procédés connus, l'image de l'élément d'enregistrement est ensuite développée en déposant sur la surface de la couche magnétique 12 un révélateur pulvérulent comprenant des particules finement divisées formées chacune d'une résine organique thermoplastique dans laquelle ont été incorporés un pigment et des particules magnétiques. Après quoi, la surface de la couche magnétique 12 est soumise à une opération de retouche qui permet d'éliminer les particules de révélateurs se trouvant en excès sur cette surface, de sorte que, à la fin de cette opération, seules les zones magnétisées de cette couche restent recouvertes d'une pellicule de révélateur, formant ainsi sur la surface de la couche 12 une image de poudre dont la configuration correspond à celle des zones magnétisées. Cette image de poudre est ensuite transférée sur un support d'impression constitué, généralement, par une bande de papier. Dans la présente invention, au contraire, afin que l'image qui est formée sur le support d'impression apparaisse en l'une et l'autre de deux couleurs préalablement choisies, on utilise le procédé suivant dont les différentes phases vont être maintenant décrites en se référant aux figures 1A à 1E.I, this current creates, inside the magnetic core 14, a magnetic flux whose line of average force is represented by the line of dashed lines 17. In the portion of the magnetic layer 12 which is in the region 100 of the recording pole 15, the magnetic field is perpendicular to the surface of this layer 12, so that in this portion, the magnetization of the magnetic layer 12 takes place transversely. In this portion, the magnetic field created by the head 13 causes the appearance of a practically point magnetized zone usually called magnetized point, this magnetized zone remaining even when the winding E then ceases to be traversed by a current. On the contrary, in the portion of the magnetic layer 12 which is in the region 101 of the flux closure pole 16, because the width of this pole 16 is much greater than that of the recording pole 15, the value of the magnetic field created by the head 13 is much less than that of the saturation field of the magnetic layer 12, so that this closing pole flux 16 can neither cause the formation of a magnetized zone in the layer 12, nor a modification of the magnetized zones already formed in this layer. Under these conditions, the magnetic layer 12 can be magnetized so that the magnetized zones thus formed constitute a latent magnetic image having a determined configuration, for example the configuration of a character. By way of example, FIG. 5 shows a set of magnetized zones A arranged in a rectangular matrix comprising seven rows and five columns and distributed inside this matrix so as to constitute the image of the character "H ". It should be noted here that the spacing pitch P of the rows and columns of this matrix is at least equal to the transverse dimension L of a magnetized area. Under these conditions, it has been found that, even in the case where this pitch P was substantially equal to this dimension L, the magnetizations presented by two neighboring magnetized zones had practically no influence on each other. It will now be recalled that, in known methods, the image of the recording element is then developed by depositing on the surface of the magnetic layer 12 a powdery developer comprising finely divided particles each formed from an organic thermoplastic resin in which have incorporated a pigment and magnetic particles. After which, the surface of the magnetic layer 12 is subjected to a retouching operation which makes it possible to remove the developer particles which are in excess on this surface, so that, at the end of this operation, only the magnetized areas of this layer remains covered with a developer film, thus forming on the surface of layer 12 a powder image whose configuration corresponds to that of the magnetized zones. This powder image is then transferred to a printing medium generally consisting of a strip of paper. In the present invention, on the contrary, so that the image which is formed on the printing medium appears in both of two previously chosen colors, the following method is used, the different phases of which will now be described with reference to Figures 1A to 1E.

Dans la phase illustrée par la figure 1A, l'élément d'enregistrement 10 est magnétisé de façon à former à sa surface des zones magnétisées qui ont toutes les mêmes dimensions et qui présentent des intensités d'aimantations d'amplitudes différentes et de polarités magnétiques opposées. Sur la figure 1A, deux seulement de ces zones, référencées A1 et A2, ont été représentées pour des raisons de simplification, mais il est entendu que le nombre de ces zones magnétisées peut être absolument quelconque. Sur la figure 1A, on a également représenté les polarités magnétiques nord (N) et sud (S), ainsi que les aimantations respectives J1 et J2 des zones A1 et A2, chacune de ces aimantations étant représentées par une flèche dont la longueur est proportionnelle à la valeur de cette aimantation. On voit alors sur la figure 1A, que les aimantations J1 et J2 des zones A1 et A2 ont des valeurs différentes et qu'elles sont orientées en sens inverse l'une de l'autre, de sorte que la polarité magnétique que présente la zone A1 sur la surface de l'élément d'enregistrement 10, c'est-à-dire ici une polarité sud (S), est opposée à celle que présente la zone A2 sur cette même surface, c'est-à-dire ici une polarité nord (N). On voit par ailleurs que, dans l'exemple illustré par la figure 1A, l'aimantation J1 dela zone A1 est supérieure à l'aimantation J2 de la zone A2. D'une manière générale, les zones magnétisées qui sont destinées à former, sur le support d'impression, des images ou parties d'images devant apparaître en l'une des deux couleurs choisies présentent des aimantations qui ont toutes la même valeur J1 et qui sont toutes orientées dans le même sens. Cependant l'aimantation de ces zones est orientée en sens inverse des aimantations des autres zones magnétisées qui sont destinées à former, sur ce support, des images ou parties d'image devant apparaître en l'autre couleur. Les aimantations de ces autres zones ont toutes la même valeur J2, J2 étant différente de J1. C'est ainsi que les zones A1 et A2 qui ont été représentées sur la figure 1A et qui ont des aimantations de valeurs différentes et de sens opposés, sont destinées à former sur le papier d'impression deux taches ponctuelles de couleurs différentes. On considèrera, par exemple, que la zone magnétisée A1 est destinée à former une tache ponctuelle de couleur rouge et que la zone magnétisée A2 est destinée à former une tache ponctuelle de couleur noire. Pour former les deux zones magnétisées A1 et A2 on peut utiliser deux têtes d'enregistrement identiques, du type de celle qui a été représentée sur la figure 3, et exciter ces deux têtes avec des courants d'intensités différentes et tels que le sens dans lequel circule le courant dans l'enroulement de la première tête soit inverse de celui dans lequel circule le courant dans l'enroulement de la seconde tête.In the phase illustrated in FIG. 1A, the recording element 10 is magnetized so as to form on its surface magnetized zones which all have the same dimensions and which have magnetization intensities of different amplitudes and magnetic polarities opposite. In FIG. 1A, only two of these zones, referenced A1 and A2, have been shown for reasons of simplification, but it is understood that the number of these magnetized zones can be absolutely arbitrary. FIG. 1A also shows the north (N) and south (S) magnetic polarities, as well as the respective magnetizations J 1 and J 2 of the areas A1 and A2, each of these magnetizations being represented by an arrow whose length is proportional to the value of this magnetization. It can then be seen in FIG. 1A, that the magnetizations J 1 and J 2 of the zones A1 and A2 have different values and that they are oriented in opposite directions to each other, so that the magnetic polarity that presents zone A1 on the surface of the recording element 10, that is to say here a south polarity (S), is opposite to that which zone A2 has on this same surface, that is to say say here a north polarity (N). It can also be seen that, in the example illustrated in FIG. 1A, the magnetization J 1 of the zone A1 is greater than the magnetization J 2 of the zone A2. In general, the magnetized zones which are intended to form, on the printing medium, images or parts of images which must appear in one of the two colors chosen have magnetizations which all have the same value J 1 and which are all oriented in the same direction. However, the magnetization of these zones is oriented in the opposite direction to the magnetizations of the other magnetized zones which are intended to form, on this support, images or image parts which must appear in the other color. The magnetizations of these other zones all have the same value J 2 , J 2 being different from J 1 . Thus the areas A1 and A2 which have been shown in FIG. 1A and which have magnetizations of different values and of opposite directions, are intended to form on the printing paper two punctual spots of different colors. We will consider, for example, that the magnetized area A1 is intended to form a point spot of red color and that the magnetized area A2 is intended to form a point spot of black color. To form the two magnetized zones A1 and A2, it is possible to use two identical recording heads, of the type which has been represented in FIG. 3, and to excite these two heads with currents of different intensities and such that the direction in which circulates the current in the winding of the first head is inverse to that in which the current flows in the winding of the second head.

L'élément d'enregistrement 10 ayant été magnétisé de la manière qui vient d'être indiquée, on dépose alors sur la surface de cet élément un premier révélateur pulvérulent dont la teinte est de l'une des deux couleurs choisies. Dans l'exemple décrit, on considérera que ce premier, révélateur pulvérulent est de couleur rouge.The recording element 10 having been magnetized in the manner which has just been indicated, a first powdery developer is then deposited on the surface of this element, the tint of which is one of the two colors chosen. In the example described, it will be considered that this first, powdery developer is red in color.

