EP0081432B1 - Iron-based alloys for welded structures and uses of these alloys - Google Patents

Iron-based alloys for welded structures and uses of these alloys Download PDF

Info

Publication number
EP0081432B1
EP0081432B1 EP82402208A EP82402208A EP0081432B1 EP 0081432 B1 EP0081432 B1 EP 0081432B1 EP 82402208 A EP82402208 A EP 82402208A EP 82402208 A EP82402208 A EP 82402208A EP 0081432 B1 EP0081432 B1 EP 0081432B1
Authority
EP
European Patent Office
Prior art keywords
alloys
manganese
iron
titanium
contain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82402208A
Other languages
German (de)
French (fr)
Other versions
EP0081432A1 (en
Inventor
François Duffaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imphy SA
Original Assignee
Imphy SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imphy SA filed Critical Imphy SA
Priority to AT82402208T priority Critical patent/ATE12792T1/en
Publication of EP0081432A1 publication Critical patent/EP0081432A1/en
Application granted granted Critical
Publication of EP0081432B1 publication Critical patent/EP0081432B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12639Adjacent, identical composition, components
    • Y10T428/12646Group VIII or IB metal-base
    • Y10T428/12653Fe, containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to iron-based alloys with a low coefficient of expansion and which can be welded and to the applications of these alloys to welded construction elements working under cryogenic conditions, in particular to storage and transport tanks and transport conduits. liquefied gas.
  • the phenomenon known as “solidification crack” is due to the fact that interdendritic films are still liquid and therefore incapable of withstanding a tensile force at a temperature where the dendrites already formed constitute a continuous solid structure capable of transmitting the forces due to thermal contraction.
  • the ductility hole corresponds to a minimum of ductility in the temperature range from 700 to 1000 ° C.
  • a filler metal is known for welding the above alloys in which manganese and titanium have been added to the base metal of the above type.
  • a typical composition of this filler metal comprises 36% nickel, 0.1% silicon, 0.1% carbon, less than 0.01% sulfur, less than 0.01% phosphorus, 3% manganese and 1% titanium, iron forming the balance.
  • the addition of manganese and titanium has the disadvantage of raising the coefficient of expansion of the alloy which cannot therefore be used as a base metal for the manufacture of construction elements in the cryogenic field.
  • the use of this filler metal as a weld does not solve all the difficulties. In the case of crossed beads and if the stresses are high enough, cracking of the first bead occurs in the area affected by the second bead, not in the molten area but just at the limit of the latter in the metal of based.
  • French patent FR-A-2 148 954 has proposed iron-nickel alloys with manganese plating and having a limited sulfur content for building elements in the cryogenic field. These alloys contain by weight 36 to 36.5% of nickel, 0 to 25% of silicon, 0 to 0.04% of carbon, 0 to 0.012% of sulfur, 0 to 0.012% of phosphorus and 0.20 to 0, 40% manganese. Due to the limitation of the sulfur content and the presence of manganese, the construction elements made with these alloys can be welded without great difficulty. However, it is found that the metal of the molten zone of a weld bead produced with this alloy is unable to simultaneously resist a temperature of the order of 700 to 1000 ° C. and a tensile stress when these conditions meet. during a local recovery of a weld bead or a crossing of weld beads. This phenomenon is due to the drop in ductility observed in the temperature range given above.
  • the object of the present invention is to provide iron-based alloys intended for welded construction elements working under cryogenic conditions, not exhibiting a marked "ductility hole” or of an unacceptable tendency to "solidify". These alloys have an average expansion coefficient between -180 ° C and 0 ° C or lower neighbor 2.10- 6 / ° C and the present invention relates to applications requiring the above properties.
  • the iron-based alloys for building elements working at cryogenic temperatures in accordance with the invention contain by weight 35 to 39% of nickel, 0 to 20% of cobalt, 0 to 0.25% of silicon, 0 to 0, 04% carbon, 0 to 0.004% sulfur, 0 to 0.008% posphorus, manganese, the rest being formed by iron and by impurities and they are characterized by the fact that they contain 0.2 to 1, 5% manganese and 0.2% to 0.5% titanium.
  • the alloys contain 0.3 to 1% of manganese.
  • these alloys are used in the manufacture of construction elements having welded crossings.
  • the alloys according to the invention are iron-based and contain 35 to 39% of nickel. They have an austenitic structure. They can contain 0 to 20% cobalt.
  • the table gives two alloy compositions in accordance with the invention. These compositions are given by weight.
  • the alloys contain manganese and titanium.
  • the combination of manganese addition and titanium addition is essential. Indeed the addition of manganese alone, even at the 3% level, has no effect on the "ductility hole".
  • the manganese content is between 0.2 and 1.5%. Preferably it should not exceed 1% so that the average coefficient of expansion between -180 ° and 0 ° is low ( Figure 3). Preferably the content is between 0.3% and 1%.
  • the necking curve at break ( Figure 1) of alloy A, the weight composition of which is given in Table II shows that the "ductility hole” exists when the titanium content is less than 0.2%.
  • the minimum titanium content is also critical from the point of view of weldability. In fact, tests show that the alloys according to the invention do not have cracks at the weld intersections, while alloys such as alloy A occasionally exhibit them and that titanium-free alloys systematically exhibit them.
  • the titanium content should not exceed 0.5% to avoid increasing the average coefficient of expansion and to avoid aggravating the tendency to crack solidification.
  • the sulfur content is between 0 and 0.004%.
  • the graph in FIG. 2 shows that in the field of alloys according to the invention, the lowering of the sulfur content from 0.011% ("notes” circled) to 0.004% ("notes” underlined) causes the "note” to drop by 50 points to bring it well below 140 which is a "note” for which we do not encounter difficulties in TIG welding.
  • the applications of the alloys according to the invention are those where these alloys provide an average coefficient of expansion of less than 2.5 x 10 " s ° c under cryogenic conditions and a ductility hole sufficiently attenuated to allow welds, in particular crossings of
  • the alloys according to the invention are suitable for welded construction elements working under cryogenic conditions and having weld crossings produced with metal fusion in the welding zones of said elements.
  • Figure 4 shows a cryogenic conduit in which the annular bead 1 cuts the longitudinal cords 2 and 3.
  • the alloys according to the invention are specially adapted to such parts having welded crossovers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Articles (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Resistance Welding (AREA)

