EP0074471B1 - Process for the production of heat exchangers from ceramic foils - Google Patents

Process for the production of heat exchangers from ceramic foils Download PDF

Info

Publication number
EP0074471B1
EP0074471B1 EP82105905A EP82105905A EP0074471B1 EP 0074471 B1 EP0074471 B1 EP 0074471B1 EP 82105905 A EP82105905 A EP 82105905A EP 82105905 A EP82105905 A EP 82105905A EP 0074471 B1 EP0074471 B1 EP 0074471B1
Authority
EP
European Patent Office
Prior art keywords
ceramic
foils
weight
heat exchanger
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82105905A
Other languages
German (de)
French (fr)
Other versions
EP0074471A3 (en
EP0074471A2 (en
Inventor
Jürgen Dr. Dipl.-Ing. Heinrich
Heinrich Ing.Grad. Schelter
Stefan Dr. Dipl.-Chem. Schindler
Axel Dr. Dipl.-Ing. Krauth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec GmbH
Original Assignee
Ceramtec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec GmbH filed Critical Ceramtec GmbH
Priority to AT82105905T priority Critical patent/ATE11698T1/en
Publication of EP0074471A2 publication Critical patent/EP0074471A2/en
Publication of EP0074471A3 publication Critical patent/EP0074471A3/en
Application granted granted Critical
Publication of EP0074471B1 publication Critical patent/EP0074471B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly

Definitions

  • the invention relates to a method for producing ceramic heat exchangers by punching out and stacking pieces of film made from film strips cast using ceramic slips, the block-shaped heat exchanger thus produced being subjected to a lamination process using a plastic compound or an adhesive, and then the raw body being subjected to a sintering process becomes.
  • the defects that have occurred in the described method do not allow rational mass production, in particular if undercutting or curved channel guides are necessary.
  • the heat exchangers often have an inhomogeneous structure after their completion. This is particularly evident in the case of heat exchangers made of silicon nitride, since the porous surface of this material means that no smooth flow channels are obtained and the flow behavior is therefore not optimal.
  • the invention is therefore based on the object of improving a method of the type mentioned at the outset such that engagement and curved duct guides are also possible, and furthermore when the individual foils are joined to form a heat exchanger, the spacers, the end pieces and the milling of the windows are eliminated, in particular, the lamination errors are eliminated and the processing of the laminated raw body is possible with appropriate tools.
  • the slip consists of a ceramic powder, organic binders, dispersing or diluting agents and, if necessary, plasticizers and other auxiliaries in the form of oils.
  • the starting point is mainly silicon slip, to which 3 to 10% by weight of cordierite is preferably added.
  • Other ceramic powders consist of cordierite with the composition of 9 to 20 wt.% MgO, 30 to 50 wt.% Al 2 O 3 and 41 to 57 wt.% SiO 2 .
  • Silicon carbide is also suitable, the mixture consisting of 70 to 92% by weight of SiC and 8 to 30% by weight of C.
  • semiconducting barium titanates can be used if the heat exchanger block is to be used as a heating element at the same time, by being supplied with electrical current.
  • the organic binder per se is not subject to any particular restriction provided that a good bond to the ceramic powder is guaranteed and the required toughness and dimensional stability are present in the film, if necessary in combination with the plasticizer.
  • Polyvinyl acetates and polyvinyl butyral have proven particularly successful.
  • Water or organic solvents such as ethanol, toluene and trichlorethylene are used as dispersing and diluting agents.
  • Frame formulations which are particularly suitable according to the invention for the production of the ceramic films are given below, the slip formulations being broken down by ceramic raw materials and binders or solvents:
  • the viscosity of the slip can be influenced in particular by the solvent content. It has also been found that the use of ultrasound in the treatment of the casting slip is particularly advantageous. This treatment gives a casting slurry with greater homogeneity, better casting properties and a maximum content of solids, which has a particular effect on the bulk density of the film. In this way, films with a higher packing density and improved mechanical properties can be obtained. Furthermore, it makes sense to provide a vibrating device on the casting belt that compresses the casting slurry again or enables a uniform film thickness over the entire range.
  • the ceramic films are brought to their final dimensions after lamination. If thick foils or very high flow channels are required, which exceed the foil thickness of 0.1 to 1.5 mm, the foils are connected to individual cards with a lamination aid in a pre-lamination process. Various flow channels are then punched out of these foils or cards or the foil is subjected to an embossing process. In the latter case, the ceramic foils are exposed in matrices at 20 to 120 ° C and pressures of 5 to 100 bar, which results in comb-like projections.
  • the punched or embossed cards are then built up by means of a device to form a heat exchanger block, with which the individual layers are laminated together with the aid of a laminating press.
  • a press device In the lamination process, a press device is used at pressures of 0.1 to 15, preferably 1 bar and time intervals of 1 to 10 s. Normally work is done at room temperature, but temperatures up to 100 ° C can also be used. In individual cases, the pressure used depends on the organic content and the type of lamination aid. For the lamination process, either a paste is used, which preferably contains a ceramic filler, or a purely organic adhesive, which is applied by screen printing, spraying or rolling.
  • the use of lamination aids has several advantages. On the one hand, low pressures are made possible during the lamination process, whereby deformation of the flow channels is avoided. Furthermore, the waviness of the foils is compensated and finally the lamination aid effectively reduces the lamination errors.
  • the organic constituents are then heated from 40 to 60% of the plastic content, which results in an additional raw strength. This also ensures that the heat exchanger block is easy to machine without the tools smearing through the organic components of the ceramic film.
  • the remaining organic components are then heated and the heat exchanger block sintered between 1200 and 1700 ° C. It may still be necessary to rework the inlet and outlet openings of the flow channels in order to maintain a good connection to the various supply and discharge media.
  • the method according to the invention also enables extensive automation, since in the previous production, due to the individual handling during punching, positioning and laminating, no continuous work process could be carried out.
  • heat exchangers are obtained which are very homogeneous and show very good contact between the individual layers after sintering.
  • the improved method also results in better quality heat exchangers, and / or with little effort, so-called baffles can be installed transversely to the flow device of the channels.
  • the baffles can be selected and are no longer dependent on the manufacturing process.
  • Another possibility provides that curved flow channels can be produced. This means that asymmetrical and cylindrical heat exchangers can also be manufactured.
  • heat exchangers can be obtained which optionally consist of layers of silicon nitride, silicon carbide and cordierite in the form of plates or foils in accordance with DE-A No. 2631092.
  • FIG. 1 shows the manufacturing process of a gas / liquid heat exchanger made of silicon nitride.
  • a gas / liquid heat exchanger made of silicon nitride.
  • To produce the ceramic casting slip 100% by weight of silicon powder with 24% by weight of ethanol, 10% by weight of toluene, 1.5% by weight of Menhaden oil, 8% by weight of polyvinyl butyral and 5% by weight as plasticizer.
  • -% Palatinol and / or Ucon-Oil added. This mixture is milled in a drum mill with Al 2 O 3 balls for 20 h and the slip is then evacuated. The bad The warping of the slip for film production takes place on a steel belt.
  • the slip is added via a casting shoe, the film thickness being determined by an adjustable gap height of 0.2 to 1.5 mm on the casting shoe.
  • the stacked heat exchanger block after having been removed from the laminating press, is subjected to a temperature treatment at temperatures between 100 and 200 ° C.
  • the organic components especially the plasticizer and the lamination aid, evaporate.
  • the baking process takes 1 to 2 days, with 40 to 60% of the organic components being expelled from the heat exchanger block.
  • the heat exchanger block can then be machined by milling or sawing so that it obtains its final mass.
  • the remaining content of organic constituents is then baked out at temperatures between 200 and 300 ° C. over a period of about 2 to 3 days. This measure eliminates the usual pre-sintering or pre-nitriding at 1100 to 1300 ° C, in particular in the case of silicon foils.