Ce premier révélateur, qui est mis en contact avec toute la surface de l'élément d'enregistrement 10, n'est cependant attiré que par les zones magnétisées de cet élément, de sorte que, si on s'arrange pour ne laisser subsister ce révélateur que sur ces zones magnétisées, par exemple en disposant l'élément d'enregistrement de manière que, au moment de l'application de ce révélateur sur cet élément, chaque particule de révélateur soit soumise, d'une part à l'action de la force d'attraction magnétique exercée par les zones magnétisées, d'autre part à l'action d'une force de gravité orientée en sens inverse de cette force d'attraction magnétique, chacune de ces zones magnétisées se trouve alors revêtue, comme le montre la figure 1B, d'une couche 18 du premier révélateur, l'épaisseur de cette couche étant d'autant plus importante que la force d'attraction magnétique exercée par la zone magnétisée sur laquelle cette couche est déposée est plus élevée. Il faut signaler en effet que la force avec laquelle est attirée chacune des particules de révélateur qui ont été déposées sur une même zone magnétisée dépend, non seulement de la valeur de l'aimantation J de cette zone et de la distance h qui sépare chaque particule de cette zone, mais également des caractéristiques physiques de ce révélateur, telles que l'état granulométrique et le pourcentage en particules magnétiques de ce révélateur. Pour un révélateur donné, la force magnétique qui s'exerce sur une particule de révélateur qui a été déposée sur une zone magnétisée est d'autant plus grande que la valeur de l'aimantation J de cette zone est plus élevée. Par ailleurs, cette force d'attraction magnétique est d'autant plus petite que la distance h qui sépare cette particule de cette zone est plus grande, les variations de cette force magnétique Fm en fonction de cette distance h étant illustrées par les courbes qui ont été représentées sur la figure 6. Sur cette figure 6, la courbe en traits interrompus 81 représente les variations, en fonction de h, de la force d'attraction magnétique exercée par la zone magnétisée A1, d'aimantation Ji. De même, la courbe en traits mixtes 82 représente les variations, en fonction de h, de la force d'attraction magnétique exercée par la zone magnétisée A2, d'aimantation J2. Sur la figure 6, on a également représenté la valeur FG de la force de gravité dont on a parlé plus haut, cette force s'exerçant sur chaque particule de révélateur lors de l'application de ce révélateur sur la surface de l'élément d'enregistrement. On voit alors qu'il existe, pour chacune des zones magnétisées A1 et A2, une valeur de la distance h pour laquelle cette force de gravité FG est égale à la force d'attraction magnétique exercée par chacune de ces zones, cette valeur particulière déterminant ainsi l'épaisseur de la couche de révélateur subsistant sur cette zone. Etant donné que, dans l'exemple décrit, la force magnétique exercée en un point donné par la zone A1 est plus grande que celle exercée en ce point par la zone A2, la valeur particulière eo pour laquelle la force magnétique exercée par A1 est égale à FG est supérieure à celle e'o pour laquelle la force magnétique exercée par A2 est égale à FG. La figure 6 montre que, dans l'exemple décrit, eo est sensiblement égal à 87 µm alors que e'o est sensiblement égal à 77 µm, ces valeurs déterminant les épaisseurs respectives des couches 18 de premier révélateur qui ont été déposées sur les zones magnétisées A1 et A2.This first developer, which is brought into contact with the entire surface of the recording element 10, is however only attracted by the magnetized zones of this element, so that, if we manage to leave this revealing that on these areas magnetized, for example by arranging the recording element so that, when this developer is applied to this element, each developer particle is subjected, on the one hand to the action of the attraction force magnetic exerted by the magnetized zones, on the other hand to the action of a gravity force oriented in opposite direction to this magnetic attraction force, each of these magnetized zones is then coated, as shown in FIG. 1B, of a layer 18 of the first developer, the thickness of this layer being all the greater the higher the magnetic attraction force exerted by the magnetized zone on which this layer is deposited. It should be pointed out that the force with which each of the developer particles which have been deposited on the same magnetized zone is attracted depends not only on the value of the magnetization J of this zone and on the distance h which separates each particle. of this zone, but also of the physical characteristics of this developer, such as the particle size state and the percentage of magnetic particles of this developer. For a given developer, the magnetic force exerted on a developer particle which has been deposited on a magnetized area is all the greater the higher the value of the magnetization J of this area. Furthermore, this magnetic attraction force is all the smaller the greater the distance h which separates this particle from this zone, the variations of this magnetic force Fm as a function of this distance h being illustrated by the curves which have have been shown in FIG. 6. In this FIG. 6, the dashed line curve 81 represents the variations, as a function of h, of the magnetic attraction force exerted by the magnetized zone A1, of magnetization J i . Likewise, the dashed line curve 82 represents the variations, as a function of h, of the magnetic attraction force exerted by the magnetized zone A2, of magnetization J 2 . In FIG. 6, the value F G of the force of gravity mentioned above has also been shown, this force being exerted on each particle of developer during the application of this developer on the surface of the element. registration. We then see that there exists, for each of the magnetized zones A1 and A2, a value of the distance h for which this force of gravity F G is equal to the force of magnetic attraction exerted by each of these zones, this particular value thus determining the thickness of the developer layer remaining on this area. Since, in the example described, the magnetic force exerted at a given point by zone A1 is greater than that exerted at this point by zone A2, the particular value e o for which the magnetic force exerted by A1 is equal to F G is greater than that e ' o for which the magnetic force exerted by A2 is equal to F G. FIG. 6 shows that, in the example described, e o is substantially equal to 87 μm while e ′ o is substantially equal to 77 μm, these values determining the respective thicknesses of the layers 18 of first developer which have been deposited on the magnetized zones A1 and A2.

Les zones magnétisées de l'élément d'enregistrement ayant été ainsi revêtues d'une couche 18 de premier révélateur, on soumet alors cet élément d'enregistrement 10 à une opération de retouche destinée, non seulement à éliminer les particules résiduelles de premier révélateur subsistant en dehors des zones magnétisées de cet élément, mais également à retirer toutes les particules de premier révélateur sur toutes les zones magnétisées qui, telles que A2, ont la plus petite des deux valeurs d'aimantations J1 et J2. Lors ce cette opération de retouche, qui peut être effectuée par voie électrostatique ou pneumatique (aspiration ou soufflage d'air) chaque particule de révélateur subsistant sur la surface de l'élément d'enregistrement 10 est soumise à une force constante, de valeur F, qui s'exerce à l'encontre de la force magnétique Fm qui maintient chaque particule appliquée sur la zone magnétisée sur laquelle elle a été déposée. Sur le diagramme de la figure 6 la valeur F1 de cette force a été représentée, cette valeur F1 étant choisie de manière que la droite d'ordonnée F1 ne coupe que la courbe 81. Sur la figure 6, on a également désigné par l'abscisse du point d'intersection I1 de la courbe 81 avec la droite d'ordonnée Fi. On voit ainsi que, pour les particules de révélateur qui ont été déposées sur chacune des zones magnétisées de plus grande aimantation (telles que Al) et qui sont situées à une distance inférieure à e,, la force magnétique exercée par cette zone est supérieure à la force de retouche F,, de sorte que ces particules subsisteront sur cette zone. Au contraire, pour les particules qui, sur chacune des zones magnétisées de plus grande aimantation, sont situées à une distance supérieure à ei, la force magnétique exercée par cette zone est inférieure à la force de retouche F1, de sorte que ces particules seront éliminées de cette zone. En conséquence, sur chacune des zones magnétisées de plus grande aimantation, (telles que A1), il subsistera une couche de premier révélateur ayant pratiquement une épaisseur égale à e1. Quant aux particules de premier révélateur qui ont été déposées sur chacune des zones magnétisées de plus faible aimantation (telles que A2), étant donné que la force magnétique exercée par chacune de ces zones magnétisées est toujours inférieure à la force de retouche Fi, ces particules seront totalement éliminées de ces zones. Dans ces conditions, seules les zones magnétisées de plus forte aimantation (telles que Al) apparaîtront revêtues, comme on peut le voir sur la figure 1C, d'une couche de premier révélateur d'épaisseur e1.The magnetized areas of the recording element having thus been coated with a layer 18 of first developer, this recording element 10 is then subjected to a retouching operation intended, not only to remove the residual particles of first developer remaining outside the magnetized zones of this element, but also to remove all the particles of first developer on all the magnetized zones which, such as A2, have the smaller of the two magnetization values J 1 and J 2 . During this retouching operation, which can be carried out by electrostatic or pneumatic means (suction or blowing of air) each particle of developer remaining on the surface of the recording element 10 is subjected to a constant force, of value F , which is exerted against the magnetic force F m which keeps each particle applied to the magnetized area on which it has been deposited. On the diagram of FIG. 6, the value F 1 of this force has been represented, this value F 1 being chosen so that the straight line of ordinate F 1 only intersects the curve 81. In FIG. 6, we have also designated by the abscissa of the point of intersection I 1 of the curve 81 with the straight line of ordinate F i . It can thus be seen that, for the developer particles which have been deposited on each of the magnetized zones of greater magnetization (such as Al) and which are situated at a distance less than e, the magnetic force exerted by this zone is greater than the retouching force F ,, so that these particles will remain in this area. On the contrary, for the particles which, on each of the magnetized zones of greatest magnetization, are located at a distance greater than e i , the magnetic force exerted by this zone is less than the retouching force F 1 , so that these particles will be eliminated from this area. Consequently, on each of the magnetized zones of greater magnetization (such as A1), there will remain a layer of first developer having practically a thickness equal to e 1 . As for the particles of first developer which have been deposited on each of the magnetized zones of weaker magnetization (such as A2), since the magnetic force exerted by each of these magnetized zones is always less than the retouching force F i , these particles will be completely removed from these areas. Under these conditions, only the magnetized zones of stronger magnetization (such as Al) will appear coated, as can be seen in FIG. 1C, with a layer of first developer of thickness e 1 .