Abstract

The present invention relates to iron-based alloys with a low coefficient of expansion and to the uses of these alloys for welded structural elements operating under cryogenic conditions. The alloys according to the invention contain by weight 35 to 39% of nickel, 0 to 20% of cobalt, 0 to 0.25% of silicon, 0 to 0.04% of carbon, 0 to 0.004% of sulfur, 0 to 0.008% of phosphorus, manganese, the remainder being formed by iron and by impurities. They are characterized by the fact that they contain 0.2% to 1.5% of manganese and 0.2 to 0.5% of titanium.

Description

La présente invention se rapporte à des alliages à base fer à faible coefficient de dilatation et soudables et aux applications de ces alliages à des éléments de construction soudés travaillant dans des conditions cryogéniques en particulier aux cuves de stockage et de transport et aux conduits de transport de gaz liquéfié.The present invention relates to iron-based alloys with a low coefficient of expansion and which can be welded and to the applications of these alloys to welded construction elements working under cryogenic conditions, in particular to storage and transport tanks and transport conduits. liquefied gas.

La soudabilité des alliages fer-nickel présentant 35 à 50% de nickel, parmi lesquels l'alliage connu sous la marque »INVAR«, est limitée par deux phénomènes distincts: la tendance à la »crique de solidification« et le »trou de ductilité«. Le phénomène dit de »crique de solidification« est dû au fait que des films interdendritiques sont encore liquides et donc incapables de résister à un effort de traction à une température où les dendrites déjà formées constituent un édifice solide continu capable de transmettre les efforts dûs à la contraction thermique. Le trou de ductilité correspond à un minimum de ductilité dans l'intervalle de températures allant de 700 à 1000° C.The weldability of iron-nickel alloys with 35 to 50% nickel, including the alloy known under the brand "INVAR", is limited by two distinct phenomena: the tendency to "solidification crack" and the "ductility hole" ". The phenomenon known as “solidification crack” is due to the fact that interdendritic films are still liquid and therefore incapable of withstanding a tensile force at a temperature where the dendrites already formed constitute a continuous solid structure capable of transmitting the forces due to thermal contraction. The ductility hole corresponds to a minimum of ductility in the temperature range from 700 to 1000 ° C.

