EP0074919A1 - Circuit with a measuring transducer, in particular with a semiconductor pressure sensor - Google Patents

Circuit with a measuring transducer, in particular with a semiconductor pressure sensor Download PDF

Info

Publication number
EP0074919A1
EP0074919A1 EP82730109A EP82730109A EP0074919A1 EP 0074919 A1 EP0074919 A1 EP 0074919A1 EP 82730109 A EP82730109 A EP 82730109A EP 82730109 A EP82730109 A EP 82730109A EP 0074919 A1 EP0074919 A1 EP 0074919A1
Authority
EP
European Patent Office
Prior art keywords
transistor
circuit
voltage
diode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82730109A
Other languages
German (de)
French (fr)
Other versions
EP0074919B1 (en
Inventor
Udo-Fritz Dipl.-Ing. Buchholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT82730109T priority Critical patent/ATE13730T1/en
Publication of EP0074919A1 publication Critical patent/EP0074919A1/en
Application granted granted Critical
Publication of EP0074919B1 publication Critical patent/EP0074919B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
    • G05F3/222Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/225Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the temperature

Definitions

  • the invention relates to a circuit arrangement with a transmitter, in particular with a semiconductor pressure transducer, and with a transistor circuit via which the transmitter is connected to a supply voltage source, which contains circuit elements for compensating temperature influences on the measuring voltage of the transmitter and which has a connection point for has additional compensation circuit elements, the transistor circuit including a transistor, the base of which is connected via a resistor to the collector and with a further resistor to the emitter.
  • a known circuit arrangement of this type (“Electronics Application", 12 (1980) 12, pages 35, 36) has a connection point for compensation circuit elements, which is formed by the connection point between the transistor circuit and the transmitter.
  • the transmitter is a semiconductor pressure transducer with four piezoresistive elements arranged in a bridge circuit, at the output diagonal of which the measuring voltage is taken as the output signal of the pressure transducer.
  • the measuring voltage of this known arrangement is fed to inputs of a differential amplifier, the additional compensation circuit elements also being connected to one of these inputs.
  • the additional compensation circuit elements are formed here by resistors with which a linear compensation of temperature influences on the measuring voltage of the transmitter, especially for zero point compensation with no pressure effect on the pressure sensor, can be carried out.
  • the invention has for its object to provide a circuit arrangement with a transmitter in which influences of temperature changes on the measuring voltage are largely avoided.
  • connection point is connected directly to the base of the transistor of the transistor circuit in a circuit arrangement of the type specified above, and to the connection point a diode is connected with its one connection, the other connection via a variable voltage divider to the supply voltage source in Connection is established.
  • the circuit arrangement according to the application is advantageous in that a voltage across the diode, taking into account the voltage at the base of the transistor which changes due to the temperature influence on the transistor circuit, can be set in such a way that the diode is blocked below a predetermined temperature and conductive above this temperature is; This ensures extensive compensation even for a non-linear, temperature-dependent change in the measuring voltage due to the non-linear kink characteristic of the diode.
  • the amplification behavior of the transistor can be influenced by a bias voltage of the diode set accordingly by means of the voltage divider in such a way that, in the event that the diode is blocked, a different course of the voltage U B than for the case that the diode is conductive.
  • the base voltage of the transistor which, together with the bias voltage, forms the voltage across the diode, is a function of the temperature T that also acts on the transistor, so that the transition from the conductive to the blocked state of the diode (break point) occurs at one Change in this temperature T results at a certain value.
  • T 20 ° C (T O )
  • the voltage U B at the transmitter then behaves approximately again as described with equation (1).
  • the bias of the diode can be adjusted in a particularly simple manner if the voltage divider contains an adjustable resistor which is connected to the two poles of the supply voltage source and, with its tap, via a diode series resistor to the other connection of the diode.
  • an adjustable resistor which is connected to the two poles of the supply voltage source and, with its tap, via a diode series resistor to the other connection of the diode.
  • the exemplary embodiment of the circuit arrangement according to the invention shown in FIG. 1 has a transmitter 1, which is formed from a bridge circuit composed of piezoresistive elements and outputs the measurement voltage U M at its bridge branch.
  • the transmitter 1 is connected via a transistor circuit 2 to a pole 3 of a supply voltage source, not shown; the other pole 4 of the supply voltage source is led to the other connection of the transmitter 1.
  • the transistor circuit 2 contains a Tran sistor TR, the collector of which is connected to the pole 3 of the supply voltage source and the emitter of which is connected to the transmitter 1.
  • the base of the transistor TR is connected to the collector via a resistor R1 and to the emitter via a resistor R2.
  • the transistor circuit 2 has a connection point 5 which is connected to the base of the transistor TR and to which a diode D is connected with its one connection 6.
  • the diode D is led with its other terminal 7 via a resistor R3 to the tap 8 of an adjustable resistor P;
  • the adjustable resistance P lies between the poles 3 and 4 of the supply voltage source.
  • the transmitter 1 and the transistor circuit 2 are exposed to a temperature influence starting from a temperature T, which would lead to a change in the measuring voltage despite constant pressure acting on the transmitter. Since this temperature T acts in the same way on the transistor TR of the transistor circuit 2, the base voltage U BE at the transistor TR is also set to a value which is characteristic of this temperature T. In the event that the voltage applied to the diode D has such a value due to a corresponding setting of the adjustable resistor P that the diode D is blocked, for. B. at temperatures below 20 °, there is an input voltage U B of the transmitter 1, which can be described by the following equation:
  • the voltage U BE depending on the temperature influence of the temperature T, has a value such that the diode D changes into the conductive region - here, for example, at temperatures greater than 20 ° - the amplification behavior of the transistor TR changes in this way that now the voltage U B in the following way. is adjustable:
  • U SP represents the voltage at the tap of the adjustable resistor P, with which the bias voltage of the diode D is set.
  • the differential change (TK +) of the voltage U B over the temperature T can then be expressed as follows:
  • the voltage profiles shown in FIG. 2 represent the behavior of the voltage U B when the temperature influence (temperature T) changes on the circuit arrangement according to the invention.
  • the voltage U B As shown in curve 10, an ideal compensation of the temperature influence on the measuring voltage is achieved analogously to the previously described equation (1).
  • Curve 11 results from a compensation of the measurement voltage, which is not dealt with here, and which only compensates for the linear portion of the temperature influence.
  • the curve 12 shows the behavior of the voltage U B , as is the case with the circuit arrangement according to the invention.
  • a break point 13 corresponds to the voltage value at which the diode changes from the blocking to the conducting state - here an assumed steep transition. This break point 13 is selected by adjusting the bias of the diode D by means of the voltage divider P - see FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