Lorsque l'opération de retouche que l'on vient de décrire est terminée, on dépose alors sur la surface de l'élément d'enregistrement un second révélateur pulvérulent dont la teinte est de l'autre des deux couleurs choisies, c'est-à-dire noire dans l'exemple décrit. Le dépôt de ce second révélateur est effectué dans les mêmes conditions que celles qui ont été décrites pour le dépôt du premier révélateur, de sorte que, lorsque ce dépôt est terminé, chacune des zones magnétisées de l'élément d'enregistrement 10 est revêtue, comme le montre la figure 1 D, d'une couche 19 de second révélateur. Sur les zones magnétisées de plus forte aimantation, telles que la zone A1, cette couche 19 se trouve ainsi superposée à la couche 18 de premier révélateur. Après quoi, on soumet l'élément d'enregistrement à une deuxième opération de retouche, analogue à celle décrite précédemment, mais dont la force, de valeur constante F2 est inférieure à la force F1 de la première opération de retouche. Cette deuxième opération de retouche est effectuée en présence d'un champ magnétique constant, de valeur H, produit par un dispositif générateur de champ magnétique 56, (figure 1E) de type connu. Le champ magnétique H qui est produit par ce dispositif 56 est orienté en sens inverse du sens de la plus grande des deux aimantations des zones magnétisées, c'est-à-dire en sens inverse du sens de l'aimantation Ji. Dans ces conditions, sous l'effet de ce champ magnétique H, l'aimantation des zones magnétisées de plus grande aimantation se trouve affaiblie, tandis que celle des autres zones magnétisées, telle que la zone A2, se trouve renforcée. Il en résulte alors une diminution de la force d'attraction magnétique exercée par chacune des zones magnétisées dont l'aimantation a été affaiblie, tandis que la force d'attraction exercée par chacune des zones magnétisées dont l'aimantation a été renforcée se trouve augmentée. La valeur du champ magnétique H est choisie de telle manière que la force magnétique exercée par chaque zone magnétisée d'aimantation affaiblie devient alors égale à celle exercée, dans les mêmes conditions, par chaque zone magnétisée d'aimantation renforcée, les variations de cette force magnétique, en fonction de la distance h, étant, sur le diagramme de la figure 6, représentées par la courbe en traits pleins 80. Sur le diagramme de la figure 6, on a désigné par e2 l'abscisse du point d'intersection 1 de cette courbe 80 avec la droite d'ordonnée F2, F2 étant la valeur de la force de la deuxième opération de retouche. On voit alors, sur la figure 6, que pour les particules de révélateur qui ont été déposées sur chacune des zones magnétisées et qui sont situées à une distance supérieure à e2, la force magnétique exercée par cette zone est inférieure à la force de retouche F2, de sorte que ces particules seront éliminées de cette zone. Au contraire, pour chacune des particules qui, sur chaque zone, sont situées à une distance inférieure à e2, la force magnétique exercée par cette zone est supérieure à la force F2, de sorte que ces particules subsisteront sur cette zone. En conséquence, sur chacune des zones magnétisées de l'élément d'enregistrement 10, il subsistera une couche de révélateur ayant pratiquement une épaisseur égale à e2. Etant donné que, comme on peut le voir sur la figure 6, cette épaisseur e2 est plus petite que celle e1 dont on a parlé plus haut, chacune des zones magnétisées qui, à l'origine, avaient la plus forte aimantation apparaîtra revêtue d'une couche 18, d'épaisseur e2, du premier révélateur, tandis que chacune des zones magnétisées qui, à l'origine, avaient la plus faible aimantation apparaîtra revêtue d'une couche 19, d'épaisseur e2, du second révélateur. C'est ce que montre la figure 1 E où la zone magnétisée A1 est recouverte d'une couche 18. du premier révélateur et où la zone magnétisée A2 est recouverte d'une couche 19 du second révélateur. Il faut d'ailleurs signaler ici que, à l'exception de leur couleur, ces deux révélateurs ont pratiquement les mêmes propriétés physiques, notamment le même état granulométrique, la même induction à saturation, la même densité et le même point de fusion.When the retouching operation which has just been described is finished, a second powdery developer is then deposited on the surface of the recording element, the color of which is of the other of the two colors chosen, that is to say ie black in the example described. The filing of this second developer is carried out under the same conditions as those which have been described for the deposition of the first developer, so that, when this deposition is completed, each of the magnetized zones of the recording element 10 is coated, as shown in the figure 1 D, a layer 19 of second developer. On the magnetized zones of stronger magnetization, such as the zone A1, this layer 19 is thus superimposed on the layer 18 of the first developer. After which, the recording element is subjected to a second retouching operation, similar to that described above, but the force of which, of constant value F 2 is less than the force F 1 of the first retouching operation. This second retouching operation is carried out in the presence of a constant magnetic field, of value H, produced by a magnetic field generating device 56, (FIG. 1E) of known type. The magnetic field H which is produced by this device 56 is oriented in the opposite direction to the direction of the larger of the two magnetizations of the magnetized zones, that is to say in the opposite direction to the direction of the magnetization J i . Under these conditions, under the effect of this magnetic field H, the magnetization of the magnetized zones of greater magnetization is weakened, while that of the other magnetized zones, such as zone A2, is reinforced. This then results in a reduction in the magnetic attraction force exerted by each of the magnetized zones whose magnetization has been weakened, while the attraction force exerted by each of the magnetized zones whose magnetization has been strengthened is increased . The value of the magnetic field H is chosen in such a way that the magnetic force exerted by each magnetized zone of weakened magnetization then becomes equal to that exerted, under the same conditions, by each magnetized zone of reinforced magnetization, the variations of this force magnetic, as a function of the distance h, being, on the diagram of FIG. 6, represented by the curve in solid lines 80. On the diagram of FIG. 6, the abscissa of the point of intersection has been designated by e 2 1 of this curve 80 with the straight line of ordinate F 2 , F 2 being the value of the force of the second retouching operation. It is then seen, in FIG. 6, that for the developer particles which have been deposited on each of the magnetized zones and which are situated at a distance greater than e 2 , the magnetic force exerted by this zone is less than the retouching force F 2 , so that these particles will be eliminated from this area. On the contrary, for each of the particles which, on each zone, are located at a distance less than e 2 , the magnetic force exerted by this zone is greater than the force F 2 , so that these particles will remain on this zone. Consequently, on each of the magnetized zones of the recording element 10, there will remain a layer of developer having practically a thickness equal to e 2 . Given that, as can be seen in FIG. 6, this thickness e 2 is smaller than that e 1 which was mentioned above, each of the magnetized zones which, originally, had the strongest magnetization will appear coated a layer 18, of thickness e 2 , of the first developer, while each of the magnetized zones which, originally, had the weakest magnetization will appear coated with a layer 19, of thickness e 2 , of the second developer. This is shown in Figure 1 E where the magnetized area A1 is covered with a layer 18. of the first developer and where the magnetized area A2 is covered with a layer 19 of the second developer. It should also be noted here that, with the exception of their color, these two developers have practically the same physical properties, in particular the same particle size state, the same saturation induction, the same density and the same melting point.

Chacune des zones magnétisées de l'élément d'enregistrement 10 étant ainsi revêtue d'une couche de l'un ou de l'autre des deux révélateurs, on amène alors, comme le montre la figure 1F, une bande de papier 20, destinée à être imprimée, à proximité immédiate de cet élément d'enregistrement et on soumet cet élément d'enregistrement 10 à l'action d'un champ magnétique constant produit par un dispositif générateur de champ magnétique 21, analogue au dispositif 56 dont on a parlé plus haut. Par proximité immédiate, on entend que la distance qui sépare la bande de papier 20 de la surface de l'élément d'enregistrement 10 est au plus égale à un millimètre. Le champ magnétique qui est produit par le dispositif 21 a la même amplitude H et le même sens que celui qui est produit par le dispositif 56 de sorte que, sous l'action de ce champ, la force magnétique exercée par chacune des zones magnétisées de l'élément d'enregistrement 10 varie, en fonction de la distance h, de la manière qui, sur le diagramme de la figure 6, est illustrée par la courbe en traits pleins 80. Tandis que l'élément d'enregistrement 10 reste ainsi soumis à l'action du champ magnétique produit par le dispositif 21, on amène alors la bande de papier 20 au contact de cet élément d'enregistrement, puis on soumet chacune des particules de l'un ou de l'autre révélateur qui se trouvent sur cet élément à l'action d'une force, dite de transfert, qui a pour effet de solliciter chacune de ces particules vers la bande de papier et de transférer ainsi sur cette bande la quasi totalité de ces particules. Cette opération de transfert peut d'ailleurs être effectuée, soit en pressant la bande de papier 20 sur l'élément d'enregistrement 10, soit en utilisant des moyens électrostatiques. Toutefois, on considèrera que, quel que soit le moyen utilisé. pour réaliser cette opération de transfert, la force de transfert mise en oeuvre au cours de cette opération conserve une valeur constante FT. Sur le diagramme de la figure 6 la valeur F., de cette force a été représentée. Il faut signaler ici que la valeur FT de cette force de transfert est choisie de manière à permettre à la totalité ou à la quasi totalité des particules se trouvant sur l'élément 10 d'être transférées sur la bande de papier 20. On peut bien sûr utiliser une force de transfert dont la valeur FT est telle que la droite d'ordonnée FT se trouve au-dessus de la courbe 80 et ne coupe pas cette courbe. Dans ces conditions, la totalité des particules de révélateurs est transférée sur la bande de papier 20. Toutefois, dans un mode préféré de mise en oeuvre du procédé l'invention, la valeur FT de la force de transfert est choisie de telle manière que la droite d'ordonnée FT coupe la courbe 80 précitée en un point G dont l'abscisse e3 est voisine de zéro. On considèrera, par exemple, que l'abscisse e3 de ce point G est sensiblement égale à 3 um. Dans ces conditions, presque toutes les particules de révélateur qui se trouvaient sur l'élément d'enregistrement 10 sont transférées sur la bande de papier 20, de sorte que à la fin de l'opération de transfert, il subsiste, sur chacune des zones magnétisées de l'élément d'enregistrement 10, une couche de révélateur dont l'épaisseur e3 est pratiquement négligeable. Cette manière de faire évite que des particules résiduelles de premier révélateur qui, à la suite de la première opération de retouche, n'auraient pas été éliminées des zones magnétisées de plus faible aimantation (telles que A2) ne soient transférées sur la bande de papier 20. Il en résulte, comme on peut le voir sur la figure 1F, que la couche 19 qui a été déposée sur chacune des zones magnétisée de plus faible aimantation de l'élément d'enregistrement 10 forme, lorsqu'elle est transférée en presque totalité sur la bande de papier 20, un petit tas 34 comprenant uniquement des particules du second révélateur. De même, la couche 18 qui a été déposée sur chacune des zones magnétisées de plus forte aimantation de l'élément 10 forme, lorsqu'elle est transférée en presque totalité sur la bande de papier 20. un petit tas 35 comprenant uniquement des particules du premier révélateur.Each of the magnetized zones of the recording element 10 being thus coated with a layer of one or the other of the two developers, there is then brought, as shown in FIG. 1F, a strip of paper 20, intended to be printed, in the immediate vicinity of this recording element and this recording element 10 is subjected to the action of a constant magnetic field produced by a magnetic field generating device 21, analogous to the device 56 of which we have spoken upper. By immediate proximity is meant that the distance which separates the paper strip 20 from the surface of the recording element 10 is at most equal to one millimeter. The magnetic field which is produced by the device 21 has the same amplitude H and the same direction as that which is produced by the device 56 so that, under the action of this field, the magnetic force exerted by each of the magnetized zones of the recording element 10 varies, as a function of the distance h, in the manner which, in the diagram of FIG. 6, is illustrated by the curve in solid lines 80. While the recording element 10 remains thus subjected to the action of the magnetic field produced by the device 21, the paper strip 20 is then brought into contact with this recording element, then each of the particles of one or the other developer which are found is subjected on this element to the action of a force, called transfer, which has the effect of urging each of these particles towards the paper strip and thus transferring almost all of these particles onto this strip. This transfer operation can moreover be carried out either by pressing the strip of paper 20 on the recording element 10, or by using electrostatic means. However, we will consider that, whatever the means used. to carry out this transfer operation, the transfer force used during this operation maintains a constant value F T. In the diagram of FIG. 6 the value F., of this force has been represented. It should be noted here that the value FT of this transfer force is chosen so as to allow all or almost all of the particles on the element 10 to be transferred to the paper strip 20. It is of course possible to use a transfer force whose value F T is such that the line of ordinate F T is above the curve 80 and does not intersect this curve . Under these conditions, all of the developer particles are transferred onto the paper strip 20. However, in a preferred embodiment of the method of the invention, the value F T of the transfer force is chosen so that the ordinate line F T intersects the above-mentioned curve 80 at a point G whose abscissa e 3 is close to zero. We will consider, for example, that the abscissa e 3 of this point G is substantially equal to 3 μm. Under these conditions, almost all of the developer particles which were on the recording element 10 are transferred to the paper strip 20, so that at the end of the transfer operation, there remains, on each of the zones of the recording element 10, a layer of developer whose thickness e 3 is practically negligible. This way of doing things prevents residual particles of first developer which, after the first retouching operation, have not been removed from the magnetized areas of weaker magnetization (such as A2) are not transferred to the paper strip. 20. As a result, as can be seen in FIG. 1F, the layer 19 which has been deposited on each of the magnetized zones of weakest magnetization of the recording element 10 forms, when it is transferred in almost all on the paper strip 20, a small pile 34 comprising only particles of the second developer. Likewise, the layer 18 which has been deposited on each of the magnetized zones with the strongest magnetization of the element 10 forms, when it is transferred almost entirely on the paper strip 20. a small pile 35 comprising only particles of the first developer.