On connait un métal d'apport destiné au soudage des alliages cidessus dans lequel on a ajouté du manganèse et du titane au métal de base du type ci-dessus. Une composition type de ce métal d'apport comporte 36% de nickel, 0,1% de silicium, 0,1% de carbone, moins de 0,01% de soufre, moins de 0,01% de phosphore, 3% de manganèse et 1% de titane, le fer formant le solde. L'addition de manganèse et de titane présente l'inconvenient d'élever le coefficient de dilatation de l'alliage qui ne peut pas de ce fait être utilisé comme métal de base pour la fabrication d'éléments de construction dans le domaine cryogénique. Par ailleurs l'utilisation de ce métal d'apport comme soudure ne résoud pas toutes les difficultés. Dans le cas de cordons croisés et si les contraintes sont assez élevées, il se produit des fissurations du premier cordon dans la zone affectée par le second cordon, non pas dans la zone fondue mais juste à la limite de celle-ci dans le métal de base.A filler metal is known for welding the above alloys in which manganese and titanium have been added to the base metal of the above type. A typical composition of this filler metal comprises 36% nickel, 0.1% silicon, 0.1% carbon, less than 0.01% sulfur, less than 0.01% phosphorus, 3% manganese and 1% titanium, iron forming the balance. The addition of manganese and titanium has the disadvantage of raising the coefficient of expansion of the alloy which cannot therefore be used as a base metal for the manufacture of construction elements in the cryogenic field. Furthermore, the use of this filler metal as a weld does not solve all the difficulties. In the case of crossed beads and if the stresses are high enough, cracking of the first bead occurs in the area affected by the second bead, not in the molten area but just at the limit of the latter in the metal of based.

On a proposé, dans le brevet français FR-A-2 148 954 pour des éléments de construction dans le domaine cryogénique, des alliages fer-nickel chragés en manganèse et présentant une teneur limitée en soufre. Ces alliages comportent en poids 36 à 36,5% de nickel, 0 à 25% de silicium, 0 à 0,04% de carbone, 0 à 0,012% de soufre, 0 à 0,012% de phosphore et 0,20 à 0,40% de manganèse. A cause de la limitation de la teneur en soufre et de la présence de manganèse, les éléments de construction réalisés avec ces alliages peuvent être soudés sans grosses difficultés. On constate néanmoins que le métal de la zone fondue d'un cordon de soudure réalisé avec cet alliage est incapable de résister simultanément à une température de l'ordre de 700 à 1000° C et à une contrainte de traction alors que ces conditions se rencontrent lors d'une reprise locale d'un cordon de soudure ou d'un croisement de cordons de soudre. Ce phénomène est dû à la chute de la ductilité que l'on observe dans la plage de températures donnée ci-dessus.French patent FR-A-2 148 954 has proposed iron-nickel alloys with manganese plating and having a limited sulfur content for building elements in the cryogenic field. These alloys contain by weight 36 to 36.5% of nickel, 0 to 25% of silicon, 0 to 0.04% of carbon, 0 to 0.012% of sulfur, 0 to 0.012% of phosphorus and 0.20 to 0, 40% manganese. Due to the limitation of the sulfur content and the presence of manganese, the construction elements made with these alloys can be welded without great difficulty. However, it is found that the metal of the molten zone of a weld bead produced with this alloy is unable to simultaneously resist a temperature of the order of 700 to 1000 ° C. and a tensile stress when these conditions meet. during a local recovery of a weld bead or a crossing of weld beads. This phenomenon is due to the drop in ductility observed in the temperature range given above.