1. A circuit arrangement having a measuring transducer, in particular a semiconductor pressure receiver, having a) a transistor circuit a1) by means of which the measuring transducer is connected to a supply voltage source which has a constant voltage value and which a2) comprises switching elements for the compensation of temperature influences upon the measuring voltage of the measuring transducer and which a3) possesses a connection point for additional compensation switching elements, where b) the transistor circuit comprises a transistor whose base is connected to the collector via an impedance and to the emitter by means of a further impedance, characterised in that c) the connection point (5) is directly connected to the base of the transistor (TR) of the transistor circuit (2) and d) a diode (D) has one terminal (6) connected to the connection point (5), and e) its other terminal (7) connected to the supply voltage source by means of an adjustable voltage divider (Fig. 1).

Description

Die Erfindung bezieht sich auf eine Schaltungsanordnung mit einem Meßumformer, insbesondere mit einem Halbleiter-Druckaufnehmer, und mit einer Transistorschaltung, über die der Meßumformer an eine Speisespannungsquelle angeschlossen ist, die Schaltungselemente zur Kompensation von Temperatureinflüssen auf die Meßspannung des Meßumformers enthält und die einen Anschlußpunkt für zusätzliche Kompensationsschaltungselemente aufweist, wobei die Transistorschaltung einen Transistor enthält, dessen Basis über einen Widerstand mit dem Kollektor und mit einem weiteren Widerstand mit dem Emitter verbunden ist.The invention relates to a circuit arrangement with a transmitter, in particular with a semiconductor pressure transducer, and with a transistor circuit via which the transmitter is connected to a supply voltage source, which contains circuit elements for compensating temperature influences on the measuring voltage of the transmitter and which has a connection point for has additional compensation circuit elements, the transistor circuit including a transistor, the base of which is connected via a resistor to the collector and with a further resistor to the emitter.