Les couches de révélateurs qui ont été ainsi transférées sur la bande de papier 20 sont alors soumises à une opération de fixation destinée à fixer définitivement ces couches sur le papier. Cette opération est effectuée à une température qui permet d'amener les deux révélateurs constituant ces couches, au moins à l'état visqueux. Cette température peut être choisie, préférablement, de manière à provoquer la fusion de deux révélateurs, sans cependant présenter de risques d'inflammation ou de carbonisation du papier. Avantageusement, les révélateurs utilisés peuvent être du type de ceux qui ont été décrits dans la demande de brevet français qui a été déposée le 20 Mars 1980 par la Demanderesse et publiée sous le N° 2.478.839. Ces révélateurs présentent l'avantage de fondre à une température inférieure à 140°C. Dans ces conditions, après cette opération de fixation, chacun des tas 34 forme sur le papier une tache ponctuelle ayant la teinte du second révélateur, c'est-à-dire noire dans l'exemple décrit, tandis que chacun des tas 35 forme sur le papier une tache ponctuelle ayant la teinte du premier révélateur, c'est-à-dire rouge dans l'exemple décrit.The developer layers which have thus been transferred to the paper strip 20 are then subjected to a fixing operation intended to definitively fix these layers on the paper. This operation is carried out at a temperature which makes it possible to bring the two developers constituting these layers, at least in the viscous state. This temperature can be chosen, preferably, so as to cause the fusion of two developers, without however presenting the risk of ignition or carbonization of the paper. Advantageously, the developers used can be of the type which have been described in the French patent application which was filed on March 20, 1980 by the Applicant and published under No. 2,478,839. These developers have the advantage of melting at a temperature below 140 ° C. Under these conditions, after this fixing operation, each of the heaps 34 forms on the paper a punctual spot having the shade of the second developer, that is to say black in the example described, while each of the heaps 35 forms on the paper a spot spot having the color of the first developer, that is to say red in the example described.

Sur la figure 2 on a représenté une machine d'impression magnétographique qui réalise une impression en deux couleurs selon le procédé d'impression qui vient d'être décrit. La machine qui est représentée sur cette figure comprend un élément d'enregistrement magnétique se présentant sous la forme d'un tambour magnétique 10 analogue à celui qui a été décrit et représenté dans le brevet français précité N° 2.402.921, ce tambour étant entraîné en rotation, dans le sens indiqué par la flèche R, par un moteur électrique 25. La magnétisation de la couche magnétique de ce tambour est assurée par un ensemble de n têtes magnétiques 13-1 à 13-n disposées les unes à côté des autres, et alignées parallèlement à l'axe de rotation du tambour, ces têtes étant placées à proximité de la surface magnétique de ce tambour. Ces têtes qui sont du type de celle qui a été représentée sur la figure 3, sont excitées sélectivement par des impulsions électriques envoyées par une source d'impulsions 26 et appliquées aux enroulements de ces têtes par l'intermédiaire d'un dispositif de calibrage et d'inversion de courant 27 dont la structure a été représentée en détail à la figure 4.FIG. 2 shows a magnetographic printing machine which performs printing in two colors according to the printing process which has just been described. The machine which is shown in this figure comprises a magnetic recording element in the form of a magnetic drum 10 similar to that which has been described and shown in the aforementioned French patent No. 2,402,921, this drum being driven in rotation, in the direction indicated by arrow R, by an electric motor 25. The magnetization of the magnetic layer of this drum is ensured by a set of n magnetic heads 13-1 to 13-n arranged one next to the other , and aligned parallel to the axis of rotation of the drum, these heads being placed near the magnetic surface of this drum. These heads, which are of the type which has been shown in FIG. 3, are selectively excited by electrical pulses sent by a source of pulses 26 and applied to the windings of these heads via a calibration device and current inversion 27, the structure of which has been shown in detail in FIG. 4.

Si on se réfère à la figure 4, on voit que chacun des enroulements respectifs E-1 à E-n des têtes magnétiques 13-1 à 13-n est connecté, à l'une de ses extrémités, à la lame de contact mobile de l'un respectif de n premiers contacts inverseurs K-1 à K-n, et, à l'autre extrémité, à la lame mobile de l'un respectif de n seconds contacts inverseurs L-1 à L-n, par l'intermédiaire de l'un respectif de n contacts de relais CB-1 à CB-n. Chacun des contacts de relais CB-1 à CB-n est commandé par l'une respective de n bobines de relais B-1 à B-n. La figure 4 montre que chacun des contacts inverseurs K-1 à K-n et L-1 à L-n comporte deux positions désignées par les chiffres 1 et 2. La position 1 de chacun des contacts inverseurs K-1 à K-n est connectée à la borne positive (+) d'un premier générateur de courant G1, tandis que la position 1 de chacun des contacts inverseurs L-1 à L-n est connectée à la borne négative (-) de ce premier générateur G1. La position 2 de chacun des contacts inverseurs K-1 à K-n est connectée à la borne négative (-) d'un second générateur de courant G2, tandis que la position 2 de chacun des contacts inverseurs L-1 à L-n est connectée à la borne positive (+) de ce second générateur G2. La figure 4 montre que les lames de contacts mobiles des contacts inverseurs K-1 à K-n sont couplées mécaniquement afin de pouvoir être placées simultanément sur une même position. Il en est de même des lames de contacts mobiles des contacts inverseurs K-2 et L-2, ......., K-n et L-n. Ainsi qu'on peut le voir sur la figure 4, les bobines de relais B-1 à B-n peuvent être excitées par des impulsions électriques délivrées sur les sorties S1 à Sn de la source d'impulsions 26, chacune de ces bobines B-1 à B-n étant, en effet, connectée à l'une respective des sorties S1 à Sn par l'intermédiaire de l'un respectif de n conducteurs W1 à Wn.Referring to FIG. 4, it can be seen that each of the respective windings E-1 to En of magnetic heads 13-1 to 13-n is connected, at one of its ends, to the movable contact blade of the '' a respective one of n first reversing contacts K-1 to Kn, and, at the other end, to the movable blade of one respective of n second reversing contacts L-1 to Ln, via one respective of n relay contacts CB-1 to CB-n. Each of the relay contacts CB-1 to CB-n is controlled by a respective one of n relay coils B-1 to Bn. FIG. 4 shows that each of the reversing contacts K-1 to Kn and L-1 to Ln has two positions designated by the numbers 1 and 2. Position 1 of each of the reversing contacts K-1 to Kn is connected to the positive terminal (+) of a first current generator G1, while the position 1 of each of the change-over contacts L-1 to Ln is connected to the negative terminal (-) of this first generator G1. Position 2 of each of the change-over contacts K-1 to Kn is connected to the negative (-) terminal of a second current generator G2, while position 2 of each of the change-over contacts L-1 to Ln is connected to the positive (+) terminal of this second generator G2. FIG. 4 shows that the movable contact blades of the reversing contacts K-1 to Kn are mechanically coupled so that they can be placed simultaneously in the same position. It is the same for the movable contact blades of the change-over contacts K-2 and L-2, ......., Kn and Ln. As can be seen in FIG. 4, the relay coils B-1 to Bn can be excited by electrical pulses supplied on the outputs S1 to Sn of the pulse source 26, each of these coils B-1 to Bn being, in fact, connected to a respective one of the outputs S1 to Sn through the respective one of n conductors W1 to Wn.