Abstract

Process and apparatus for manufacturing heat exchangers from ceramic sheets, wherein different flow channels are stamped from or pressed into the sheets, and the formed sheets are joined together with a laminating agent. The stacking of the individual sheets is effected using apparatus in which the sheets are transported to the forming means, applicator means and laminating means by horizontally and vertically displaceable, rotatable and pivotable suction plates. The organic component of the ceramic sheets is expelled from the heat exchanger block obtained in two heating steps with an intermediate forming operation to bring the heat exchanger block to its final dimensions, and the block then fired between 1,200 DEG to 1,700 DEG C. The actual sintering temperature depends on the particular ceramic used, which may comprise Si3N4, SiC, cordierite and/or semiconductive barium titanate compounds.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von keramischen Wärmetauschern, indem aus unter Verwendung von keramischen Schlickern gegossenen Folienbändern massgerechte Folienstücke ausgestanzt und gestapelt werden, wobei der so entstandene blockförmige Wärmetauscher einem Laminierprozess unter Verwendung einer Kunststoffmasse oder eines Klebers unterworfen und anschliessend der Rohkörper einem Sinterprozess ausgesetzt wird.The invention relates to a method for producing ceramic heat exchangers by punching out and stacking pieces of film made from film strips cast using ceramic slips, the block-shaped heat exchanger thus produced being subjected to a lamination process using a plastic compound or an adhesive, and then the raw body being subjected to a sintering process becomes.

Es ist bereits ein Verfahren zur Herstellung von Wärmetauschern aus keramischen Folien aus der DE-A Nr. 2841571 bekannt, indem zwischen zwei Grundplatten ausgestanzte Folien mit Abstandshaltern aufeinandergestapelt und zusätzlich sogenannte Fenster in die Deckwandung eingefräst werden. Anschliessend wird ein solcher blockförmiger Wärmetauscher einem Kalt- oder Heisslaminierungsprozess unterworfen. Ein solches Verfahren zieht zwar höhere Herstellungskosten gegenüber dem üblichen Strangziehen von keramischen Wärmetauschern nach sich, aber man erhält sehr dünne Wandungen. Andererseits ist mit der Strangziehtechnik kein Einbau von sogenannten Schikanen quer zur Ziehrichtung der Strömungskanäle möglich. Auch die Handhabung beim Zusammenbau solcher Wärmetauscher aus Stäben und dünnwandigen Folien ist sehr schwierig, und ausserdem ist die Herstellungsmethode sehr arbeitsaufwendig. Ferner hat sich beim Laminieren herausgestellt, dass nicht immer alle Folien gleichmässig aufeinander haften, und insbesondere verschmieren bei der Rohbearbeitung des ungesinterten Wärmetauscherblockes die Werkzeuge leicht durch den organischen Bindemittelgehalt der Folien. Entfernt man nun das gesamte Bindemittel aus der Keramik, so wird der Körper sehr spröde, so dass wiederum dieser sich schlecht bearbeiten lässt.A process for the production of heat exchangers from ceramic foils is already known from DE-A No. 2841571 by stacking foils punched out between two base plates with spacers and additionally milling so-called windows into the top wall. Such a block-shaped heat exchanger is then subjected to a cold or hot lamination process. Although such a process entails higher manufacturing costs than the conventional extrusion of ceramic heat exchangers, very thin walls are obtained. On the other hand, with the extrusion technique, it is not possible to install so-called baffles transverse to the direction of the flow channels. Handling when assembling such heat exchangers from rods and thin-walled foils is also very difficult, and the manufacturing method is also very labor-intensive. Furthermore, it was found during lamination that not all of the foils adhere evenly to one another, and in particular the tools easily smear during the raw machining of the unsintered heat exchanger block due to the organic binder content of the foils. If you remove the entire binder from the ceramic, the body becomes very brittle, so that it is difficult to work with.