Eine bekannte Schaltungsordnung dieser Art ("Elektronik-Applikation", 12 (1980) 12, Seiten 35, 36) weist einen Anschlußpunkt für Kompensationsschaltungselemente auf, der von der Verbindungsstelle zwischen Transistorschaltung und Meßumformer gebildet ist. Der Meßumformer ist ein Halbleiter-Druckaufnehmer mit vier in einer Brückenschaltung angeordneten piezoresistiven Elementen, an deren Ausgangsdiagonale die Meßspannung als Ausgangssignal des Druckaufnehmers abgenommen wird. Die Meßspannung dieser bekannten Anordnung ist an Eingänge eines Differenzverstärkers geführt, wobei mit einem dieser Eingänge auch die zusätzlichen Kompensationsschaltungselemente verbunden sind. Die zusätzlichen Kompensationsschaltungselemente sind hier von Widerständen gebildet, mit denen eine lineare Kompensation von Temperatureinflüssen auf die Meßspannung des Meßumformers, vor allem zur Nullpunktkompensation bei keiner Druckwirkung auf den Druckaufnehmer, vorgenommen werden kann.A known circuit arrangement of this type ("Electronics Application", 12 (1980) 12, pages 35, 36) has a connection point for compensation circuit elements, which is formed by the connection point between the transistor circuit and the transmitter. The transmitter is a semiconductor pressure transducer with four piezoresistive elements arranged in a bridge circuit, at the output diagonal of which the measuring voltage is taken as the output signal of the pressure transducer. The measuring voltage of this known arrangement is fed to inputs of a differential amplifier, the additional compensation circuit elements also being connected to one of these inputs. The additional compensation circuit elements are formed here by resistors with which a linear compensation of temperature influences on the measuring voltage of the transmitter, especially for zero point compensation with no pressure effect on the pressure sensor, can be carried out.

Der Erfindung liegt die Aufgabe zugrunde, eine Schaltungsanordnung mit einem Meßumformer zu schaffen, bei der Einflüsse von Temperaturänderungen auf die Meßspannung weitestgehend vermieden sind.The invention has for its object to provide a circuit arrangement with a transmitter in which influences of temperature changes on the measuring voltage are largely avoided.

Zur Lösung dieser Aufgabe ist bei einer Schaltungsanordnung der eingangs angegebenen Art der Anschlußpunkt direkt mit der Basis des Transistors der Transistorschaltung verbunden, und an den Anschlußpunkt ist eine Diode mit ihrem einen Anschluß angeschlossen, die mit ihrem anderen Anschluß über einen veränderbaren Spannungsteiler mit der Speisespannungsquelle in Verbindung steht.To solve this problem, the connection point is connected directly to the base of the transistor of the transistor circuit in a circuit arrangement of the type specified above, and to the connection point a diode is connected with its one connection, the other connection via a variable voltage divider to the supply voltage source in Connection is established.

Die anmeldungsgemäße Schaltunganordnung ist insofern vorteilhaft, als eine Spannung an der Diode unter Berücksichtigung der aufgrund des Temperatureinflusses auf die Transistorschaltung sich ändernden Spannung an der Basis des Transistors mit dem Spannungsteiler so einstellbar ist, daß die Diode unterhalb einer vorgegebenen Temperatur gesperrt und oberhalb dieser Temperatur leitend ist; hierdurch ist eine weitgehende Kompensation auch einer nichtlinearen, temperaturabhängigen Änderung der Meßspannung aufgrund der nichtlinearen Knickkennlinie der Diode gewährleistet.The circuit arrangement according to the application is advantageous in that a voltage across the diode, taking into account the voltage at the base of the transistor which changes due to the temperature influence on the transistor circuit, can be set in such a way that the diode is blocked below a predetermined temperature and conductive above this temperature is; This ensures extensive compensation even for a non-linear, temperature-dependent change in the measuring voltage due to the non-linear kink characteristic of the diode.

Eine ideale Kompensation der Temperatureinflüsse auf die Meßspannung des Meßumformers ergäbe sich rechnerisch, wenn eine am Meßumformer anliegende Eingangsspannung UB folgenden Verlauf in Abhängigkeit von der die Meßspannung beeinflussenden Temperatur T aufweisen würde:

Figure imgb0001
An ideal compensation of the temperature influences on the measuring voltage of the transmitter would be calculated if an input voltage U B applied to the transmitter would have the following course depending on the temperature T influencing the measuring voltage:
Figure imgb0001

Die Spannung Us stellt bei der obigen Gleichung die konstante Spannung der Speisespannungsquelle dar; die dimensionslosen Faktoren sind aufgrund der charakteristischen Daten der piezoresistiven Elemente des Meßumformers ermittelt; mit dem Faktor (T-20°) ist die Änderung der variablen Temperatur T als Abweichung von einer vorgegebenen mittleren Temperatur T0=20° C darstellt.In the above equation, the voltage U s represents the constant voltage of the supply voltage source; the dimensionless factors are determined on the basis of the characteristic data of the piezoresistive elements of the transmitter; the factor (T-20 °) represents the change in the variable temperature T as a deviation from a predetermined mean temperature T 0 = 20 ° C.