La structure de la source d'impulsions 26 ne sera pas décrite ici pour la raison que cette structure est de type connu. On considèrera que, dans l'exemple décrit, cette source d'impulsions est de structure analogue à celle du dispositif de commande d'enregistrement qui a été décrit et représenté dans le brevet français N° 2.443.335. On rappelera simplement que, dans le cas où la machine qui est représentée sur la figure 2 est utilisée pour imprimer des caractères constitués de points localisés à l'intérieur d'une matrice rectangulaire comprenant sept lignes et cinq colonnes, les lignes de cette matrice s'étendant suivant une direction parallèle à l'axe de rotation du tambour 10, l'image magnétique latente nécessaire à l'impression d'un caractère est obtenue en excitant sélectivement, à sept reprises différentes, cinq têtes contigües prises parmi l'ensemble des têtes magnétiques 13-1 à 13-n, cette excitation étant effectuée au moyen d'impulsions délivrées à des instants successifs t1, t2, t3, t4, ts, t6 et t7, sur cinq correspondantes des sorties S1 à Sn de la source d'impulsions 26. C'est ainsi, par exemple, que pour former, au moyen des têtes magnétiques 13-1 à 13-5, l'image magnétique latente nécessaire à l'impression du caractère "G", la source d'impulsions 26 délivré, à l'instant t1 une impulsion sur chacune de ses sorties S2 à S4, à l'instant t2 une impulsion sur chacune de ses sorties S1 à S5, à l'instant t3 une impulsion sur sa sortie S5, à l'instant t4 une impulsion sur chacune de ses sorties S1, S2, S3 et S5, à l'instant t5 une impulsions sur chacune de ses sorties S1 à S5, à l'instant t6 une impulsion sur chacune de ses sorties S1 à S5, et enfin à l'instant t, une impulsion sur chacun de ses sorties S2 à S4.The structure of the pulse source 26 will not be described here for the reason that this structure is of known type. It will be considered that, in the example described, this pulse source has a structure similar to that of the recording control device which has been described and represented in French patent No. 2,443,335. It will simply be recalled that, in the case where the machine which is represented in FIG. 2 is used to print characters made up of dots located inside a rectangular matrix comprising seven rows and five columns, the rows of this matrix s extending in a direction parallel to the axis of rotation of the drum 10, the latent magnetic image necessary for the printing of a character is obtained by selectively exciting, on seven different occasions, five contiguous heads taken from among all of the magnetic heads 13-1 to 13-n, this excitation being carried out by means of pulses delivered at successive instants t 1 , t 2 , t 3 , t 4 , t s , t 6 and t 7 , on five corresponding outputs S1 to Sn of the pulse source 26. Thus, for example, to form, by means of the magnetic heads 13-1 to 13-5, the latent magnetic image necessary for printing the character "G ", the pulse source 26 delivered, at time t 1 a pulse on each of its outputs S2 to S4, at time t 2 a pulse on each of its outputs S1 to S5, at time t 3 a pulse on its output S5, at time t 4 a pulse on each of its outputs S1, S2, S3 and S5, at time t 5 a pulse on each of its outputs S1 to S5, at time t 6 a pulse on each of its outputs S1 to S5, and finally at time t, a pulse on each of its outputs S2 to S4.

Les contacts inverseurs K-1 à K-n et L-1 à L-n et les générateurs de courant G1 et G2 sont destinés à déterminer le sens d'orientation et l'amplitude des aimantations des zones magnétisées sur le tambour 10; ce sens et cette amplitude conditionnant la couleur de la tache ponctuelle qui sera ultérieurement formée sur le papier par chacune de ces zones magnétisées. A cet effet, les premiers contacts inverseurs K-1 à K-n, les seconds contacts inverseurs L-1 à L-n, les contacts de relais CB-1 à CB-n et les enroulements E-1 à E-n des têtes magnétiques sont répartis, comme le montre la figure 4, de manière à constituer n portions de circuits C-1, C-2, ......, C-n, associées chacune à l'une respective des n têtes 13-1 à 13-n, chacune de ces portions comprenant, en série, l'un respectif des premiers contacts inverseurs K-1 à K-n, l'un respectif des enroulements E-1 à E-n, l'un respectif des contacts de relais CB-1, à CB-n, et l'un respectif des seconds contacts inverseurs L-1 à L-n. Dans le cas où les deux contacts inverseurs d'une même portion de circuit sont placés en position 1, le courant qui circule dans l'enroulement de la tête associée à cette portion de circuit, pendant tout le temps où le contact de relais qui est en série avec cet enroulement est fermé, est celui délivré par le générateur G1, Ce courant, qui a une intensité I1, circule alors dans cet enroulement dans le sens qui, sur la figure 4, est indiqué par la flèche I1. On considèrera, dans l'exemple décrit, que, dans le cas où le courant qui circule dans cet enroulement a pour intensité I1 et pour sens celui qui est indiqué par cette flèche 11, l'aimantation de la zone magnétisée qui est formée sur le tambour 10 par la tête munie de cet enroulement est orientée dans le sens indiqué par la flèche J1 sur la figure 1A et a la même amplitude que celle représentée sur cette figure 1A. De même, dans le cas où les deux contacts inverseurs de cette portion de circuit sont placés en position 2, le courant qui circule dans l'enroulement de la tête associée à cette portion de circuit, pendant tout le temps où le contact de relais qui est en série avec cet enroulement est fermé, est celui délivré par le générateur G2. Ce courant, qui a une intensité 12 inférieure à celle I1 du courant délivré par le générateur G1, circule alors dans cet enroulement dans le sens qui, sur la figure 4, est indiqué par la flèche 12. On considèrera, dans l'exemple décrit,. que, dans le cas où le courant qui circule dans cet enroulement a pour intensité 12 et pour sens celui qui est indiqué par cette flèche 12, l'aimantation de la zone magnétisée qui est formée sur le tambour 10 par la tête munie de cet enroulement est orientée dans le sens indiqué par la flèche J2 sur la figure 1A et a la même amplitude que celle représentée sur cette figure 1A.The reversing contacts K-1 to Kn and L-1 to Ln and the current generators G1 and G2 are intended to determine the direction of orientation and the amplitude of the magnetizations of the magnetized zones on the drum 10; this direction and this amplitude conditioning the color of the spot which will be subsequently formed on the paper by each of these magnetized zones. For this purpose, the first reversing contacts K-1 to Kn, the second reversing contacts L-1 to Ln, the relay contacts CB-1 to CB-n and the windings E-1 to En of magnetic heads are distributed, as as shown in FIG. 4, so as to constitute n portions of circuits C-1, C-2, ......, Cn, each associated with a respective one of the n heads 13-1 to 13-n, each of these portions comprising, in series, one respective of the first change-over contacts K-1 to Kn, one respective of the windings E-1 to En, one respective of the relay contacts CB-1, to CB-n , and a respective one of the second change-over contacts L-1 to Ln. In the case where the two change-over contacts of the same circuit portion are placed in position 1, the current which circulates in the winding of the head associated with this circuit portion, during all the time when the relay contact which is in series with this winding is closed, is that delivered by the generator G1, This current, which has an intensity I 1 , then flows in this winding in the direction which, in FIG. 4, is indicated by the arrow I 1 . It will be considered, in the example described, that, in the case where the current which circulates in this winding has for intensity I 1 and for direction that indicated by this arrow 1 1 , the magnetization of the magnetized zone which is formed on the drum 10 by the head provided with this winding is oriented in the direction indicated by the arrow J 1 in Figure 1A and has the same amplitude as that shown in this Figure 1A. Likewise, in the case where the two reversing contacts of this portion of the circuit are placed in position 2, the current which circulates in the winding of the head associated with this portion of the circuit, during all the time when the relay contact which is in series with this winding is closed, is that delivered by the generator G2. This current, which has an intensity 1 2 lower than that I 1 of the current delivered by the generator G1, then flows in this winding in the direction which, in FIG. 4, is indicated by the arrow 1 2 . In the example described, we will consider. that, in the case where the current which circulates in this winding has for intensity 1 2 and for direction that indicated by this arrow 1 2 , the magnetization of the magnetized zone which is formed on the drum 10 by the head provided with this winding is oriented in the direction indicated by the arrow J 2 in FIG. 1A and has the same amplitude as that shown in this FIG. 1A.

Etant donné que l'intensité et le sens de circulation du courant dans chaque enroulement sont déterminés par la position des contacts inverseurs de la portion de circuit qui est associée à cet enroulement, on voit alors qu'en positionnant convenablements les contacts inverseurs K-1 à K-n et L-1 à L-n avant quela source 26 ne délivre des impulsions sur ses sorties, on obtiendra sur le tambour 10, lorsque ces impulsions seront envoyées, des zones magnétisées dont l'aimantation sera orientée dans le sens désiré et aura l'amplitude désirée. Ainsi, par exemple, si on veut obtenir sur le tambour 10, au moyen des têtes 13-1 à 13-5, une image latente ayant la configuration d'un caractère du type de celui illustré par la figure 5, cette image latente étant telle que les zones magnétisées qui la constituent présentent une aimantation orientée dans le sens de la flèche J1, il suffit, avant que les têtes magnétiques 13-1 à 13-5 ne soient excitées, de placer les contacts inverseurs K-1 à K-5 et L-1 à L-5 en position 1. Si au contraire, on veut que ces zones magnétisées présentent une aimantation orientée dans le sens de la flèche J2, il suffit, avant que les têtes 13-1 à 13-5 ne soient excitées, de placer les contacts inverseurs K-1 à K-5 et L-1 à L-5 en position 2. Le positionnement des contacts inverseurs K-1 à K-n et L-1 à L-n sur l'une ou l'autre des positions 1 et 2, peut être effectué, soit manuellement par l'opérateur avant toute opération d'impression, soit de manière entièrement automatique, les contacts inverseurs K-1 à K-n et L-1 à L-n étant, dans ce dernier cas, commandés par des moyens d'actionnement de type connu, excités par la même unité de commande que celle qui contrôle le fonctionnement de la source d'impulsions 26. Il faut d'ailleurs signaler que, suivant les cas et applications, certains des contacts inverseurs K-1 à K-n et L-1 à L-n peuvent être placés en position 2 alors que les autres contacts inverseurs sont placés en position 1, ce qui permet, lors de l'impression d'une ligne de caractères par exemple, d'obtenir des caractères imprimés en l'une des deux couleurs, alors que les autres caractères de cette ligne sont imprimés en l'autre couleur.Since the intensity and the direction of current flow in each winding are determined by the position of the change-over contacts of the portion of the circuit which is associated with this winding, we can see that by properly positioning the change-over contacts K-1 at Kn and L-1 at Ln before the source 26 delivers pulses on its outputs, we will obtain on the drum 10, when these pulses are sent, magnetized zones whose magnetization will be oriented in the desired direction and will have the desired amplitude. Thus, for example, if it is desired to obtain on the drum 10, by means of the heads 13-1 to 13-5, a latent image having the configuration of a character of the type of that illustrated by FIG. 5, this latent image being such that the magnetized zones which constitute it have a magnetization oriented in the direction of the arrow J1, it suffices, before the magnetic heads 13-1 to 13-5 are excited, to place the reversing contacts K-1 to K- 5 and L-1 to L-5 in position 1. If on the contrary, it is desired that these magnetized zones have a magnetization oriented in the direction of the arrow J2, it suffices, before the heads 13-1 to 13-5 do not are excited, place the reversing contacts K-1 to K-5 and L-1 to L-5 in position 2. The positioning of the reversing contacts K-1 to Kn and L-1 to Ln on one or the other of positions 1 and 2, can be carried out, either manually by the operator before any printing operation, or fully automatically, the changeover contacts K-1 to Kn and L-1 to Ln being, in the latter case, controlled by actuation means of known type, excited by the same control unit as that which controls the operation of the pulse source 26. It should also be noted that, depending on the case and applications , some of the reversing contacts K-1 to Kn and L-1 to Ln can be placed in position 2 while the other reversing contacts are placed in position 1, which allows, when printing a line of characters by example, to obtain characters printed in one of the two colors, while the other characters of this line are printed in the other color.