Des weiteren ist aus der GB-A Nr. 1418459 ein Verfahren bekannt, das die Herstellung von Wärmetauschern aus Folien vorsieht. Die Folien von etwa 0,15 mm Dicke werden auf einem verbrennbaren Trägermaterial mittels des Doctor-Blade-Verfahrens hergestellt, wobei sich als besonders nachteilig erwiesen hat, dass die Abstandshalterzwischen den Medientrennwänden in sehr aufwendigen und für eine Serienfertigung wenig geeigneten Technik erstellt werden. Der Aufbau des Wärmetauschers erfolgt durch abwechselndes Aufeinanderlegen von Siliciumkunststoffolien und Abstandshaltern, die auf Giessfolien aufgebracht sind. Unter Verwendung von Druck und Temperatur als auch eines Lösungsmittels oder Klebers werden die einzelnen Teile des Wärmetauschers zusammengefügt. Beim Brennen muss zuerst das Papier entfernt werden, dann der Binder und schliesslich der Nitridierungsprozess durchgeführt werden. Beim Verbrennen des Papiers muss ausserdem sichergestellt werden, dass die feine Siliciumstruktur nicht beschädigt wird, und die dabei gebildete Asche wird durch Ultraschallwaschen entfernt. Ferner ist vor dem Verbrennen des Papiers eine Teilnitridierung des Wärmetauscherblockes durchzuführen.Furthermore, from GB-A No. 1418459 a method is known which provides for the production of heat exchangers from foils. The films of approximately 0.15 mm thickness are produced on a combustible carrier material by means of the doctor blade method, it having proven to be particularly disadvantageous that the spacers between the media partition walls are produced using very complex technology which is unsuitable for series production. The heat exchanger is constructed by alternately stacking silicon plastic films and spacers that are applied to cast films. The individual parts of the heat exchanger are joined using pressure and temperature as well as a solvent or adhesive. When burning, the paper must first be removed, then the binder and finally the nitriding process carried out. When the paper is burned, it must also be ensured that the fine silicon structure is not damaged, and the ash formed in the process is removed by ultrasound washing. Furthermore, partial nitridation of the heat exchanger block must be carried out before the paper is burned.

Die aufgetretenen Mängel bei dem beschriebenen Verfahren erlauben keine rationelle Massenfertigung, insbesondere wenn hintergriffige oder gekrümmte Kanalführungen notwendig sind. Auch weisen die Wärmetauscher nach ihrer Fertigstellung oft ein inhomogenes Gefüge auf. Dies zeigt sich besonders bei Wärmetauschern aus Siliciumnitrid, da durch die poröse Oberfläche dieses Werkstoffes man keine glatten Strömungskanäle erhält und somit das Strömungsverhalten nicht optimal ist.The defects that have occurred in the described method do not allow rational mass production, in particular if undercutting or curved channel guides are necessary. The heat exchangers often have an inhomogeneous structure after their completion. This is particularly evident in the case of heat exchangers made of silicon nitride, since the porous surface of this material means that no smooth flow channels are obtained and the flow behavior is therefore not optimal.

Der Erfindung liegt deshalb die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so zu verbessern, dass auch hintergriffige und gekrümmte Kanalführungen möglich werden, ferner beim Zusammenfügen der einzelnen Folien zu einem Wärmetauscher, die Abstandshalter, die Endstücke als auch das Einfräsen der Fenster entfällt, insbesondere auch die Laminierfehler beseitigt werden und die Bearbeitung des laminierten Rohkörpers mit entsprechenden Werkzeugen möglich wird.The invention is therefore based on the object of improving a method of the type mentioned at the outset such that engagement and curved duct guides are also possible, and furthermore when the individual foils are joined to form a heat exchanger, the spacers, the end pieces and the milling of the windows are eliminated, in particular, the lamination errors are eliminated and the processing of the laminated raw body is possible with appropriate tools.

Diese Aufgabe wird erfindungsgemäss durch die im Hauptanspruch angegebenen Verfahrensschritte gelöst. Weitere Merkmale hinsichtlich der Erfindung und der verwendeten Werkstoffe ergeben sich aus den Unteransprüchen.According to the invention, this object is achieved by the method steps specified in the main claim. Further features with regard to the invention and the materials used result from the subclaims.

Für die Herstellung der Folien werden übliche keramische Schlicker verwendet. Der Schlicker besteht aus einem keramischen Pulver, organischen Bindemitteln, Dispergier- oder Verdünnungsmittel und ggf. Weichmachern sowie sonstigen Hilfsmitteln in Form von Ölen. Ausgegangen wird hauptsächlich von Siliciumschlickern, denen bevorzugt 3 bis 10 Gew.-% Cordierit zugegeben wird. Andere keramische Pulver bestehen aus Cordierit mit der Zusammensetzung von 9 bis 20 Gew.-% MgO, 30 bis 50 Gew.-% AI203 und 41 bis 57 Gew.-% Si02. Ferner eignet sich auch gut Siliciumcarbid, wobei die Mischung aus 70 bis 92 Gew.-% SiC und 8 bis 30 Gew.-% C besteht. Ferner können halbleitende Bariumtitanate verwendet werden, wenn der Wärmetauscherblock gleichzeitig als Heizelement einzusetzen ist, indem er mit elektrischem Strom beaufschlagt wird. Das organische Bindemittel unterliegt an sich keiner besonderen Beschränkung, sofern eine gute Bindung zum keramischen Pulver gewährleistet ist und bei der Folie ggf. in Kombination mit dem Weichmacher die erforderliche Zähigkeit und Masshaltigkeit vorliegt. Insbesondere gut bewährt haben sich Polyvinylazetate und Polyvinylbutyral. Als Dispergierungs- und Verdünnungsmittel dienen Wasser oder organische Lösungsmittel wie zum Beispiel Äthanol, Toluol und Trichloräthylen. Erfindungsgemäss besonders geeignete Rahmenrezepturen für die Herstellung der Keramikfolien sind nachfolgend angegeben, wobei die Schlikkerrezepturen nach Keramikrohstoff- und Binde- bzw. Lösungsmitteln aufgeschlüsselt sind:

Figure imgb0001
Conventional ceramic slips are used to produce the films. The slip consists of a ceramic powder, organic binders, dispersing or diluting agents and, if necessary, plasticizers and other auxiliaries in the form of oils. The starting point is mainly silicon slip, to which 3 to 10% by weight of cordierite is preferably added. Other ceramic powders consist of cordierite with the composition of 9 to 20 wt.% MgO, 30 to 50 wt.% Al 2 O 3 and 41 to 57 wt.% SiO 2 . Silicon carbide is also suitable, the mixture consisting of 70 to 92% by weight of SiC and 8 to 30% by weight of C. Furthermore, semiconducting barium titanates can be used if the heat exchanger block is to be used as a heating element at the same time, by being supplied with electrical current. The organic binder per se is not subject to any particular restriction provided that a good bond to the ceramic powder is guaranteed and the required toughness and dimensional stability are present in the film, if necessary in combination with the plasticizer. Polyvinyl acetates and polyvinyl butyral have proven particularly successful. Water or organic solvents such as ethanol, toluene and trichlorethylene are used as dispersing and diluting agents. Frame formulations which are particularly suitable according to the invention for the production of the ceramic films are given below, the slip formulations being broken down by ceramic raw materials and binders or solvents:
Figure imgb0001