Bei der oben angegebenen Gleichung (1) stellt der rechte Summand auf der rechten Seite der Gleichung einen quadratischen Anteil im Verlauf von UB dar, der somit bei lediglich nur linearer Kompensation des Temperatureinflusses auf die Meßspannung zu einem Meßfehler führen würde.In the above-mentioned equation (1), the right summand on the right-hand side of the equation represents a quadratic component in the course of U B , which would therefore lead to a measurement error with only linear compensation of the temperature influence on the measuring voltage.

Mit der Anordnung der Diode bei der anmeldungsgemäßen Schaltungsanordnung kann durch eine mittels des Spannungsteilers entsprechend eingestellte Vorspannung der Diode das Verstärkungsverhalten des Transistors so beeinflußt werden, daß sich für den Fall, daß die Diode gesperrt ist, ein anderer Verlauf der Spannung UB ergibt als für den Fall, daß die Diode leitend ist. Die Basisspannung des Transistors, die zusammen mit der Vorspannung die an der Diode anstehende Spannung bildet, stellt eine von der auch auf den Transistor einwirkenden Temperatur T abhängige Größe dar, so daß sich der Übergang vom leitenden zum gesperrten Zustand der Diode (Knickpunkt) bei einer Änderung dieser Temperatur T bei einem bestimmten Wert ergibt. Durch entsprechende Einstellung des Spannungsteilers und somit durch Änderung der Vorspannung der Diode kann dieser Knickpunkt z.B. bei einer Temperatur von T=20°C (TO) liegen. Die Spannung UB am Meßumformer verhält sich dann bei einer Änderung der Temperatur T näherungsweise wie-der mit der Gleichung (1) beschriebene Verlauf.With the arrangement of the diode in the circuit arrangement according to the application, the amplification behavior of the transistor can be influenced by a bias voltage of the diode set accordingly by means of the voltage divider in such a way that, in the event that the diode is blocked, a different course of the voltage U B than for the case that the diode is conductive. The base voltage of the transistor, which, together with the bias voltage, forms the voltage across the diode, is a function of the temperature T that also acts on the transistor, so that the transition from the conductive to the blocked state of the diode (break point) occurs at one Change in this temperature T results at a certain value. By appropriate setting of the voltage divider and thus by changing the bias of the diode, this break point can be, for example, at a temperature of T = 20 ° C (T O ). When the temperature T changes, the voltage U B at the transmitter then behaves approximately again as described with equation (1).

Auf besonders einfache Weise läßt sich die Vorspannung der Diode einstellen, wenn der Spannungsteiler einen einstellbaren Widerstand enthält, der an die beiden Pole der Speisespannungsquelle und mit seinem Abgriff über einen Diodenvorwiderstand an den anderen Anschluß der Diode angeschlossen ist. Durch entsprechende Bemessung des Vorwiderstandes und des einstellbaren Widerstandes ist somit eine Festlegung des Knickpunktes der Diode in einem weiten Bereich gewährleistet.The bias of the diode can be adjusted in a particularly simple manner if the voltage divider contains an adjustable resistor which is connected to the two poles of the supply voltage source and, with its tap, via a diode series resistor to the other connection of the diode. By appropriately dimensioning the series resistor and the adjustable resistor, a determination of the break point of the diode is thus ensured in a wide range.

Die Erfindung wird anhand der Figuren erläutert, wobei

  • Figur 1 ein Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung darstellt und
  • Figur 2 ein Diagramm von verschiedenen Verläufen der Spannung U in Abhängigkeit von der die Meßspannung beeinflussenden-Temperatur T zeigt.
The invention is explained with reference to the figures, wherein
  • Figure 1 shows an embodiment of the circuit arrangement according to the invention and
  • FIG. 2 shows a diagram of different courses of the voltage U as a function of the temperature T influencing the measuring voltage.