La présente invention a pour but de fournir des alliages à base fer destinés à des éléments de construction soudés travaillant dans des conditions cryogéniques, ne présentant pas un »trou de ductilité« marqué, ni de tendance inacceptable à la »crique« de solidification. Ces alliages présentent un coefficient moyen de dilatation entre -180° C et 0° C inférieur ou voisin de 2.10-6/° C et la présente invention est relative à des applications exigeant les propriétés ci-dessus.The object of the present invention is to provide iron-based alloys intended for welded construction elements working under cryogenic conditions, not exhibiting a marked "ductility hole" or of an unacceptable tendency to "solidify". These alloys have an average expansion coefficient between -180 ° C and 0 ° C or lower neighbor 2.10- 6 / ° C and the present invention relates to applications requiring the above properties.

Les alliages à base de fer pour éléments de construction travaillant à des températures cryogéniques conformes à l'invention contiennent en poids 35 à 39% de nickel, 0 à 20% de cobalt, 0 à 0,25% de silicium, 0 à 0,04% de carbone, 0 à 0,004% de soufre, 0 à 0,008% de posphore, du manganèse, le reste étant formé par du fer et par des impuretés et ils sont caractérisés par le fait qu'ils contiennent 0,2 à 1,5% de manganèse et 0,2% à 0,5% de titane.The iron-based alloys for building elements working at cryogenic temperatures in accordance with the invention contain by weight 35 to 39% of nickel, 0 to 20% of cobalt, 0 to 0.25% of silicon, 0 to 0, 04% carbon, 0 to 0.004% sulfur, 0 to 0.008% posphorus, manganese, the rest being formed by iron and by impurities and they are characterized by the fact that they contain 0.2 to 1, 5% manganese and 0.2% to 0.5% titanium.

Selon une caractéristique, les alliages contiennent 0,3 à 1% de manganèse.According to one characteristic, the alloys contain 0.3 to 1% of manganese.

Selon une autre caractéristique de l'invention, ces alliages sont utilisés à la fabrication d'éléments de construction présentant des croisements de soudure.According to another characteristic of the invention, these alloys are used in the manufacture of construction elements having welded crossings.

L'invention va maintenant être décrite avec plus de détails en se référant à des modes de réalisation donnés à titre d'exemples. Cette description nullement limitative fait référence aux dessins annexés dans lesquels:

  • La figure 1 est un graphique donnant la striction à rupture mesurée par essai de traction rapide sur des échantillons forgés et traités une heure à 1100° C, en fonction de la température t.
  • La figure 2 donne pour différentes teneurs en manganèse et en titane conformes à l'invention, une »note« définie selon la méthode Gueussier-Castro, de la tendance au défaut dit de la »crique« de solidification«, cette tendance étant d'autant plus forte que la note est plus élevée.
  • La figure 3 est un graphique donnant le coefficient moyen de dilatation entre -180° C et 0"C d'alliages conformes à l'invention.
  • La figure 4 représente un exemple d'élément de construction pour lequel les alliages conformes à l'invention sont spécialement adaptés.
The invention will now be described in more detail with reference to embodiments given by way of examples. This in no way limitative description refers to the appended drawings in which:
  • FIG. 1 is a graph giving the necking at break measured by rapid tensile test on samples forged and treated for one hour at 1100 ° C., as a function of the temperature t.
  • FIG. 2 gives, for different manganese and titanium contents in accordance with the invention, a "note" defined according to the Gueussier-Castro method, of the tendency to defect known as the "crack" of solidification ", this tendency being of as much stronger as the note is higher.
  • Figure 3 is a graph showing the average coefficient of expansion between -180 ° C and 0 "C of alloys according to the invention.
  • FIG. 4 represents an example of a building element for which the alloys according to the invention are specially adapted.

Les alliages selon l'invention sont a base fer et contiennent 35 à 39% de nickel. Ils ont une structure austénitique. Ils peuvent contenir 0 à 20% de cobalt.The alloys according to the invention are iron-based and contain 35 to 39% of nickel. They have an austenitic structure. They can contain 0 to 20% cobalt.