Die Viskosität des Schlickers ist insbesondere durch den Lösungsmittelgehalt beeinflussbar. Auch hatsich herausgestellt, dass die Anwendung von Ultraschall bei der Aufbereitung des Giessschlickers besonders vorteilhaft ist. Durch diese Behandlung erhält man einen Giessschlicker mit grösserer Homogenität, besseren Giesseigenschaften und einem maximalen Gehalt an Feststoffanteilen, was sich besonders auf die Rohdichte der Folie auswirkt. Auf diese Weise kann man Folien mit grösserer Packungsdichte und verbesserten mechanischen Eigenschaften bekommen. Weiterhin ist es sinnvoll, am Giessband eine Vibrationsvorrichtung vorzusehen, die den Giessschlicker nochmals verdichtet bzw. eine gleichmässige Folienstärke über die ganze Bandbreite ermöglicht.The viscosity of the slip can be influenced in particular by the solvent content. It has also been found that the use of ultrasound in the treatment of the casting slip is particularly advantageous. This treatment gives a casting slurry with greater homogeneity, better casting properties and a maximum content of solids, which has a particular effect on the bulk density of the film. In this way, films with a higher packing density and improved mechanical properties can be obtained. Furthermore, it makes sense to provide a vibrating device on the casting belt that compresses the casting slurry again or enables a uniform film thickness over the entire range.

Nach diesem Verfahren werden die Keramikfolien nach dem Laminieren auf Endmass gebracht. Werden dicke Folien bzw. sehr hohe Strömungskanäle verlangt, die über die Folienstärke von 0,1 bis 1,5 mm hinausgehen, so werden in einem Vorlaminierungsprozess die Folien zu einzelnen Karten mit einem Laminierhilfsmittel verbunden. Aus diesen Folien bzw. Karten werden dann verschiedene Strömungskanäle ausgestanzt bzw. wird die Folie einem Prägeverfahren unterworfen. Im letzteren Fall werden die keramischen Folien in Matrizen bei 20 bis 120°C und Drücken von 5 bis 100 bar ausgesetzt, wodurch kammartige Vorsprünge entstehen.According to this process, the ceramic films are brought to their final dimensions after lamination. If thick foils or very high flow channels are required, which exceed the foil thickness of 0.1 to 1.5 mm, the foils are connected to individual cards with a lamination aid in a pre-lamination process. Various flow channels are then punched out of these foils or cards or the foil is subjected to an embossing process. In the latter case, the ceramic foils are exposed in matrices at 20 to 120 ° C and pressures of 5 to 100 bar, which results in comb-like projections.

Die ausgestanzten bzw. geprägten Karten werden dann mittels einer Vorrichtung zu einem Wärmetauscherblock aufgebaut, mit der gleichzeitig das Zusammenlaminieren der Einzelschichten mit Hilfe einer Laminierpresse erfolgt.The punched or embossed cards are then built up by means of a device to form a heat exchanger block, with which the individual layers are laminated together with the aid of a laminating press.

Bei dem Laminierungsvorgang verwendet man eine Pressvorrichtung bei Drücken von 0,1 bis 15, vorzugsweise 1 bar und Zeitintervalle von 1 bis 10s. Normalerweise wird bei Raumtemperatur gearbeitet, aber auch Temperaturen bis zu 100°C sind anwendbar. Im einzelnen Fall richtet sich der angewendete Druck nach dem Organikgehalt und der Art des Laminierhilfsmittels. Für den Laminierungsvorgang benutzt man entweder eine Paste, die vorzugsweise einen keramischen Füllstoff enthält oder ein rein organisches Klebemittel, welche durch Siebdrucken, Sprayen oder Rollen aufgetragen werden. Die Anwendung von Laminierhilfsmittel bringt mehrere Vorteile mit sich. Zum einen werden niedrige Drücke beim Laminiervorgang ermöglicht, wodurch eine Verformung der Strömungskanäle vermieden wird. Weiterhin wird die Welligkeit der Folien ausgeglichen und schliesslich verringert das Laminierhilfsmittel wirkungsvoll die Laminierfehler. Anschliessend erfolgt das Ausheizen der organischen Bestandteile von 40 bis 60% des Kunststoffanteils, was eine zusätzliche Rohfestigkeit bewirkt. Damit wird auch erreicht, dass der Wärmetauscherblock gut bearbeitbar ist, ohne dass die Werkzeuge durch die organischen Bestandteile der keramischen Folie verschmieren. Danach erfolgt das Ausheizen der restlichen organischen Bestandteile und das Sintern des Wärmetauscherblockes zwischen 1200 bis 1700°C. Eventuell ist noch ein Nachbearbeiten der Eingangs- und Austrittsöffnungen der Strömungskanäle notwendig, um einen guten Anschluss zu den verschiedenen zu- und abführenden Medien zu erhalten.In the lamination process, a press device is used at pressures of 0.1 to 15, preferably 1 bar and time intervals of 1 to 10 s. Normally work is done at room temperature, but temperatures up to 100 ° C can also be used. In individual cases, the pressure used depends on the organic content and the type of lamination aid. For the lamination process, either a paste is used, which preferably contains a ceramic filler, or a purely organic adhesive, which is applied by screen printing, spraying or rolling. The use of lamination aids has several advantages. On the one hand, low pressures are made possible during the lamination process, whereby deformation of the flow channels is avoided. Furthermore, the waviness of the foils is compensated and finally the lamination aid effectively reduces the lamination errors. The organic constituents are then heated from 40 to 60% of the plastic content, which results in an additional raw strength. This also ensures that the heat exchanger block is easy to machine without the tools smearing through the organic components of the ceramic film. The remaining organic components are then heated and the heat exchanger block sintered between 1200 and 1700 ° C. It may still be necessary to rework the inlet and outlet openings of the flow channels in order to maintain a good connection to the various supply and discharge media.