Das in der Figur 1 dargestellte Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung weist einen Meßumformer 1 auf, der aus einer aus piezoresistiven Elementen zusammengesetzten Brückenschaltung gebildet ist und an seinem Brückenzweig die Meßspannung UM abgibt. Der Meßumformer 1 ist über eine Transistorschaltung 2 mit einem Pol 3 einer nicht dargestellten Speisespannungsquelle verbunden; der andere Pol 4 der Speisespannungsquelle ist an den anderen Anschluß des Meßumformers 1 geführt. Die Transistorschaltung 2 enthält einen Transistor TR, dessen Kollektor mit dem Pol 3 der Speisespannungsquelle und dessen Emitter mit dem Meßumformer 1 verbunden ist. Die Basis des Transistors TR ist über einen Widerstand R1 mit dem Kollektor und über einen Widerstand R2 mit dem Emitter verbunden. Die Transistorschaltung 2 weist einen Anschlußpunkt 5 auf, der mit der Basis des Transistors TR verbunden ist und an den eine Diode D mit ihrem einen Anschluß 6 angeschlossen ist. Die Diode D ist mit ihrem anderen Anschluß 7 über einen Widerstand R3 an den Abgriff 8 eines einstellbaren Widerstandes P geführt; der einstellbare Widerstand P liegt zwischen den Polen 3 und 4 der Speisespannungsquelle.The exemplary embodiment of the circuit arrangement according to the invention shown in FIG. 1 has a transmitter 1, which is formed from a bridge circuit composed of piezoresistive elements and outputs the measurement voltage U M at its bridge branch. The transmitter 1 is connected via a transistor circuit 2 to a pole 3 of a supply voltage source, not shown; the other pole 4 of the supply voltage source is led to the other connection of the transmitter 1. The transistor circuit 2 contains a Tran sistor TR, the collector of which is connected to the pole 3 of the supply voltage source and the emitter of which is connected to the transmitter 1. The base of the transistor TR is connected to the collector via a resistor R1 and to the emitter via a resistor R2. The transistor circuit 2 has a connection point 5 which is connected to the base of the transistor TR and to which a diode D is connected with its one connection 6. The diode D is led with its other terminal 7 via a resistor R3 to the tap 8 of an adjustable resistor P; The adjustable resistance P lies between the poles 3 and 4 of the supply voltage source.

Bei dem dargestellten Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung mit einem Meßumformer ist der Meßumformer 1 und die Transistorschaltung 2 einem von einer Temperatur T ausgehenden Temperatureinfluß ausgesetzt, der zu einer Änderung der Meßspannung trotz gleichbleibenden auf den Meßumformer einwirkenden Druckes führen würde. Da diese Temperatur T in gleicher Weise auf den Transistor TR der Transistorschaltung 2 einwirkt, stellt sich auch die Basisspannung UBE am Transistor TR auf einen für diese Temperatur T charakteristischen Wert ein. Für den Fall, daß die an der Diode D anstehende Spannung aufgrund einer entsprechenden Einstellung des einstellbaren Widerstandes P solch einen Wert aufweist, daß die Diode D gesperrt ist, z. B. bei Temperaturen unter 20°, so ergibt sich eine Eingangsspannung UB des Meßumformers 1, die sich durch folgende Gleichung beschreiben läßt:

Figure imgb0002
In the illustrated embodiment of the circuit arrangement according to the invention with a transmitter, the transmitter 1 and the transistor circuit 2 are exposed to a temperature influence starting from a temperature T, which would lead to a change in the measuring voltage despite constant pressure acting on the transmitter. Since this temperature T acts in the same way on the transistor TR of the transistor circuit 2, the base voltage U BE at the transistor TR is also set to a value which is characteristic of this temperature T. In the event that the voltage applied to the diode D has such a value due to a corresponding setting of the adjustable resistor P that the diode D is blocked, for. B. at temperatures below 20 °, there is an input voltage U B of the transmitter 1, which can be described by the following equation:
Figure imgb0002

Eine differentielle Änderung (TK-) der Spannung UB A differential change (TK-) in the voltage U B

über der Temperatur T läßt sich wie folgt darstellen:

Figure imgb0003
over temperature T can be represented as follows:
Figure imgb0003

Für den Fall, daß die Spannung UBE abhängig vom Temperatureinfluß der Temperatur T einen solchen Wert aufweist, daß die Diode D in den leitenden Bereich übergeht - hier zum Beispiel bei Temperaturen größer als 20° -, so ändert sich das Verstärkungsverhalten des Transistors TR derart, daß nunmehr die Spannung UB in der folgenden Weise dar-. stellbar ist:

Figure imgb0004
In the event that the voltage U BE, depending on the temperature influence of the temperature T, has a value such that the diode D changes into the conductive region - here, for example, at temperatures greater than 20 ° - the amplification behavior of the transistor TR changes in this way that now the voltage U B in the following way. is adjustable:
Figure imgb0004

In dieser Gleichung (4) stellt USP die Spannung am Abgriff des einstellbaren Widerstandes P dar, mit der die Vorspannung der Diode D eingestellt wird. Die differentielle Änderung (TK+) der Spannung UB über der Temperatur T läßt sich dann wie folgt ausdrücken:

Figure imgb0005
In this equation (4), U SP represents the voltage at the tap of the adjustable resistor P, with which the bias voltage of the diode D is set. The differential change (TK +) of the voltage U B over the temperature T can then be expressed as follows:
Figure imgb0005

Setzt man die beiden für die beschriebenen Temperaturbereiche dargestellten Änderungen (TK+, TK-) der Spannung UB zueinander ins Verhältnis, so ergibt sich

Figure imgb0006
If the two changes (TK +, TK-) of the voltage U B shown for the temperature ranges described are compared to one another, the result is
Figure imgb0006

Aus dieser Gleichung (6) ist somit die Bemessungsgrundlage für die Widerstände R1 und R3 zu entnehmen, mit denen somit eine weitgehende Kompensierung des Temperatureinflusses - auch des nichtlinearen Anteils - sichergestellt ist.From this equation (6), the basis of measurement for the resistors R1 and R3 can be taken, with which extensive compensation of the temperature influence - including the non-linear component - is ensured.

Da die beschriebenen Gleichungen (2) bis (6) unter der Voraussetzung aufgestellt sind, daß die Diode eine rechtwinklige Knickkennlinie, d. h. einen steilen Übergang vom leitenden in den sperrenden Zustand hat, in der Praxis man jedoch davon ausgehen kann, daß der Übergang nicht steil ist, sondern im Knickpunkt einer e-Funktion angenähert ist, ist der Verlauf der mit der Schaltungsanordnung erzielten Spannung UB in Abhängigkeit von der Temperatur T weitgehend dem mit der Gleichung (1) beschriebenen idealen Verlauf der Spannung UB angenähert.Since the described equations (2) to (6) are set up on the assumption that the diode has a right-angled kink characteristic, ie a steep transition from the conductive to the blocking state, in practice one can assume that the transition is not steep is, but is approximated at the break point of an e-function, the profile of the voltage U B obtained with the circuit arrangement as a function of the temperature T is largely approximated to the ideal profile of the voltage U B described in equation (1).

Die in der Figur 2 dargestellten Spannungsverläufe stellen das Verhalten der Spannung UB bei einer Änderung des Temperatureinflusses (Temperatur T) auf die erfindungsgemäße Schaltungsanordnung dar. Verhält sich die Spannung UB; wie in Kurve 10 dargestellt, so ist eine ideale Kompensation des Temperatureinflusses auf die Meßspannung analog zu der vorher beschriebenen Gleichung (1) erreicht. Die Kurve 11 ergibt sich bei einer - hier nicht behandelten - Kompensation der Meßspannung, die nur den linearen Anteil des Temperatureinflusses ausgleicht. Mit der Kurve 12 ist das Verhalten der Spannung UB aufgezeigt, wie es sich bei der erfindungsgemäßen Schaltungsanordnung ergi-bt. Ein Knickpunkt 13 entspricht dem Spannungswert, bei dem die Diode vom sperrenden in den leitenden Zustand - hier ein angenommener steiler Übergang - überwechselt. Dieser Knickpunkt 13 ist durch Einstellung der Vorspannung der Diode D mittels des Spannungsteilers P - siehe Fig. 1 - so gewählt, daß er bei einer Temperatur To = + 20° C liegt. Der Temperaturwert ist in die Mitte eines Temperaturbereichs von Tmin = - 30° und Tmax = + 70° gelegt, der den tatsächlichen Temperaturverhältnissen im Bereich dieser Ausführungsform der erfindungsgemäßen Schaltungsanordnung entspricht. Die Kurve 12 der Spannung UB zeigt . somit, daß mit der erfindungsgemäßen Schaltungsanordnung auch eine Kompensation des nichtlinearen Anteils des Temperatureinflusses auf die Meßspannung UM weitgehend erreichbar ist.The voltage profiles shown in FIG. 2 represent the behavior of the voltage U B when the temperature influence (temperature T) changes on the circuit arrangement according to the invention. The voltage U B; As shown in curve 10, an ideal compensation of the temperature influence on the measuring voltage is achieved analogously to the previously described equation (1). Curve 11 results from a compensation of the measurement voltage, which is not dealt with here, and which only compensates for the linear portion of the temperature influence. The curve 12 shows the behavior of the voltage U B , as is the case with the circuit arrangement according to the invention. A break point 13 corresponds to the voltage value at which the diode changes from the blocking to the conducting state - here an assumed steep transition. This break point 13 is selected by adjusting the bias of the diode D by means of the voltage divider P - see FIG. 1 - so that it is at a temperature T o = + 20 ° C. The temperature value is placed in the middle of a temperature range of Tmin = -30 ° and Tmax = + 70 °, which corresponds to the actual temperature conditions in the area of this embodiment of the circuit arrangement according to the invention. The curve 12 of the voltage U B shows. thus that with the circuit arrangement according to the invention also a compensation of the non-linear part of the temperature influence on the measuring voltage U M is largely achievable.

Claims (2)

1. Schaltungsanordnung mit einem Meßumformer, insbesondere mit einem Halbleiter-Druckaufnehmer, und mit a) einer Transistorschaltung, a1) über die der Meßumformer an eine Speisespannungsquelle mit konstantem Spannungswert angeschlossen ist, die a2) Schaltungselemente zur Kompensation von Temperatureinflüssen auf die Meßspannung des Meßumformers enthält und die a3) einen Anschlußpunkt für zusätzliche Kompensationsschaltungselemente aufweist, wobei b) die Transistorschaltung einen Transistor enthält, dessen Basis über einen Widerstand mit dem Kollektor und mit einem weiteren Widerstand mit dem Emitter verbunden ist,
dadurch gekennzeichnet, daß c) der Anschlußpunkt (5) direkt mit der Basis des Transistors (TR) der Transistorschaltung (2) verbunden ist und d) an den Anschlußpunkt (5) eine Diode (D) mit ihrem einen Anschluß (6) angeschlossen ist, die e) mit ihrem anderen Anschluß (7) über einen einstellbaren Spannungsteiler mit der Speisespannungsquelle in Verbindung steht. (Fig. 1)
1. Circuit arrangement with a transmitter, in particular with a semiconductor pressure transducer, and with a) a transistor circuit, a1) via which the transmitter is connected to a supply voltage source with a constant voltage value, which a2) contains circuit elements for compensation of temperature influences on the measuring voltage of the transmitter and the a3) has a connection point for additional compensation circuit elements, wherein b) the transistor circuit contains a transistor whose base is connected to the collector via a resistor and to the emitter via a further resistor,
characterized in that c) the connection point (5) is connected directly to the base of the transistor (TR) of the transistor circuit (2) and d) at the connection point (5) a diode (D) with its one connection (6) is connected e) with its other connection (7) is connected to the supply voltage source via an adjustable voltage divider. (Fig. 1)
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß f) der Spannungsteiler einen einstellbaren Widerstand (P) enthält, der f1) an die beiden Pole (3, 4) der Speisespannungsquelle und f2) mit seinem Abgriff (8) über einen Diodenvorwiderstand (R3) an den anderen Anschluß (7) der Diode (D) angeschlossen ist. (Fig. 1) 2. Circuit arrangement according to claim 1, characterized in that f) the voltage divider contains an adjustable resistor (P) which f1) to the two poles (3, 4) of the supply voltage source and f2) with its tap (8) is connected via a diode series resistor (R3) to the other connection (7) of the diode (D). (Fig. 1)
EP82730109A 1981-09-08 1982-08-12 Circuit with a measuring transducer, in particular with a semiconductor pressure sensor Expired EP0074919B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82730109T ATE13730T1 (en) 1981-09-08 1982-08-12 CIRCUIT ARRANGEMENT WITH A TRANSMITTER, IN PARTICULAR WITH A SEMICONDUCTOR PRESSURE TRANSDUCER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813135974 DE3135974A1 (en) 1981-09-08 1981-09-08 CIRCUIT ARRANGEMENT WITH A TRANSMITTER, ESPECIALLY WITH A SEMICONDUCTOR PRESSURE SENSOR
DE3135974 1981-09-08

Publications (2)

Publication Number Publication Date
EP0074919A1 true EP0074919A1 (en) 1983-03-23
EP0074919B1 EP0074919B1 (en) 1985-06-05

Family

ID=6141357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82730109A Expired EP0074919B1 (en) 1981-09-08 1982-08-12 Circuit with a measuring transducer, in particular with a semiconductor pressure sensor

Country Status (4)

Country Link
EP (1) EP0074919B1 (en)
JP (1) JPS5855815A (en)
AT (1) ATE13730T1 (en)
DE (2) DE3135974A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3844601C2 (en) * 1987-07-27 1993-03-11 Nippon Steel Corp., Tokio/Tokyo, Jp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638049A (en) * 1968-05-17 1972-01-25 Philips Corp Network having a resistance the temperature coefficient of which is variable at will
DE2148843A1 (en) * 1971-09-27 1973-04-12 Siemens Ag COMPENSATION CIRCUIT WITH ADJUSTABLE TEMPERATURE COEFFICIENT
DE2414366A1 (en) * 1974-03-26 1975-10-23 Heidenhain Gmbh Dr Johannes Cct compensating interference effects - in system with light source and photodetector, transmission signal being dependent on illumination
US3919616A (en) * 1972-12-06 1975-11-11 Gen Systems Constant voltage power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638049A (en) * 1968-05-17 1972-01-25 Philips Corp Network having a resistance the temperature coefficient of which is variable at will
DE2148843A1 (en) * 1971-09-27 1973-04-12 Siemens Ag COMPENSATION CIRCUIT WITH ADJUSTABLE TEMPERATURE COEFFICIENT
US3919616A (en) * 1972-12-06 1975-11-11 Gen Systems Constant voltage power supply
DE2414366A1 (en) * 1974-03-26 1975-10-23 Heidenhain Gmbh Dr Johannes Cct compensating interference effects - in system with light source and photodetector, transmission signal being dependent on illumination

Also Published As

Publication number Publication date
EP0074919B1 (en) 1985-06-05
ATE13730T1 (en) 1985-06-15
DE3135974A1 (en) 1983-03-17
DE3264047D1 (en) 1985-07-11
JPS5855815A (en) 1983-04-02
JPH0156361B2 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
DE3418906C2 (en)
DE2917237C2 (en)
DE19544863C2 (en) Sensor device
DE3503489A1 (en) CIRCUIT ARRANGEMENT FOR COMPENSATING THE TEMPERATURE DEPENDENCY OF SENSITIVITY AND ZERO POINT OF A PIEZORESISTIVE PRESSURE SENSOR
EP0106204A1 (en) Circuit with Hall field probe
DE1812292C3 (en) Circuit arrangement for gain control
DE2305291C3 (en) Control circuit for regulating the amplitude of a signal
DE1110286B (en) Electronic, two-pole arrangement for keeping a direct current constant
DE2518890A1 (en) LINEARIZING DEVICE
DE69218725T2 (en) Voltage regulator
DE2518422A1 (en) Automatic resistance compensating circuit - used for connections between resistors in bridge branches in measuring instruments
EP0650112A2 (en) Constant-current source
EP0074919B1 (en) Circuit with a measuring transducer, in particular with a semiconductor pressure sensor
DE2727212C3 (en) Signal strength meter driver circuit in a receiver
DE69209358T2 (en) Circuit for equivalent inductance
WO2003052433A2 (en) Circuit arrangement for measurement or detection of current
DE1289872B (en) Frequency variable triangle voltage generator
DE2440947A1 (en) Temperature variations regulated reference element - zener diode transistor, resistances network temperature compensated
EP0217147B1 (en) Circuit arrangement for feeding signals to a rotating magnet measuring unit
DE3827606A1 (en) Temperature compensation circuit for a Hall generator
DE2950369C2 (en) Circuit arrangement for shifting the output current range of an operational amplifier
DE3702169C2 (en)
DE4041621A1 (en) Evaluation circuit for piezo-resistive pressure sensor - has resistive bridge contg. two piezo-resistive arms, operational amplifier all fitting on single hybrid
DE2531475B2 (en) CIRCUIT ARRANGEMENT WITH A CONTROLLABLE IMPEDANCE
DE1901212B2 (en) CIRCUIT ARRANGEMENT FOR COMPENSATION OF THE TEMPERATURE RANGE OF THE BASE EMITTER VOLTAGE OF A TRANSISTOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19830429

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 13730

Country of ref document: AT

Date of ref document: 19850615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3264047

Country of ref document: DE

Date of ref document: 19850711

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860805

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19870831

Ref country code: CH

Effective date: 19870831

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19870831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880503

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890831