A titre d'exemple, le tableau donne deux compositions d'alliages conformes à l'invention. Ces compositions sont données en poids.

Figure imgb0001
By way of example, the table gives two alloy compositions in accordance with the invention. These compositions are given by weight.
Figure imgb0001

Les alliages contiennent du manganèse et du titane. La combinaison de l'addition en manganèse et de l'addition en titane est essentielle. En effet l'addition de manganèse seul, même au niveau de 3%, est sans effet sur le »trou de ductilité«. La teneur en manganèse est comprise entre 0,2 e 1,5%. De préférence elle ne doit pas dépasser 1% pour que le coefficient moyen de dilatation entre -180° et 0° soit faible (figure 3). De préférence la teneur est comprise entre 0,3% et 1%.The alloys contain manganese and titanium. The combination of manganese addition and titanium addition is essential. Indeed the addition of manganese alone, even at the 3% level, has no effect on the "ductility hole". The manganese content is between 0.2 and 1.5%. Preferably it should not exceed 1% so that the average coefficient of expansion between -180 ° and 0 ° is low (Figure 3). Preferably the content is between 0.3% and 1%.

La teneur minimum en titane, égale à 0,2%, est critique en ce qui concerne le »trou de ductilité«. En effet celui-ci n'est pas supprimé de façon reproductible lorsque la teneur en titane est inférieure à la limite mentionnée. Ainsi la courbe de striction à la rupture (figure 1) de l'alliage A dont la composition pondérale est donnée dans le tableau Il montre que le »trou de ductilité« existe lorsque la teneur en titane est inférieure à 0,2%.

Figure imgb0002
The minimum titanium content, equal to 0.2%, is critical with regard to the "ductility hole". Indeed, it is not reproducibly removed when the titanium content is below the limit mentioned. Thus the necking curve at break (Figure 1) of alloy A, the weight composition of which is given in Table II shows that the "ductility hole" exists when the titanium content is less than 0.2%.
Figure imgb0002

Au contraire les courbes de striction à rupture des alliages M1 et M2 (figure 1) montrent que le »trou de ductilité« est effacé dans les alliages conformes à l'invention contenant plus de 0,2% de titane.On the contrary, the constriction at break curves of the alloys M1 and M2 (FIG. 1) show that the "ductility hole" is eliminated in the alloys according to the invention containing more than 0.2% of titanium.

La teneur minimum en titane est par ailleurs critique du point de vue de la soudabilité. En effet les essais montrent que les alliages selon l'invention ne présentent pas de criques aux croisements de soudures alors que des alliages tels que l'alliage A en présentent occasionnellement et que des alliages sans titane en présentent systématiquement.The minimum titanium content is also critical from the point of view of weldability. In fact, tests show that the alloys according to the invention do not have cracks at the weld intersections, while alloys such as alloy A occasionally exhibit them and that titanium-free alloys systematically exhibit them.

La teneur en titane ne doit pas dépasser 0,5% pour éviter d'augmenter le coefficient moyen de dilatation et pour éviter d'aggraver la tendance à la crique de solidification.The titanium content should not exceed 0.5% to avoid increasing the average coefficient of expansion and to avoid aggravating the tendency to crack solidification.

La teneur en soufre est comprise entre 0 et 0,004%. Le graphique de la figure 2 montre que dans le domaine des alliages selon l'invention, l'abaissement de la teneur en soufre de 0,011% (»notes« cerclées) à 0,004% (»notes« soulignées) fait chuter la »note« de 50 points pour l'amener largement au-dessous de 140 qui est une »note« pour laquelle on ne rencontre pas de difficultés en soudage TIG. Les applications des alliages selon l'invention sont celles où ces alliages apportent un coefficient moyen de dilatation inférieur à 2,5 x 10" s°c dans les conditions cryogéniques et un trou de ductilité suffisamment atténué pour permettre des soudures en particulier des croisements de soudures. Les alliages selon l'invention sont adaptés à des éléments de construction soudés travaillant dans des conditions cryogéniques et présentant des croisements de soudure réalisés avec fusion de métal dans les zones de soudage desdits éléments. La figure 4 montre un conduit cryogénique dans lequel le cordon annulaire 1 coupe les cordons longitudinaux 2 et 3. Les alliages selon l'invention sont spécialement adaptés à de telles pièces présentant des croisements de soudure.The sulfur content is between 0 and 0.004%. The graph in FIG. 2 shows that in the field of alloys according to the invention, the lowering of the sulfur content from 0.011% ("notes" circled) to 0.004% ("notes" underlined) causes the "note" to drop by 50 points to bring it well below 140 which is a "note" for which we do not encounter difficulties in TIG welding. The applications of the alloys according to the invention are those where these alloys provide an average coefficient of expansion of less than 2.5 x 10 " s ° c under cryogenic conditions and a ductility hole sufficiently attenuated to allow welds, in particular crossings of The alloys according to the invention are suitable for welded construction elements working under cryogenic conditions and having weld crossings produced with metal fusion in the welding zones of said elements. Figure 4 shows a cryogenic conduit in which the annular bead 1 cuts the longitudinal cords 2 and 3. The alloys according to the invention are specially adapted to such parts having welded crossovers.

Claims (3)

1. Alloys based on iron for welded structural components which operate at refrigeration temperatures, the alloys containing, by weight, 35 to 39% of nickel, 0 to 20% of cobalt, 0 to 25% of silicon, 0 to 0.04% of carbon, 0 to 0.004% of sulphur, 0 to 0.008% of phosphorus and some manganese, the remainder consisting of iron and impurities, characterised in that they contain 0.2 to 1.5% of manganese and 0.2 to 0.5% of titanium.
2. Alloys according to Claim 1, characterised in that they contain 0.3 to 1% of manganese.
3. Use of the alloys according to any one of the preceding claims for the manufacture of structural elements which exhibit intersecting welds and require a mean coefficient of expansion of less than 2.5 × 10-6/°C.
EP82402208A 1981-12-04 1982-12-03 Iron-based alloys for welded structures and uses of these alloys Expired EP0081432B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82402208T ATE12792T1 (en) 1981-12-04 1982-12-03 IRON-BASED ALLOYS FOR WELDED COMPONENTS AND USE OF THESE ALLOYS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8122756 1981-12-04
FR8122756A FR2517701B1 (en) 1981-12-04 1981-12-04 IRON-BASED ALLOYS FOR WELDED CONSTRUCTION ELEMENTS AND APPLICATIONS THEREOF

Publications (2)

Publication Number Publication Date
EP0081432A1 EP0081432A1 (en) 1983-06-15
EP0081432B1 true EP0081432B1 (en) 1985-04-17

Family

ID=9264699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82402208A Expired EP0081432B1 (en) 1981-12-04 1982-12-03 Iron-based alloys for welded structures and uses of these alloys

Country Status (6)

Country Link
US (1) US4525431A (en)
EP (1) EP0081432B1 (en)
JP (1) JPS58104156A (en)
AT (1) ATE12792T1 (en)
DE (1) DE3263172D1 (en)
FR (1) FR2517701B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661313C2 (en) * 2014-01-17 2018-07-16 Аперам Method of manufacturing belt of variable thickness and belt produced by this method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277398A1 (en) * 2007-05-09 2008-11-13 Conocophillips Company Seam-welded 36% ni-fe alloy structures and methods of making and using same
CN112795850B (en) * 2020-12-28 2022-03-15 华东交通大学 Core-shell TiB2-Fe64Ni36Tile-based composite material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR493854A (en) * 1918-05-22 1919-08-23 Commentry De Alloy retaining high strength and absolute absence of brittleness at the lowest industrially achievable temperatures
FR563419A (en) * 1923-03-08 1923-12-05 Commentry Fourchambault Et Dec Ferro alloy with very high positive variation of elastic moduli as a function of temperature, and endowed, in a suitable physical state, with a high elastic limit
DE556372C (en) * 1929-12-28 1932-08-06 Heraeus Vacuumschmelze Akt Ges Iron-nickel-titanium alloys as a material with the lowest possible expansion coefficient
US2730443A (en) * 1951-11-10 1956-01-10 Carpenter Steel Co Glass sealing alloy
US3184577A (en) * 1963-01-18 1965-05-18 Int Nickel Co Welding material for producing welds with low coefficient of expansion
US3514284A (en) * 1966-06-08 1970-05-26 Int Nickel Co Age hardenable nickel-iron alloy for cryogenic service
FR1493034A (en) * 1966-07-12 1967-08-25 Soc Metallurgique Imphy Process for improving the weldability of iron-nickel alloys with a high nickel content and alloys obtained by this process
FR2148954A5 (en) * 1971-08-11 1973-03-23 Creusot Loire Cryogenic nickel contg steel - retains austenitic structure after deformation at low temps
US3971677A (en) * 1974-09-20 1976-07-27 The International Nickel Company, Inc. Low expansion alloys
JPS5726144A (en) * 1980-07-18 1982-02-12 Daido Steel Co Ltd High strength and low thermal expansion alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2661313C2 (en) * 2014-01-17 2018-07-16 Аперам Method of manufacturing belt of variable thickness and belt produced by this method

Also Published As

Publication number Publication date
JPS58104156A (en) 1983-06-21
ATE12792T1 (en) 1985-05-15
DE3263172D1 (en) 1985-05-23
FR2517701B1 (en) 1988-06-10
FR2517701A1 (en) 1983-06-10
EP0081432A1 (en) 1983-06-15
US4525431A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
Manikandan et al. Microstructure and mechanical properties of alloy C-276 weldments fabricated by continuous and pulsed current gas tungsten arc welding techniques
CA2335894C (en) Welding alloy and articles for use in welding, weldments and methods for producing weldments
Zhou et al. Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D
Kangazian et al. Influence of microstructural features on the mechanical behavior of Incoloy 825 welds
EP0081432B1 (en) Iron-based alloys for welded structures and uses of these alloys
Fairchild et al. Girth welding development for X120 linepipe
JP3330837B2 (en) Consumable electrode type gas shielded arc welding method
EP1778432B1 (en) Flux-cored, slag-free welding wire with high silicon content for the welding of ferritic stainless steels
EP0812646B1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
Goriparthi et al. Experimental Studies on Mechanical Behavior of TIG and Friction Stir Welded AA5083‐AA7075 Dissimilar Aluminum Alloys
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
CA2899559C (en) Welding wire for fe-36ni alloy
CH619491A5 (en)
May Failure analysis of a crude oil storage tank
EP1532315A1 (en) Welding of an element of a track unit and a rail section without adding any material
EP0892076B1 (en) Nickel based alloy and welding electrode made from a nickel based alloy
JP4576262B2 (en) Solid wire for gas shielded arc welding for steel pipe circumference welded joint and welding method
Chung et al. Microstructure and mechanical properties in the friction stir welded C70600 alloy
JP2012187614A (en) Welding method, and structure
JP3819101B2 (en) Welding material for welding and joining spheroidal graphite cast iron and mild steel and welding material for welding repair of spheroidal graphite cast iron
Capitanescu Alloy 625 weld overlays for offshore and onshore projects
FR2520384A1 (en) Iron-nickel alloy with very low coefft. of thermal expansion - contg. titanium to prevent cracks in welds, and used esp. for mfg. tanks for holding liq. natural gas
Kaynak The welding of dissimilar materials with copper based consumables
JPH11104885A (en) Fe-ni low thermal expansion coefficient alloy made welding structure and welding material
FR3139019A1 (en) Welding process for steelworks chimney devices whose walls consist of cooling tubes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830809

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 12792

Country of ref document: AT

Date of ref document: 19850515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3263172

Country of ref document: DE

Date of ref document: 19850523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 82402208.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011205

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011206

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20011207

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011231

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020213

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021202

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021202

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021203

Ref country code: LU

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021203

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20021203

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20021202

BE20 Be: patent expired

Owner name: *IMPHY S.A.

Effective date: 20021203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent
EUG Se: european patent has lapsed