Das erfindungsgemässe Verfahren ermöglicht auch eine weitgehende Automatisierung, da bei der bisherigen Herstellung durch die einzelne Handhabung beim Stanzen, Positionieren und Laminieren kein kontinuierlicher Arbeitsvorgang durchführbar war. Nach dem Verfahren der Erfindung erhält man Wärmetauscher, die sehr homogen sind und eine sehr gute Kontaktauflage zwischen den einzelnen Schichten nach dem Sintern zeigen. Mit dem verbesserten Verfahren ergeben sich auch qualitativ bessere Wärmetauscher, und/ ohne grösseren Aufwand können sogenannte Schikanen quer zur Strömungseinrichtung der Kanäle eingebaut werden. Die Schikanen sind wählbar und nicht mehr abhängig vom Herstellungsprozess. Eine weitere Möglichkeit sieht vor, dass man gekrümmte Strömungskanäle herstellen kann. Somit sind auch unsymmetrische und zylinderförmige Wärmetauscher zu fertigen. Weiterhin kann man Wärmetauscher erhalten, die wahlweise aus Schichten von Siliciumnitrid, Siliciumcarbid und Cordierit in Form von Platten oder Folien bestehen gemäss der DE-A Nr. 2631092. Durch diese Verwendung von Cordierit, insbesondere bei Siliciumnitrid erhält man glatte und damit widerstandsarme Strömungskanäle.The method according to the invention also enables extensive automation, since in the previous production, due to the individual handling during punching, positioning and laminating, no continuous work process could be carried out. According to the method of the invention, heat exchangers are obtained which are very homogeneous and show very good contact between the individual layers after sintering. The improved method also results in better quality heat exchangers, and / or with little effort, so-called baffles can be installed transversely to the flow device of the channels. The baffles can be selected and are no longer dependent on the manufacturing process. Another possibility provides that curved flow channels can be produced. This means that asymmetrical and cylindrical heat exchangers can also be manufactured. Furthermore, heat exchangers can be obtained which optionally consist of layers of silicon nitride, silicon carbide and cordierite in the form of plates or foils in accordance with DE-A No. 2631092. This use of cordierite, in particular in the case of silicon nitride, gives smooth and therefore low-resistance flow channels.

Weitere Besonderheiten des erfindungsgemässen Verfahrens zum Herstellen von Wärmetauschern aus einzelnen Folien ergeben sich aus dem Beschreibungsteil anhand der Zeichnungen. Es zeigen:

  • Fig. 1 den Verfahrensstammbaum des erfindungsgemässen Verfahrens,
  • Fig. 2 eine Draufsicht auf Karten mit und ohne verschiedenen ausgestanzten Strömungskanälen, und
  • Fig. 3 die perspektivische Ansicht einer Ausführungsform gemäss dem erfindungsgemässen Verfahren.
Further special features of the method according to the invention for producing heat exchangers from individual foils result from the description part with reference to the drawings. Show it:
  • 1 the process family tree of the process according to the invention,
  • Fig. 2 is a plan view of cards with and without different punched-out flow channels, and
  • Fig. 3 is a perspective view of an embodiment according to the inventive method.

Die Fig. 1 zeigt das Herstellungsverfahren eines erfindungsgemässen Gas/Flüssigkeits-Wärmetauschers aus Siliciumnitrid. Zur Herstellung des keramischen Giessschlickers werden 100 Gew.-% Siliciumpulver mit 24 Gew.-% Äthanol, 10 Gew.-% Toluol, 1,5 Gew.-% Menhaden-Oil, 8 Gew.-% Polyvinylbutyral und als Weichmacher 5 Gew.-% Palatinol und/oder Ucon-Oil zugegeben. Diese Mischung wird 20 h in einer Trommelmühle mit AI203-Kugeln gemahlen und der Schlicker wird anschliessend evakuiert. Das übliche Verziehen des Schlickerszur Folienherstellung erfolgt auf einem Stahlband. Die Schlickerzugabe geschieht über einem Giessschuh, wobei die Folienstärke durch eine einstellbare Spalthöhe von 0,2 bis 1,5 mm am Giessschuh bestimmt wird. Die Folie wird dann vom Stahlband abgezogen und vereinzelt. Dabei hat sich als zweckmässigherausgestellt, sogenannte Vorlaminate aus zwei bis drei Folien aufzubauen. Die Verbindung der einzelnen Folien untereinander wird durch Aufsprayen bzw. durch Auftragen eines Laminierhilfsmittels erreicht. Im letzteren Fall verwendet man eine Paste, die beispielsweise aus 65 Gew.-% Silicium und/ oder Cordierit bzw. aus Mischungen derselben besteht. In der Paste sind ferner 20 bis 40 Gew.-% ungesättigte Alkohole und 3 bis 10 Gew.-% Bindemittel, die Weichmacher und Polyvinylbutyral enthalten. Der Aufdruck der Paste erfolgt in diesem Fall im Siebdruckverfahren. Gleichzeitig wird durch den Feststoffgehalt der Paste die Oberflächenunebenheit ausgeglichen. Ebenfalls erfolgt ein oberflächiges Anlösen der Folien durch die Paste, was später zu homogenen Verbindungen der einzelnen Schichten führt. Bei der Verwendung von Siliciumfolien ist es sinnvoll, die Vorlaminate vollständig zu bedrucken, zumal wenn die Paste einen Cordieritbestandteil enthält, der mit dem späteren Siliciumnitrid im Sinterprozess zur Ausschwitzung von einer Glasphase führt, was glatte und dichte Oberflächen der Strömungskanäle bewirkt. Ansonsten werden nur diejenigen Stellen bedruckt, die zur Verbindung der Folien notwendig sind. Damit wird erreicht, dass die ausgestanzten Teile wieder zurückgeführt und dem Giessschlicker beigesetzt werden können.1 shows the manufacturing process of a gas / liquid heat exchanger made of silicon nitride. To produce the ceramic casting slip, 100% by weight of silicon powder with 24% by weight of ethanol, 10% by weight of toluene, 1.5% by weight of Menhaden oil, 8% by weight of polyvinyl butyral and 5% by weight as plasticizer. -% Palatinol and / or Ucon-Oil added. This mixture is milled in a drum mill with Al 2 O 3 balls for 20 h and the slip is then evacuated. The bad The warping of the slip for film production takes place on a steel belt. The slip is added via a casting shoe, the film thickness being determined by an adjustable gap height of 0.2 to 1.5 mm on the casting shoe. The film is then pulled off the steel strip and separated. It has proven to be expedient to construct so-called prelaminates from two to three foils. The individual foils are connected to one another by spraying or by applying a laminating aid. In the latter case, a paste is used which consists, for example, of 65% by weight of silicon and / or cordierite or of mixtures thereof. The paste also contains 20 to 40% by weight of unsaturated alcohols and 3 to 10% by weight of binder which contain plasticizers and polyvinyl butyral. In this case, the paste is printed using the screen printing process. At the same time, the unevenness of the surface is compensated for by the solid content of the paste. The paste also dissolves the surface, which later leads to homogeneous connections of the individual layers. When using silicon foils, it makes sense to print the pre-laminates completely, especially if the paste contains a cordierite component which, with the later silicon nitride, leads to the exudation of a glass phase in the sintering process, which causes smooth and dense surfaces of the flow channels. Otherwise only those places are printed which are necessary for the connection of the foils. This ensures that the punched-out parts can be returned and placed in the casting slip.