Il faut signaler que le dispositif de calibrage et d'inversion de courant 27 qui a été représenté sur la figure 2 est constitué, dans l'exemple décrit, par l'ensemble comprenant les générateurs G1 et G2, les contacts inverseurs K-1 à K-n et L-1 à L-n, les bobines B-1 à B-n et les contacts CB-1 à CB-n, tous ces éléments étant connectés entre eux de la manière illustrée sur la figure 4.It should be noted that the current calibration and reversing device 27 which has been represented in FIG. 2 is constituted, in the example described, by the assembly comprising the generators G1 and G2, the reversing contacts K-1 to Kn and L-1 to Ln, the coils B-1 to Bn and the contacts CB-1 to CB-n, all these elements being connected together as illustrated in FIG. 4.

Si on revient maintenant à la figure 2, on voit que la machine d'impression réalisée selon l'invention comprend encore un premier dispositif applicateur 40, de type connu, qui permet d'appliquer sur la surface du tambour 10, des particules d'un premier révélateur pulvérulent contenu dans un réservoir 49. On considèrera, dans l'exemple décrit, que ce premier révélateur est de couleur rouge. Ce premier dispositif applicateur 40 est établi pour déposer sur chacune des zones magnétisées du tambour 10 une couche de premier révélateur dont 1 épaisseur est, sur les zones d'aimantation J1, voisine de 87 pm et, sur les zones d'aimantation J2, voisine de 77 pm. Préférablement ce dispositif applicateur 40 est de type de ceus qui ont été décrits et représentés dans les brevets français N° 2.408.462 et 2.425.941, ce dispositif comprenant, d'une part un élément magnétique en rotation qui amène les particules de révélateur du réservoir 49 jusqu'au voisinage de la surface du tambour 10, d'autre part un déflecteur interposé entre cet élément et le tambour pour constituer un auget dans lequel viennent s'accumuler les particules recueillies par le déflecteur, ce déflecteur laissant entre lui et le tambour une ouverture très petite de l'ordre de 1 millimètre par laquelle passent pas particules qui sont venues s'appliquer contre la surface de ce tambour. Les zones magnétisées du tambour 10 qui ont été ainsi revêtues d'une couche de premier révélateur passent alors devant un dispositif de retouche 41 qui permet d'une part d'éliminer les particules de révélateur subsistant sur le tambour 10 en dehors des zones magnétisées, d'autre part de retirer le premier révélateur sur les zones magnétisées d'aimantation J2. Le dispositif de retouche 41 qui est utilisé pour cette opération peut être de type électrostatique ou pneumatique. On considèrera que, dans l'exemple décrit, ce dispositif de retouche 41 est de type de celui qui a été décrit et représenté dans le brevet français N° 2.411.435 et qu'il est réglé de manière à laisser subsister sur chacune des zones magnétisées d'aimantation J1 du tambour 10 une couche de premier révélateur dont l'épaisseur est pratiquement égale à 40 µm. Les zones magnétisées du tambour 10 qui ont subi cette opération de retouche passent alors devant un second dispositif applicateur 42, de type analogue à celui du premier dispositif applicateur, ce second dispositif applicateur 42 permettant de déposer sur le tambour 10 des particules d'un second révélateur pulvérulent qui, étant de couleur noire dans l'exemple décrit, est contenu dans un réservoir 50. Ce second dispositif applicateur est établi pour, d'une part, déposer sur chacune des zones magnétisées d'aimantation J2 du tambour 10 une couche de second révélateur ayant une épaisseur sensiblement égale à 77 um, d'autre part déposer sur chacune des couches déjà déposées de premier révélateur une seconde couche de second révélateur, l'épaisseur de cette seconde couche étant de l'ordre de 50 um. Etant donné que, dans l'exemple décrit, l'épaisseur de la couche de premier révélateur est pratiquement égale à 40 µm, l'épaisseur totale des deux couches est donc de l'ordre de 90 pm. Les zones magnétisées du tambour 10 qui sont alors revêtues de ces couches de révélateurs passent ensuite devant un dispositif générateur de champ magnétique 56 et devant un second dispositif de retouche 43 analogue au dispositif de retouche 41. Le dispositif générateur de champ magnétique 56 est constitué, dans l'exemple décrit, par un aimant permanent et il est disposé de façon que le champ magnétique qu'il engendre soit orienté en sens inverse de l'aimantation Ji. Ce dispositif 56 est établi en outre de manière que l'amplitude H de ce champ magnétique réponde aux conditions qui ont été exposées en détail plus haut. Le second dispositif de retouche 43, en coopération avec ce dispositif générateur de champ magnétique 56, permet de réduire les épaisseurs des couches de révélateurs qui se trouvent alors sur les zones magnétisées du tambour 10, et il est réglé de telle sorte que, après l'opération de retouche effectuée par ce dispositif 43, chacune des zones magnétisées du tambour est revêtue d'une couche ayant une épaisseur pratiquement égale à 35 um, cette couche comprenant alors uniquement des particules de premier révélateur lorsqu'elle se trouve sur une zone d'aimantation J1 et uniquement des particules de second révélateur lorsqu'elle se trouve sur une zone d'aimantation J2.Returning now to FIG. 2, it can be seen that the printing machine produced according to the invention also comprises a first applicator device 40, of known type, which makes it possible to apply to the surface of the drum 10 particles of a first powdery developer contained in a reservoir 49. It will be considered, in the example described, that this first developer is red in color. This first applicator device 40 is established for depositing on each of the magnetized zones of the drum 10 a layer of first developer, 1 thickness of which is, on the magnetization zones J 1 , close to 87 μm and, on the magnetization zones J 2 , close to 77 pm. Preferably this applicator device 40 is of the type of cees which have been described and represented in French patents No. 2,408,462 and 2,425,941, this device comprising, on the one hand, a rotating magnetic element which brings the developer particles of the tank 49 to the vicinity of the surface of the drum 10, on the other hand a deflector interposed between this element and the drum to constitute a trough in which the particles collected by the deflector come to accumulate, this deflector leaving between it and the drum a very small opening of the order of 1 millimeter through which pass particles which have come to be applied against the surface of this drum. The magnetized zones of the drum 10 which have thus been coated with a layer of first developer then pass in front of a retouching device 41 which on the one hand makes it possible to remove the particles of developer remaining on the drum 10 outside the magnetized zones, on the other hand to remove the first developer on the magnetized areas of magnetization J 2 . The retouching device 41 which is used for this operation can be of the electrostatic or pneumatic type. It will be considered that, in the example described, this retouching device 41 is of the type which has been described and shown in French patent N ° 2,411,435 and that it is adjusted so as to leave subsist on each of the zones. magnetized with magnetization J 1 of the drum 10 a layer of first developer whose thickness is practically equal to 40 μm. The magnetized zones of the drum 10 which have undergone this retouching operation then pass in front of a second applicator device 42, of a type similar to that of the first applicator device, this second applicator device 42 making it possible to deposit particles on the drum 10 of a second powder developer which, being black in the example described, is contained in a reservoir 50. This second applicator device is established for, on the one hand, depositing on each of the magnetized magnetization zones J 2 of the drum 10 a layer second developer having a thickness substantially equal to 77 µm, on the other hand depositing on each of the already deposited layers of first developer a second layer of second developer, the thickness of this second layer being of the order of 50 µm. Since, in the example described, the thickness of the layer of first developer is practically equal to 40 μm, the total thickness of the two layers is therefore of the order of 90 μm. The magnetized zones of the drum 10 which are then coated with these layers of developers then pass in front of a magnetic field generating device 56 and in front of a second retouching device 43 similar to the retouching device 41. The magnetic field generating device 56 is made up, in the example described, by a permanent magnet and it is arranged so that the magnetic field which it generates is oriented in the opposite direction to the magnetization J i . This device 56 is also established so that the amplitude H of this magnetic field meets the conditions which have been explained in detail above. The second retouching device 43, in cooperation with this magnetic field generating device 56, makes it possible to reduce the thicknesses of the developer layers which are then located on the magnetized zones of the drum 10, and it is adjusted so that, after the the retouching operation carried out by this device 43, each of the magnetized zones of the drum is coated with a layer having a thickness practically equal to 35 μm, this layer then comprising only particles of first developer when it is on a zone d magnetization J 1 and only particles of second developer when it is on a magnetization zone J 2 .

Les zones magnétisées du tambour 10 qui ont subi cette seconde opération de retouche arrivent alors à proximité immédiate d'une bande de papier 20 sur laquelle la quasi totalité des deux révélateurs qui ont été déposés sur la surface du tambour 10 va être transférée. A cet effet, la machine qui a été représentée sur la figure 2 comporte un poste de transfert qui, dans l'exemple décrit, comprend un rouleau 45 sur lequel passe la bande de papier 20. Le rouleau 45 est un rouleau presseur qui permet d'appliquer la bande de papier 20 sur le tambour 10 avec une force de valeur déterminée qui en général n'excède pas 600 newtons par mètre linéaire. Dans l'exemple décrit, cette force a été réglée par des ressorts qui n'ont pas été représentés sur les dessins, pour des raisons de simplification. Dans le mode de réalisation plus particulièrement avantageux qui a été illustré par la figure 7, le poste de transfert comporte en outre un rouleau de guidage 44 qui est disposé en amont du rouleau 45 par rapport au sens de défilement du tambour et de la bande de papier, et qui permet d'amener la bande de papier 20 à proximité immédiate de la surface du tambour 10, un peu avant que cette bande ne se trouve appliquée contre cette surface. La figure 7 montre en effet quele point T où la bande 20 arrive au contact du tambour 10 est situé entre les rouleaux 44 et 45. La machine représentée sur la figure 2 comporte encore un second dispositif générateur de champ magnétique 21 qui est disposé au niveau du poste de transfert, c'est-à-dire à proximité immédiate du rouleau 45.The magnetized zones of the drum 10 which have undergone this second retouching operation then arrive in the immediate vicinity of a strip of paper 20 onto which almost all of the two developers which have been deposited on the surface of the drum 10 will be transferred. To this end, the machine which has been shown in FIG. 2 comprises a transfer station which, in the example described, comprises a roller 45 over which the paper strip 20 passes. The roller 45 is a pressure roller which makes it possible to apply the paper strip 20 to the drum 10 with a determined value force which in general does not exceed 600 newtons per linear meter. In the example described, this force has been adjusted by springs which have not been shown in the drawings, for reasons of simplification. In the more particularly advantageous embodiment which has been illustrated in FIG. 7, the transfer station further comprises a guide roller 44 which is disposed upstream of the roller 45 with respect to the direction of travel of the drum and the strip of paper, and which makes it possible to bring the paper strip 20 in the immediate vicinity of the surface of the drum 10, a little before this strip is applied against this surface. FIG. 7 indeed shows that the point T where the strip 20 comes into contact with the drum 10 is located between the rollers 44 and 45. The machine shown in FIG. 2 also has a second magnetic field generating device 21 which is arranged at the level of the transfer station, that is to say in the immediate vicinity of the roller 45.

Dans l'exemple décrit, ce dispositif 21 est constitué par un aimant permanent, mais il faut signaler cependant que cet aimant pourrait être remplacé par tout autre dispositif équivalent, par exemple par une bobine d'induction magnétique excitée par un courant continu. Ce second dispositif générateur 21 est établi de telle sorte que le champ magnétique H qu'il produit est orienté dans le même sens et la même amplitude que le champ magnétique engendré par le premier dispositif générateur de champ magnétique 56. Dans ces conditions, lors du transfert, les intensités d'aimantations des zones magnétisées soumises à l'action de ce champ magnétique prennent toutes la même valeur, ce qui permet de transférer sur la bande de papier 20, des couches ayant toutes la même épaisseur. Préférablement, la force avec laquelle le rouleau 45 presse la bande de papier 20 sur le tambour 10 est ajustée de telle manière que les couches de premier et de second révélateurs qui étaient déposées sur les zones magnétisées du tambour 10 se trouvent transférées en quasi totalité sur la bande de papier 20.In the example described, this device 21 is constituted by a permanent magnet, but it should be noted however that this magnet could be replaced by any other equivalent device, for example by a magnetic induction coil excited by a direct current. This second generator device 21 is established so that the magnetic field H that it produces is oriented in the same direction and the same amplitude as the magnetic field generated by the first magnetic field generator device 56. Under these conditions, when transfer, the magnetization intensities of the magnetized zones subjected to the action of this magnetic field all take the same value, which makes it possible to transfer onto the paper strip 20, layers all having the same thickness. Preferably, the force with which the roller 45 presses the strip of paper 20 on the drum 10 is adjusted in such a way that the layers of first and second developers which were deposited on the magnetized zones of the drum 10 are transferred almost entirely on the strip of paper 20.

Dans le mode de réalisation illustré par la figure 7, le secnd dispositif générateur de champ magnétique 21 est disposé préférablement entre le rouleau de guidage 44 et le pointT précité, mais à proximité de ce point T. On a trouvé en effet que cette disposition permettait d'améliorer l'efficacité du transfert et la qualité de l'image formée sur le papier lors de ce transfert.In the embodiment illustrated in FIG. 7, the second magnetic field generating device 21 is preferably placed between the guide roller 44 and the aforementioned point T, but close to this point T. It has in fact been found that this arrangement allows to improve the efficiency of the transfer and the quality of the image formed on the paper during this transfer.

La machine qui a été représentée sur la figure 2 comporte encore un dispositif de fixation de révélateur 46 sous lequel passe la bande de papier 20 lorsque l'opération de transfert qui vient d'être décrite a été exécutée. Ce dispositif de fixation 46 qui est constitué, dans l'exemple décrit, par un élément chauffé électriquement, est destiné à fixer de manière permanente les révélateurs qui ont été transférés, sur la bande de papier 20. Il faut signaler ici que ce dispositif de fixation 46 est réglé de façon que ces révélateurs subissent une fusion franche sans pour autant provoquer une inflammation ou même une détérioration de la bande de papier 20, la température de fusion de ces révélateurs étant, dans l'exemple décrit, inférieure à 140°C. Dans ces conditions, chaque tas tel que 34 forme lorsqu'il se refroidit ensuite sur le papier une tache ponctuelle ayant la teinte du second révélateur, alors que chaque tas tel que 35 forme, en se refroidissant sur ce papier, une tache ponctuelle ayant la teinte du premier révélateur.The machine which has been shown in FIG. 2 also includes a developer fixing device 46 under which the paper strip 20 passes when the transfer operation which has just been described has been carried out. This fixing device 46 which is constituted, in the example described, by an electrically heated element, is intended to permanently fix the developers which have been transferred, on the strip of paper 20. It should be noted here that this device fixing 46 is adjusted so that these developers undergo a clear melting without causing an ignition or even a deterioration of the paper strip 20, the melting temperature of these developers being, in the example described, lower than 140 ° C. . Under these conditions, each pile as 34 forms when it cools down on the paper a spot spot having the shade of the second developer, while each pile as 35 forms, when cooling on this paper, a point spot having the shade of the first developer.

La machine représentée sur la figure 2 comprend en outre un dispositif de nettoyage qui, constitué par une brosse 47 dans l'exemple décrit, assure le nettoyage des parties de la surface du tambour qui sont passées devant le poste de transfert. Après ce nettoyage, ces parties passent devant un dispositif d'effacement 48, de type électromagnétique, qui réalise l'effacement des images magnétiques latentes portées par ces parties, de sorte que ces parties sont à nouveau capables d'être magnétisées lorsqu'elles se présentent ensuite devant l'ensemble des têtes magnétiques 13-1 à 13-n.The machine shown in Figure 2 further comprises a cleaning device which, consisting of a brush 47 in the example described, ensures the cleaning of the parts of the surface of the drum which have passed in front of the transfer station. After this cleaning, these parts pass in front of an erasing device 48, of the electromagnetic type, which erases the latent magnetic images carried by these parts, so that these parts are again able to be magnetized when they become then present in front of the set of magnetic heads 13-1 to 13-n.

Bien entendu, l'invention n'est nullement limitée aux modes de mise en oeuvre décrits et illustrés qui n'ont été donnés qu'à titre d'exemple. Au contraire, elle comprend tous les moyens constituant des équivalents techniques de ceux décrits et illustrés, considérés isolément ou en combinaison et mis en oeuvre dans le cadre des revendications qui suivant.Of course, the invention is in no way limited to the embodiments described and illustrated which have been given only by way of example. On the contrary, it includes all the means constituting technical equivalents of those described and illustrated, considered in isolation or in combination and implemented in the context of the claims which follow.

Claims (9)

1. A magnetographic printing process consisting in magnetising the surface of a magnetic recording element along a direction perpendicular to this surface, in such a manner as to form a group of magnetised dots establishing a latent magnetic image, in thereupon depositing on to this surface a pulverulent developer arranged to remain adhering only to the magnetised dots of the said surface and thereby forming a powder image, and in finally transferring this powder image on to a print carrier, the said process being characterised in that in order to enable producing on this carrier an image in two previously selected colours, it consists in:
-initially magnetising the surface of the recording element to form magnetised dots having magnetisation intensities of different amplitudes and opposite magnetic polarities, the dots intended to form image portions which on the carrier are intended to appear in one of the said colours all having magnetisation intensities of identical amplitude J1 and of identical direction, the magnetic polarity of these dots being opposite to that of the other magnetised dots, these other magnetised dots all having magnetisation intensities of identical amplitude J2 such that J2<Jl,
-depositing on to this surface a first pulverulent developer of which the shade is that of a first one of the said colours,
-eliminating this first developer from this surface except from the magnetised dots of which the magnetisation intensity is equal to J1,
-depositing on to this surface a second pulverulent developer of which the shade is that of the second of the said colours, whilst however having the same physical properties as the first developer,
- partly eliminating this second developer from this surface whilst exposing this latter to the action of a constant magnetic field oriented in the direction opposite to the magnetisation intensity Ji, the amplitude of this magnetic field having a value such that the magnetisation intensities of the magnetised dots are modified and assume practically the same value, so that this second developer is eliminated from this surface except from the magnetised dots of which the magnetisation intensity was equal to J2, each of these latter dots thus being coated with only one layer of the said second developer, whereas each of the other magnetised dots is coated with only one layer of the said first developer,
- and finally performing a transfer of all these layers of developer on to the print carrier.
2. A printing process according to claim 1, characterised in that the transfer of the layers of developer on to the print carrier is performed in the presence of a second magnetic field which has the same direction and the same amplitude as the first magnetic field applied during the operation for elimination of the second developer.
3. A magnetographic printing machine for carrying out the process according to claim 1, comprising a recording element (10) provided with a magnetic recording surface, a plurality of magnetic heads (13-1 to 13-n) controlled by means of electrical pulses and arranged so that in response to these pulses, they magnetise the said recording surface in a direction perpendicular to the same, so that a group of magnetised dots (A) constituting a latent magnetic image is formed on this surface, driving means (25) for causing a relative displacement between the recording element and the magnetic heads, a source (26) of pulses for selective transmission of electrical pulses to the said heads, an applicator device (40) whereby it is possible to deposit a pulverulent developer on the said recording surface, this developer remaining applied only on the magnetised dots of this surface to form a powder image, and a transfer station (45) for transferring the said powder image on to a print carrier (20) the said machine being characterised in that the said developer, referred to as the first developer, comprising particles of which the shade is that of one of the colours previously selected, it also comprises:
- current calibrating and inverting means (27) interposed between the magnetic heads (13-1 to 13-n) and the source (26) of pulses, for the purpose on the one hand of selectively reversing the direction of the current of the pulses transmitted by the said source, and on the other hand of permitting each of these pulses to be adjusted selectively to one of two predetermined amplitude values and of thus forming on the recording surface a latent magnetic image of which the magnetised dots have magnetisation intensities of different amplitudes and of opposite magnetic polarities, the magnetised dots intended to form portions of images which are scheduled to appear on the carrier in one of the said colours all having magnetisation intensities of identical amplitude J1 and of identical direction, the magnetic polarity of these dots being opposite to that of the other magnetised dots, these other magnetised dots all having magnetisation intensities of identical amplitude J2 such that J2<J,,
- a first retouching device (41) positioned, with respect to the direction of displacement of the surface, downstream from the said applicator device (40) and arranged to remove the said first developer from the magnetised dots of which the magnetisation intensity is lower than Ji,
- second applicator device (42) situated between the transfer station (45) and the first applicator device (40) for depositing a second pulverulent developer on the said recording surface, this second developer comprising particles of which the shade is that of the other of the said colours whilst however having the same physical properties as the first developer, the said second developer remaining applied only on the magnetised dots of the said surface,
- and a second retouching device (43) placed downstream of the said second applicator device (42) and comprising a magnetic field generator device (56) for applying a constant magnetic field to the said recording surface, the amplitude of this field being established so as to modify the amplitudes of the magnetisation intensities of the magnetiseci dots and to make all these practically equal when these magnetised dots pass in front of the said second retouching device (43), so that after this traversal, each of the magnetised dots of which the magnetisation intensity was equal to J2 is coated with a single layer of the second developer, whereas each of the magnetised dots of which the magnetisation intensity was equal to J1 is coated by a single layer of the first developer, these two developers thus forming a powder image in two colours on the recording surface.
4. A printing machine according to claim 3, characterised in that the magnetic field generator device (56) is formed by a permanent magnet.
5. A printing machine according to either of the claims 3 and 4, characterised in that, each magnetic head comprising a coil (E) wound around a core (14), the current calibrating and reversing means (27) comprise:
- n portions of circuits (C-1, C-2, .... C-n) each associated with the respective ones of the n magnetic heads (13-1, 13-2.... 13-n) and each comprising:
+ a relay contact (such as CB-1) connected in series with the coil of the associated head and actuated by means of a coil (such as B-1) energised selectively by means of the pulses transmitted by the source of pulses (26),
+ a first switch (such as K-1 having two positions (1, 2) and a moving contact blade connected to one of the extremities of the assembly formed by the said coil (E-1) in series with the said relay contactor (CB-1),
+ and a second switch (such as L-1) having two positions (1, 2) and a moving contact blade connected to the other extremity of the assembly formed by the said coil (E-1) in series with the said relay contact (CB-1), this second switch being coupled with the first switch in a manner such that the moving contact blades of these two switches occupy identical positions,
- and two current generators (G1, G2), the first (G1) of the said current generators having its positive terminal (+) connected to the first (1) of the two positions of each of the n first switches (K-1 to K-n) and its negative terminal (-) connected to the first (1) of the two positions of each of the n second switches (L-1 to L-n), the second (G2) of the said current generators having its positive terminal (+) connected to the second (2) of the two positions of each of the n second switches (L-1 to L-n) and its negative terminal (-) connected to the second (2) of the two positions of each of the n first switches (K-1 to K-n), each of these two generators being arranged so that when the relay contacts (CB-1 to CB-n) are closed selectively in response to the pulses transmitted by the source (26), it delivers the respective one of two currents of the respective intensities 11, 12, these intensities 11 and 12 being set to engender the formation in the recording element of magnetised dots having the corresponding magnetisations J1 and J2.
6. A printing machine according to any one of claims 3 to 5, characterised in that it also comprises a second magnetic field generator device (21) situated at the level of the transfer station (45) for application of a constant magnetic field to the recording surface during its passage in front of this transfer station, this magnetic field being oriented in the same direction and having the same amplitude as the magnetic field generated by the first magnetic field generator device (56).
7. A printing machine according to claim 6, characterised in that the second magnetic field generator device (21) comprises a permanent magnet.
8. A printing machine according to any one of claims 3 to 7, characterised in that the recording element being formed by a magnetic drum (10), the transfer station comprises on the one hand a presser roller (45) for applying the print carrier
(20) against this drum, on the other hand a guiding roller (44) situated upstream of the presser roller to permit the said carrier to be placed in contact with this drum at a point (T) situated between these two rollers, and in that the second magnetic field generator device (21) is situated substantially at the level of this point.
EP82400425A 1981-12-23 1982-03-09 Method and device for magnetographic copying Expired EP0082742B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8124060 1981-12-23
FR8124060A FR2518773A1 (en) 1981-12-23 1981-12-23 MAGNETOGRAPHIC PRINTING METHOD AND MACHINE

Publications (3)

Publication Number Publication Date
EP0082742A2 EP0082742A2 (en) 1983-06-29
EP0082742A3 EP0082742A3 (en) 1983-08-10
EP0082742B1 true EP0082742B1 (en) 1985-05-29

Family

ID=9265314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400425A Expired EP0082742B1 (en) 1981-12-23 1982-03-09 Method and device for magnetographic copying

Country Status (5)

Country Link
US (1) US4449133A (en)
EP (1) EP0082742B1 (en)
JP (1) JPS58114072A (en)
DE (1) DE3263851D1 (en)
FR (1) FR2518773A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2568697B1 (en) * 1984-08-01 1987-03-20 Bull Sa MAGNETOGRAPHIC PRINTING METHOD AND MACHINE
GB2334067B (en) * 1998-02-09 2002-07-17 Reilor Ltd Pet door

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824601A (en) * 1972-03-28 1974-07-16 Bell & Howell Co Multi-color magnetic image recording and media
US4126494A (en) * 1975-10-20 1978-11-21 Kokusai Denshin Denwa Kabushiki Kaisha Magnetic transfer record film

Also Published As

Publication number Publication date
DE3263851D1 (en) 1985-07-04
JPS58114072A (en) 1983-07-07
FR2518773A1 (en) 1983-06-24
EP0082742A3 (en) 1983-08-10
EP0082742A2 (en) 1983-06-29
FR2518773B1 (en) 1984-04-06
US4449133A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
FR2564609A1 (en) DEVELOPMENT METHOD AND APPARATUS
FR2557749A1 (en) BICOLOR IMAGE FORMING APPARATUS
FR2477734A1 (en) APPARATUS FOR DEVELOPING A LATENT ELECTROSTATIC IMAGE
EP0082742B1 (en) Method and device for magnetographic copying
EP0082740B1 (en) Method and device for magnetographic copying
EP0082741B1 (en) Method and device for magnetographic copying
EP0082739B1 (en) Method and device for magnetographic copying
EP0172767B1 (en) Method and machine for magnetographic copying
EP0315509B1 (en) Method for fixing a toner powder put on a sheet, and device for fixing this toner according to this method
EP0099763B1 (en) Toner powder applicator on the imaging roller of a non-impact printer
CA2126283A1 (en) Process for printing at least one image and press using said process
CH630185A5 (en) INSTALLATION FOR THE ELECTROPHOTOGRAPHIC REPRODUCTION OF AN IMAGE AND METHOD FOR ITS ACTION.
FR2626529A1 (en) DEVICE FOR INTERMITTENTLY APPLYING PARTICLES OF A PULVERULENT REVELATOR TO THE RECORDING SURFACE OF A MAGNETOGRAPHIC PRINTER
CA1261912A (en) Magnetographic printing process and apparatus
EP0193691A1 (en) Non-impact printing machine
FR2527798A1 (en) DEVICE FOR TRANSFERRING A MAGNETIC INK
FR2581772A1 (en) ELECTROCOPY PROCESS
FR2600178A1 (en) Magnetic recording element intended for use in a magnetic printer
FR2522838A1 (en) Line of force straightening device for magnetic printer - reveals latent magnetic images by particles on magnetic support
EP0056470B1 (en) Rotating magnetic brush device
FR2522864A1 (en) Thermal deformation compensation device for magnetic printer - has electrical resistance heater with temp. pick=ups and control unit in registration module
EP0291392B1 (en) Pulverulent substance for the lubrification of the recording medium of a magnetic printer
FR2637992A1 (en) ELECTROSTATIC RECORDING HEAD, IMAGE RECORDING DEVICE AND DISPLAY DEVICE COMPRISING SUCH HEAD, DEVICE FOR SUPPLYING DEVELOPMENT AGENT USED IN SUCH HEAD, AND METHOD FOR MANUFACTURING THE SAME
FR2545951A1 (en) METHOD FOR DEVELOPING A LATENT IMAGE FORMED ON A MAGNETIC SURFACE, DEVICE FOR IMPLEMENTING THE METHOD, AND PRINTING APPARATUS COMPRISING SAID DEVICE
FR2522839A1 (en) Magnetographic impression of information onto paper - uses magnetisation and selective demagnetisation of magnet material on moving band

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE GB IT NL

AK Designated contracting states

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19830720

ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 3263851

Country of ref document: DE

Date of ref document: 19850704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980211

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980331

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990305

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990517

Year of fee payment: 18

BERE Be: lapsed

Owner name: CIE INTERNATIONALE POUR L'INFORMATIQUE CII - HONE

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19991001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000309

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103