In Fig. 2 sind die rechteckigen Folien bzw. Karten mit einer Dicke von 0,9 mm für den Aufbau eines Gasheizwärmetauschers zu sehen. Diese Karten 1 haben dabei Abmessungen von 120 x 400 mm und sind mit einem zusätzlichen Rand 2 versehen, der bei der späteren Nachbearbeitung entfernt wird. Bei den ausgestanzten Karten mit einer Stärke von 1,8 mm weisen die Rauchgaskanäle 3 eine Breite von 50 mm auf, und die Wandungen 4 haben eine Breite von 3 bis 7 mm. Während für die ausgestanzten Wassertaschen 5 eine Breite von 100 mm gewählt worden ist und mit Schikanen 6 senkrecht zur Strömungsrichtung versehen sind, beträgt hier die Kartendicke 2,7 mm. Die Schikanen sollen insbesondere bewirken, dass die Temperaturverteilung gleichmässig in den Strömungskanälen ist.2 shows the rectangular foils or cards with a thickness of 0.9 mm for the construction of a gas heating heat exchanger. These cards 1 have dimensions of 120 x 400 mm and are provided with an additional edge 2, which is removed during subsequent post-processing. In the punched-out cards with a thickness of 1.8 mm, the flue gas ducts 3 have a width of 50 mm and the walls 4 have a width of 3 to 7 mm. While a width of 100 mm has been chosen for the punched-out water pockets 5 and provided with baffles 6 perpendicular to the direction of flow, the card thickness here is 2.7 mm. The baffles are intended, in particular, to ensure that the temperature distribution is uniform in the flow channels.

Der gestapelte Wärmetauscherblock wird, nachdem er der Laminierpresse entnommen worden ist, bei Temperaturen zwischen 100 bis 200° C einer Temperaturbehandlung unterworfen. Dabei verflüchtigen sich die organischen Bestandteile besonders der Weichmacher und das Laminierhilfsmittel. Der Ausheizvorgang dauert 1 bis 2 d, wobei 40 bis 60% der organischen Bestandteile aus dem Wärmetauscherblock ausgetrieben werden. Danach kann der Wärmetauscherblock gleichsam durch Fräsen oder Sägen bearbeitet werden, so dass er seine endgültigen Masse erhält. In einem Zeitraum von ca. 2 bis 3 d wird dann der restliche Gehalt an organischen Bestandteilen bei Temperaturen zwischen 200 und 300°C ausgeheizt. Durch diese Massnahme entfällt insbesondere bei Siliciumfolien dann das übliche Vorsintern bzw. Vornitridierung bei 1100 bis 1300° C. Die Nitridierung erfolgt dann in bekannter Weise zwischen 1300 bis 1400° C. Wie schon erwähnt, kann man die Dichtigkeit der fertigen Siliciumwärmetauscher noch erhöhen, indem man zweckmässigerweise 3 bis 10 Gew.-% Silicium durch Cordierit beim Laminierhilfsmittel ersetzt. Diese Massnahme kann auch beim Giessschlicker erfolgen. Dann ist jedoch ein Nachsintern bei Temperaturen zwischen 1300 bis 1400°C notwendig, und zwar unter Anwesenheit von Sauerstoff, wie sich aus der DE-A Nr. 2544437 ergibt. Das Ergebnis dieses Verfahrens ist ein homogener einstückiger Wärmetauscher, der sich durch eine gleichmässige Festigkeit auszeichnet.The stacked heat exchanger block, after having been removed from the laminating press, is subjected to a temperature treatment at temperatures between 100 and 200 ° C. The organic components, especially the plasticizer and the lamination aid, evaporate. The baking process takes 1 to 2 days, with 40 to 60% of the organic components being expelled from the heat exchanger block. The heat exchanger block can then be machined by milling or sawing so that it obtains its final mass. The remaining content of organic constituents is then baked out at temperatures between 200 and 300 ° C. over a period of about 2 to 3 days. This measure eliminates the usual pre-sintering or pre-nitriding at 1100 to 1300 ° C, in particular in the case of silicon foils. The nitriding is then carried out in a known manner between 1300 and 1400 ° C. As already mentioned, the tightness of the finished silicon heat exchanger can be increased further by expediently 3 to 10% by weight of silicon is replaced by cordierite in the lamination aid. This measure can also take place with the pouring slurry. Then, however, post-sintering at temperatures between 1300 and 1400 ° C. is necessary, in the presence of oxygen, as can be seen from DE-A No. 2544437. The result of this process is a homogeneous one-piece heat exchanger, which is characterized by a uniform strength.

Claims (6)

1. Method of manufacturing ceramic heat exchangers using foil bands moulded from ceramic slurrys in which dimensionally correct pieces of foil are punched out and stacked, whereby the block-shaped heat exchanger thus produced is subjected to a laminating process using a plastics composition or an adhesive and the semi-finished body is subjected to a sintering process, characterised in that differently shaped flow channels including baffle plates and openings for the media connections are directly stamped or impressed into the foils, whereby a predetermined layer thickness is obtained by prelamination of individual foils, the individual foils are individually laminated together with a pressure of 0.1 to 15 bar and at time intervals of 1 to 6 s, whereby each individual layer is provided with a laminating aid, preferably a paste with a high proportion of solid material, to compensate for the roughness of the foils; in that the organic components up to 40 to 60% of the plastics proportion are baked out in order to make the semi-finished body processable, the heat exchanger block is post-treated, and subsequently the remaining organic components are removed at between 200 to 300°C, and in that an optional post-treating of the inlet and outlet openings of the flow channels occurs after the firing at between 1,200 to 1,700° C.
2. Method as claimed in Claim 1, characterised in that the silicon slurry preferably contains 3 to 10% by weight of cordierite.
3. Method as claimed in Claim 1, characterised in that the ceramic proportion in the cordierite slurry comprises 9 to 10% by weight of MgO, 30 to 50% by weight of AI203, and 41 to 57% by weight of Si02.
4. Method as claimed in Claim 1, characterised in that the ceramic proportion in the silicon carbide slurry comprises 70 to 92% by weight of SiC and 8 to 30% by weight of C.
5. Method as claimed in Claim 1, characterised in that the moulding slurry contains semi-conductive barium titanate compounds.
6. Method as claimed in any of Claims 1 to 5, characterised in that the flow channels are produced by stamping whilst the ceramic foils are subjected in matrices to 20 to 120° C and pressures of 5 to 15 bar.
EP82105905A 1981-09-12 1982-07-02 Process for the production of heat exchangers from ceramic foils Expired EP0074471B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82105905T ATE11698T1 (en) 1981-09-12 1982-07-02 PROCESS FOR MANUFACTURING HEAT EXCHANGER FROM CERAMIC FOILS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3136253 1981-09-12
DE19813136253 DE3136253A1 (en) 1981-09-12 1981-09-12 METHOD AND DEVICE FOR PRODUCING HEAT EXCHANGERS FROM CERAMIC FILMS

Publications (3)

Publication Number Publication Date
EP0074471A2 EP0074471A2 (en) 1983-03-23
EP0074471A3 EP0074471A3 (en) 1983-06-22
EP0074471B1 true EP0074471B1 (en) 1985-02-06

Family

ID=6141507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82105905A Expired EP0074471B1 (en) 1981-09-12 1982-07-02 Process for the production of heat exchangers from ceramic foils

Country Status (5)

Country Link
US (1) US4526635A (en)
EP (1) EP0074471B1 (en)
JP (1) JPS5860195A (en)
AT (1) ATE11698T1 (en)
DE (2) DE3136253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100108C1 (en) * 1991-01-04 1992-04-09 Robert Bosch Gmbh, 7000 Stuttgart, De Joining non-sintered ceramic film to further laminate - involves applying layer contg. solvent for binder of ceramic film to surface to be connected

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3213378C2 (en) * 1982-04-10 1984-10-11 Pacific Wietz Gmbh + Co Kg, 4600 Dortmund Multi-layer sliding body and process for its manufacture
JPS6183897A (en) * 1984-09-28 1986-04-28 Asahi Glass Co Ltd Ceramic heat exchanging unit
US4838581A (en) * 1985-02-05 1989-06-13 Asahi Glass Company Ltd. Joint structure for a tube support plate and a tube
US4875712A (en) * 1985-02-05 1989-10-24 Asahi Glass Company, Ltd. Joint structure for a tube support plate and a tube
DE3717670A1 (en) * 1986-11-21 1988-06-01 Hoechst Ceram Tec Ag METHOD FOR SEALING CERAMIC HEAT EXCHANGERS
DE3643750A1 (en) * 1986-12-20 1988-06-30 Hoechst Ag HEAT EXCHANGER MODULE FROM BURNED CERAMIC MATERIAL
DE3643749A1 (en) * 1986-12-20 1988-06-30 Hoechst Ag HEAT EXCHANGER MODULE FROM BURNED CERAMIC MATERIAL
DE3719606A1 (en) * 1987-06-12 1988-12-22 Hoechst Ceram Tec Ag METHOD FOR SILICOLATING POROUS SHAPED BODIES MADE OF SILICON CARBIDE OR SILICON CARBIDE / CARBON
JPH0670941B2 (en) * 1988-12-15 1994-09-07 株式会社村田製作所 Manufacturing method of multilayer capacitor
US5035961A (en) * 1989-07-05 1991-07-30 Combustion Engineering, Inc. Internal cross-anchoring and reinforcing of multi-layer conductive oxides
DE4022654A1 (en) * 1990-07-17 1992-01-23 Hoechst Ag CARD OF CERAMIC MATERIAL FOR BUILDING PERMANENT STRUCTURES
WO1994002294A1 (en) * 1992-07-15 1994-02-03 Hoechst Ceramtec Aktiengesellschaft Process for constructing structured raw ceramic bodies
JP4239077B2 (en) * 2003-08-20 2009-03-18 独立行政法人 日本原子力研究開発機構 Compact heat exchanger made of high temperature corrosion resistant ceramics
DE10361346A1 (en) * 2003-12-16 2005-07-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Plate heat exchanger, method for producing a plate heat exchanger and ceramic fiber composite material, in particular for a plate heat exchanger
FR2905754B1 (en) * 2006-09-12 2008-10-31 Boostec Sa Sa METHOD FOR MANUFACTURING A HEAT EXCHANGER DEVICE OF SILICON CARBIDE, AND DEVICE OF CARBIDE OF SILICON PRODUCED BY THE METHOD
DE102007048013A1 (en) * 2007-09-27 2009-04-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Ceramic high temperature heat exchanger manufacturing method for externally fired gas turbine of power plant, involves manufacturing channel pre-structure using set of green body foils, and blazing or sintering channel pre-structure
ES2531124B1 (en) * 2013-09-10 2016-01-22 Valeo Térmico, S. A. Heat exchanger for gases, especially the exhaust gases of an engine
US9696097B2 (en) * 2014-08-01 2017-07-04 Applied Materials, Inc. Multi-substrate thermal management apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2841571A1 (en) * 1978-09-23 1980-04-03 Kernforschungsanlage Juelich FLOW-IN CERAMIC RECUPERATOR AND METHOD FOR THE PRODUCTION THEREOF

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358853A (en) * 1965-10-11 1967-12-19 Warner Swasey Co Sheet handling device
US4202660A (en) * 1970-04-22 1980-05-13 Owens-Illinois, Inc. Glass-ceramic article and method of making same
BE790158A (en) * 1971-12-21 1973-02-15 Chausson Usines Sa DEVICE FOR ALTERNATE STACKING OF RADIATOR FINS AND ANALOGUE ELEMENTS OF DIFFERENT NATURE
GB1418459A (en) * 1971-12-29 1975-12-17 Atomic Energy Authority Uk Sintered artefacts
GB1418663A (en) * 1972-03-27 1975-12-24 Atomic Energy Authority Uk Refractory structures
US3943994A (en) * 1972-12-07 1976-03-16 Gte Sylvania Incorporated Ceramic cellular structure having high cell density and method for producing same
US3854186A (en) * 1973-06-14 1974-12-17 Grace W R & Co Method of preparing a heat exchanger
US3940301A (en) * 1974-08-01 1976-02-24 Caterpillar Tractor Co. Method of manufacturing an open cellular article
DE2544437C3 (en) * 1975-10-04 1979-04-05 Rosenthal Ag, 8672 Selb Process for the production of silicon nitride-containing objects coated with a self-glaze
US4156051A (en) * 1975-11-10 1979-05-22 Tokyo Shibaura Electric Co., Ltd. Composite ceramic articles
DE2631092C2 (en) * 1976-07-10 1982-02-04 Rosenthal Technik Ag, 8672 Selb Ceramic alternating layer heat exchanger in modular design
US4130160A (en) * 1976-09-27 1978-12-19 Gte Sylvania Incorporated Composite ceramic cellular structure and heat recuperative apparatus incorporating same
US4230651A (en) * 1977-07-18 1980-10-28 Ford Motor Company Method of fabricating a heat exchanger for Stirling engine
DE2807755C3 (en) * 1977-09-26 1982-03-18 Tecfinor AG, Zürich Method of manufacturing a ceramic body
JPS5839799B2 (en) * 1978-05-02 1983-09-01 日産自動車株式会社 Manufacturing method of large honeycomb structure
CA1121332A (en) * 1978-09-01 1982-04-06 Joseph J. Cleveland Ceramic heat recuperative structure and assembly
US4298059A (en) * 1978-09-23 1981-11-03 Rosenthal Technik Ag Heat exchanger and process for its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2841571A1 (en) * 1978-09-23 1980-04-03 Kernforschungsanlage Juelich FLOW-IN CERAMIC RECUPERATOR AND METHOD FOR THE PRODUCTION THEREOF

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100108C1 (en) * 1991-01-04 1992-04-09 Robert Bosch Gmbh, 7000 Stuttgart, De Joining non-sintered ceramic film to further laminate - involves applying layer contg. solvent for binder of ceramic film to surface to be connected

Also Published As

Publication number Publication date
DE3136253A1 (en) 1983-03-31
JPS5860195A (en) 1983-04-09
EP0074471A3 (en) 1983-06-22
US4526635A (en) 1985-07-02
DE3262215D1 (en) 1985-03-21
JPH0219400B2 (en) 1990-05-01
ATE11698T1 (en) 1985-02-15
EP0074471A2 (en) 1983-03-23

Similar Documents

Publication Publication Date Title
EP0074471B1 (en) Process for the production of heat exchangers from ceramic foils
DE10131692B4 (en) Method and apparatus for molding a ceramic sheet
WO1997040536A1 (en) Monolithic multilayer piezo actuator and process for its production
DE10256980B4 (en) Manufacturing method for a stacked ceramic body
EP0092716A1 (en) Sliding member, method of making it
DE2227343B2 (en) Resin blend, ceramic paste, and method of making sintered, dielectric ceramic structures
DE10240161A1 (en) Ceramic insert plate and process for its manufacture
EP0362213B1 (en) Process for manufacturing a structured ceramic film or a ceramic object composed of such films
DE2364242A1 (en) METHOD OF MANUFACTURING CERAMIC PANELS
DE102004026572A1 (en) Manufacturing method for piezoelectric layer element
DE19535984C2 (en) Method for producing a multilayer ceramic component
DE2445087C2 (en) Ceramic body and process for its manufacture intended for the manufacture of a capacitor
DE2315797B2 (en) Process for the production of ceramic substrates for thin-film circuits
DE2445086C2 (en) Process for the production of a ceramic body suitable for the production of a capacitor
DE2746732A1 (en) Stacked capacitor prodn. method - producing electrodes on second strip and transferring by pressure to dielectric layer on first strip
DE3619871C2 (en)
DE2301277A1 (en) METHOD FOR PRODUCING MULTI-LAYER CONNECTING CONSTRUCTIONS, E. FOR INTEGRATED SEMI-CONDUCTOR CIRCUITS
EP1273050B1 (en) Method and device for the production of multi-layered actuators
DE2737509A1 (en) Multiple ceramic capacitor mfg. method - includes building up sandwich of several electrodes and ceramic for cutting into final multilayered capacitors
DE19643148C2 (en) Manufacturing process for ceramic bodies with microstructure and uses
DE10251689A1 (en) Process for the production of a ceramic laminate
DE2313167A1 (en) Moulded spark erosion machining electrode - made of conductive particles and bonding medium which can be graphitised, coked or cracked
DE2717286C3 (en) Method of manufacturing a multilayer printed circuit board
DE2462008A1 (en) Ceramic monolithic capacitor or integrated circuit - with low m.pt. metal electrodes and conductor tracks
DE2426707A1 (en) Honeycomb heat exchanger of bonded powdered metal plates - made by thermal metal spraying onto mould surface

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19830520

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 11698

Country of ref document: AT

Date of ref document: 19850215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3262215

Country of ref document: DE

Date of ref document: 19850321

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HOECHST CERAMTEC AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HOECHST CERAMTEC AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BECN Be: change of holder's name

Effective date: 19850206

26N No opposition filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: HOECHST CERAMTEC AKTIENGESELLSCHAFT TE SELB, BONDS

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 82105905.2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970620

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970922

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980623

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980716

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980717

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980729

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980731

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980813

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: HOECHST CERAMTEC AKTIENGESELLSCHAFT TRANSFER- CERAMTEC AG INNOVATIVE CERAMIC ENGINEERING

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990702

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

BERE Be: lapsed

Owner name: HOECHST CERAMTEC A.G.

Effective date: 19990731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990702

EUG Se: european patent has lapsed

Ref document number: 82105905.2

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST