EP0074297B1 - Capteur de courant hybride compensé - Google Patents
Capteur de courant hybride compensé Download PDFInfo
- Publication number
- EP0074297B1 EP0074297B1 EP19820401529 EP82401529A EP0074297B1 EP 0074297 B1 EP0074297 B1 EP 0074297B1 EP 19820401529 EP19820401529 EP 19820401529 EP 82401529 A EP82401529 A EP 82401529A EP 0074297 B1 EP0074297 B1 EP 0074297B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- sensor according
- frequency
- circuit
- current sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004804 winding Methods 0.000 claims description 19
- 230000005291 magnetic effect Effects 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 9
- 239000003990 capacitor Substances 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 3
- 210000004899 c-terminal region Anatomy 0.000 claims 1
- 230000005294 ferromagnetic effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/28—Current transformers
- H01F38/32—Circuit arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/28—Current transformers
- H01F38/30—Constructions
- H01F2038/305—Constructions with toroidal magnetic core
Definitions
- the invention relates to a current sensor according to the preamble of claim 1.
- Such a device of the prior art is described in document DE-B-1,281,545, in which the secondary winding delivers an output voltage proportional to dh / dt, that is to say to the variation of the current primary l 1 during time t.
- the secondary time constant of such a non-magnetic or magnetic circuit sensor with an air gap is less than 10 microseconds.
- the output voltage is applied to an integrator circuit RC of the series resistance and capacitor type, intended to deliver a signal more or less proportional to the primary current l 1 .
- Such a sensor does not cause heating but is not suitable for producing a power signal.
- Conventional sensors also use current transformers with non-gap magnetic cores, the secondary winding of which delivers a measurement signal proportional to the primary current, the proportionality factor corresponding to the transformation ratio of the transformer.
- the secondary time constant is greater than 100 milliseconds.
- This type of transformer is capable of delivering a measurement and power signal, but the section of the magnetic circuit must be large enough to avoid saturation of the magnetic circuit during the passage of large currents in the line. This results in a large size and a high manufacturing cost.
- the object of the invention is to remedy these drawbacks and to produce an improved inductive current sensor capable of delivering a predetermined secondary power, with reduced heating and without any auxiliary power source for the operation of the electronic equipment.
- the inductive sensor according to the invention is characterized in that it is of the hybrid type whose secondary time constant t 2 is defined by the relation n 2 / R 0 (R 1 + R 2 ) of between 10 microseconds and 100 milliseconds .
- the range of values of the time constant t 2 is determined by the total length of the non-magnetic gap (s) between 0.5 and 20 millimeters, and by the value of the load resistance R 2 between 10 and 1000 Ohms.
- the secondary winding of the hybrid sensor cooperates with a frequency compensation circuit connected to the terminals of the load resistor R 2 , and delivering a measurement image signal whose amplitude is substantially constant when the frequency f of the primary current 1, is within a predetermined range around a central frequency f o of compensation.
- Said frequency compensation circuit includes a phase shift system for phasing the measurement image signal with the primary current l 1 to be checked when the frequency of the latter corresponds to the central frequency f o .
- the image signal for measuring the compensation circuit is injected into an electronic processing system delivering a tripping order to a control coil of a circuit breaker when the image signal exceeds a predetermined threshold, l 'supply to the treatment system by means of the uncompensated voltage U 2 taken from the terminals of the load resistor R 2 .
- the hybrid current sensor 10 comprises a magnetic circuit CM in the form of a torus provided with one or more air gaps 12 of total length e.
- the magnetic circuit CM is crossed by a line 14 of an alternating current supply network, the line 14 playing the role of primary winding traversed by a current l 1 to be checked.
- a secondary winding 16 is wound on the toroid and comprises n turns of ohmic resistance R l .
- a load resistor R 2 is connected to the output terminals of the secondary winding.
- the secondary time constant t 2 of the hybrid sensor is defined by the relation n 2 / Re (R l + R2), Re being the total reluctance of the magnetic circuit CM.
- the secondary winding 16 delivers an output current 1 2 representing a vector quantity whose module and phase shift ⁇ relative to the primary current l 1 are illustrated by the diagrams of FIG. 2 as a function of the secondary time constant t 2 and for a given frequency f of the primary current l 1 .
- the modulus expressed by the ratio nl 2 / l 1 varies between 0 and 1 when the time constant t 2 increases.
- the sensor is a conventional current transformer.
- time constants t 2 of less than 10 microseconds the sensor is of the non-magnetic type.
- the hybrid sensor occupies the intermediate zone.
- the section of the secondary winding of an inductive sensor being proportional to the product nl 2 ′ it can be seen in FIG. 2 that it is the current transformer where nl 2 is close to l 1 , which requires the most winding volume important and which is therefore the most expensive.
- the torus has an air gap 12 in FIG. 1 has been replaced by a rectangular magnetic circuit CM with two air gaps 12a, 12b, comprising two elementary U-shaped parts located opposite one another, so as to confine a window crossed by the line 14.
- a secondary winding 16 single is wound on the magnetic circuit CM.
- the secondary winding is formed by two coils 16a, 16b connected in series or in parallel, the rest being identical to the sensor of FIG. 3.
- the relative position of the coils 16a, 16b with respect to the air gaps can be arbitrary.
- the characteristics of the hybrid sensor 10 according to FIGS. 1 to 3 nevertheless depend on the frequency variation of the current l 1 to be measured.
- the amplitude and the phase of the output voltage U 2 at the terminals of the secondary winding 16 indeed vary with the frequency. This is why a frequency compensation circuit 18 (FIG. 5) is associated with the hybrid sensor.
- the frequency compensation circuit 18 (fig. 5) is formed by a series circuit RC connected in parallel to the terminals of the load resistor R 2 .
- the image signal of the current l 1 to be measured is the voltage U c across the capacitor C.
- the values of R and C of circuit 18 are defined by the following relation: where f o is the central compensation frequency (55 Hz for example).
- the compensation circuit 18 is constituted by a series circuit with an inductance Let resistance R, connected in parallel to the terminals of R 2 , the image signal for measuring the current l 1 in this case being the voltage U R at the terminals of resistance R.
- FIG. 7 compares the amplitudes of the output voltages U 2 and U c before and after the compensation as a function of the frequency f of the current to be measured, the values of the time constant t 2 and of the intensity of the current 1, being data. It will be noted that the amplitude of the image voltage U c is substantially constant when the frequency f of the current l 1 is within a predetermined range around the central frequency f o of compensation. The current l 1 to be measured and the voltage Uc are in phase when the frequency of the current l 1 is equal to the central frequency f o .
- FIG. 8 represents the application of a compensated hybrid sensor described with reference to FIG. 5, and delivering a combined secondary measurement and supply signal to an electronic control device or static trip device of a circuit breaker with its own current, one of the contacts 20 of which is inserted in line 14.
- the measurement image signal U c of the compensation circuit 18 is injected into an electronic processing system 22 via a first connecting conductor 24.
- the uncompensated voltage U 2 of the secondary winding 16 will be advantageously used for supplying the treatment 22 thanks to a second connecting conductor 26.
- the output of the processing system 22 delivers a tripping order to a control coil 28 which conventionally causes the mechanism to be unlocked. 30 and the opening of the contacts 20 of the protective circuit breaker.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
- Transformers For Measuring Instruments (AREA)
Description
- L'invention est relative à un capteur de courant selon le préambule de la revendication 1.
- Un tel dispositif de l'art antérieur est décrit dans le document DE-B-1.281.545, dans lequel l'enroulement secondaire délivre une tension de sortie proportionnelle à dh/dt, c'est-à-dire à la variation du courant primaire l1 pendant le temps t. La constante de temps secondaire d'un tel capteur amagnétique ou à circuit magnétique à entrefer est inférieure à 10 microsecondes. La tension de sortie est appliquée à un circuit intégrateur RC du type à résistance et condensateur série, destiné à délivrer un signal plus ou moins proportionnel au courant primaire l1. Un tel capteur ne provoque pas d'échauffement mais n'est pas adapté pour produire un signal de puissance.
- Les capteurs conventionnels utilisent d'autre part des transformateurs de courant à noyaux magnétiques sans entrefer dont l'enroulement secondaire délivre un signal de mesure proportionnel au courant primaire, le facteur de proportionnalité correspondant au rapport de transformation du transformateur. La constante de temps secondaire est supérieure à 100 millisecondes. Ce type de transformateur est capable de délivrer un signal de mesure et de puissance, mais la section du circuit magnétique doit être assez importante pour éviter la saturation du circuit magnétique lors du passage de courants importants dans la ligne. Il en résulte un encombrement important et un coût de fabrication élevé.
- L'invention a pour but de remédier à ces inconvénients et de réaliser un capteur de courant inductif perfectionné capable de délivrer une puissance secondaire prédéterminée, avec un échauffement réduit et sans aucune source auxiliaire d'alimentation pour le fonctionnement de l'appareillage électronique.
- Le capteur inductif selon l'invention est caractérisé en ce qu'il est du type hybride dont la constante de temps secondaire t2 est définie par la relation n2/R0(R1 + R2) comprise entre 10 microsecondes et 100 millisecondes. La fourchette des valeurs de la constante de temps t2 est déterminée par la longueur totale de ou des entrefers amagnétiques du noyau comprise entre 0,5 et 20 millimètres, et par la valeur de la résistance de charge R2 comprise entre 10 et 1 000 Ohms.
- Selon une caractéristique de l'invention, l'enroulement secondaire du capteur hybride coopère avec un circuit de compensation en fréquence connecté aux bornes de la résistance de charge R2, et délivrant un signal image de mesure dont l'amplitude est sensiblement constante lorsque la fréquence f du courant primaire 1, est comprise dans une fourchette prédéterminée autour d'une fréquence centrale fo de compensation. Ledit circuit de compensation en fréquence comporte un système déphaseur de mise en phase du signal image de mesure avec le courant primaire l1 à contrôler lorsque la fréquence de ce dernier correspond à la fréquence centrale fo.
- Selon une autre caractéristique de l'invention, le signal image de mesure du circuit de compensation est injecté dans un système de traitement électronique délivrant un ordre de déclenchement à une bobine de commande d'un disjoncteur lorsque le signal image dépasse un seuil prédéterminé, l'alimentation du système de traitement s'effectuant au moyen de la tension U2 non compensée prélevée aux bornes de la résistance de charge R2.
- D'autres avantages ressortiront plus clairement de l'exposé qui va suivre de divers modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- la figure 1 est une vue schématique d'un capteur de courant hybride à tore selon l'invention ;
- la figure 2 illustre deux courbes représentatives du module (en traits forts) et du déphasage (en traits pointillés) du courant de sortie 12, en fonction de la constante de temps secondaire t2 du capteur selon la fig. 1, la fréquence f du courant primaire l1 étant de 50 Hz ;
- les figures 3 et 4 sont deux variantes de réalisation du capteur de courant selon la fig. 1 ;
- la figure 5 représente le schéma équivalent d'un capteur hybride selon les fig. 2 à 4, équipé d'un circuit de compensation de fréquence ;
- la figure 6 est une vue partielle de la fig. 5 et montre une variante du circuit de compensation de fréquence ;
- la figure 7 montre les diagrammes représentatifs des amplitudes des tensions de sortie U2 et Uc du capteur respectivement avant et après la compensation, en fonction de la fréquence f du courant primaire l1 à mesurer ;
- la figure 8 représente l'application d'un capteur hybride compensé selon l'invention à un dispositif électronique de commande d'un disjoncteur de protection.
- Sur la figure 1, le capteur de courant hybride 10 comporte un circuit magnétique CM en forme de tore doté d'un ou de plusieurs entrefers 12 de longueur totale e. Le circuit magnétique CM est traversé par une ligne 14 d'un réseau d'alimentation en courant alternatif, la ligne 14 jouant le rôle d'enroulement primaire parcouru par un courant l1 à contrôler. Un enroulement secondaire 16 est bobiné sur le tore et comprend n spires de résistance ohmique Rl. Une résistance de charge R2 est connectée aux bornes de sortie de l'enroulement secondaire. La constante de temps secondaire t2 du capteur hybride est définie par la relation n2/Re(Rl + R2), Re étant la réluctance totale du circuit magnétique CM.
- L'enroulement secondaire 16 délivre un courant de sortie 12 représentant une grandeur vectorielle dont le module et le déphasage ϕ par rapport au courant primaire l1 sont illustrés par les diagrammes de la figure 2 en fonction de la constante de temps secondaire t2 et pour une fréquence f donnée du courant primaire l1. Le module exprimé par le rapport nl2/l1 varie entre 0 et 1 lorsque la constante de temps t2 croît. Pour des constantes de temps t2 supérieures à 100 millisecondes, le capteur est un transformateur de courant conventionnel. Pour des constantes de temps t2 inférieures à 10 microsecondes, le capteur est du type amagnétique. Le capteur hybride occupe la zone intermédiaire. La section de l'enroulement secondaire d'un capteur inductif étant proportionnelle au produit nl2' on remarque sur la figure 2 que c'est le transformateur de courant où nl2 est voisin de l1, qui exige le volume de bobinage le plus important et qui est donc le plus coûteux.
- Un capteur hybride dont la constante de temps t2 est comprise entre 10 microsecondes et 100 millisecondes, nécessite un enroulement secondaire considérablement réduit par rapport à un transformateur de courant équivalent. Ou encore dans un encombrement donné, entre un transformateur de courant conventionnel et un capteur hybride d'intensités nominales primaires identiques, c'est ce dernier qui est le siège de l'échauffement le plus réduit. Il suffira par conséquent de choisir les valeurs de la résistance de charge R2, de la section S du circuit magnétique CM et de la longueur de l'entrefer e pour déterminer la valeur de t2. Des essais ont montré que la longueur totale de l'entrefer e devait être comprise entre 0,5 et 20 millimètres, et la résistance de charge R2 était comprise entre 10 et 1 000 Ohms selon l'intensité du courant nominal l1 à contrôler circulant dans la ligne 14.
- Sur la figure 3, le tore à un entrefer 12 de la fig. 1 a été remplacé par un circuit magnétique CM rectangulaire à deux entrefers 12a, 12b, comprenant deux parties élémentaires en U situées en regard l'une de l'autre, de manière à confiner une fenêtre traversée par la ligne 14. Un enroulement secondaire 16 unique est bobiné sur le circuit magnétique CM.
- Selon la figure 4, l'enroulement secondaire est formé par deux bobines 16a, 16b connectées en série ou en parallèle, le reste étant identique au capteur de la fig. 3. La position relative des bobines 16a, 16b par rapport aux entrefers peut être quelconque. Les caractéristiques du capteur hybride 10 selon les figures 1 à 3 dépendent néanmoins de la variation de fréquence du courant l1 à mesurer. L'amplitude et la phase de la tension de sortie U2 aux bornes de l'enroulement secondaire 16 varient en effet avec la fréquence. C'est pourquoi un circuit de compensation 18 (fig. 5) de fréquence est associé au capteur hybride.
- Le circuit de compensation de fréquence 18 (fig. 5) est formé par un circuit série RC branché en parallèle aux bornes de la résistance de charge R2. Le signal image du courant l1 à mesurer est la tension Uc aux bornes du condensateur C. Les valeurs de R et C du circuit 18 sont définies par la relation suivante :
- Sur la figure 6, le circuit de compensation 18 est constitué par un circuit série à inductance Let résistance R, branché en parallèle aux bornes de R2, le signal image de mesure du courant l1 étant dans ce cas la tension UR aux bornes de la résistance R.
- La figure 7 compare les amplitudes des tensions de sorties U2 et Uc avant et après la compensation en fonction de la fréquence f du courant à mesurer, les valeurs de la constante de temps t2 et de l'intensité du courant 1, étant données. On remarque que l'amplitude de la tension image Uc est sensiblement constante lorsque la fréquence f du courant l1 est comprise dans une fourchette prédéterminée autour de la fréquence centrale fo de compensation. Le courant l1 à mesurer et la tension Uc sont en phase lorsque la fréquence du courant l1 est égale à la fréquence fo centrale.
- La figure 8 représente l'application d'un capteur hybride compensé décrit en référence à la fig. 5, et délivrant un signal secondaire combiné de mesure et d'alimentation à un dispositif de commande électronique ou déclencheur statique d'un disjoncteur à propre courant dont l'un des contacts 20 est inséré dans la ligne 14. Le signal image de mesure Uc du circuit de compensation 18 est injecté dans un système de traitement 22 électronique par l'intermédiaire d'un premier conducteur de liaison 24. La tension U2 non compensée de l'enroulement secondaire 16 sera utilisée avantageusement pour l'alimentation du système de traitement 22 grâce à un deuxième conducteur 26 de liaison. Lors de l'apparition d'un défaut de surcharge ou de court-circuit sur la ligne 14, la sortie du système de traitement 22 délivre un ordre de déclenchement à une bobine 28 de commande qui provoque d'une manière classique le déverrouillage du mécanisme 30 et l'ouverture des contacts 20 du disjoncteur de protection.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8118416 | 1981-08-26 | ||
FR8116416A FR2512264A1 (fr) | 1981-08-26 | 1981-08-26 | Capteur de courant hybride compense |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0074297A1 EP0074297A1 (fr) | 1983-03-16 |
EP0074297B1 true EP0074297B1 (fr) | 1985-11-21 |
EP0074297B2 EP0074297B2 (fr) | 1988-12-07 |
Family
ID=9261728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19820401529 Expired EP0074297B2 (fr) | 1981-08-26 | 1982-08-13 | Capteur de courant hybride compensé |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0074297B2 (fr) |
JP (1) | JPS5895266A (fr) |
CA (1) | CA1203284A (fr) |
DE (1) | DE3267597D1 (fr) |
FR (1) | FR2512264A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5495169A (en) * | 1984-10-12 | 1996-02-27 | Smith; Dayle | Clamp-on current sensor |
FR2603992B1 (fr) * | 1986-09-16 | 1988-10-28 | Alsthom | Dispositif pour l'acquisition numerique d'un courant electrique alternatif issu d'un transformateur de courant a tore magnetique saturable |
DE3701779A1 (de) * | 1987-02-13 | 1988-08-04 | Budapesti Mueszaki Egyetem | Als stromwandler anwendbarer, linear uebertragender messgeber |
JPH01122735A (ja) * | 1987-11-06 | 1989-05-16 | Nissan Motor Co Ltd | 定速走行装置 |
FR2752996B1 (fr) * | 1996-09-05 | 1998-10-02 | Schneider Electric Sa | Transformateur de courant et relais de protection comportant un tel transformateur |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR514999A (fr) * | 1916-01-10 | 1921-03-22 | Siemens Schuckertwerke Gmbh | Transformateur d'intensité dont la charge comporte un condensateur dans le but de compenser le courant déwatté |
DE535000C (de) * | 1928-08-11 | 1931-10-05 | Elek Zitaets Act Ges Vorm W La | Resonanzkreis |
FR833139A (fr) * | 1937-03-02 | 1938-10-12 | Siemens Ag | Transformateur d'intensité à noyau annulaire pour la mesure des courants à haute fréquence |
FR1142618A (fr) * | 1956-02-09 | 1957-09-20 | Telemecanique Electrique | Procédé et dispositif de mesure des intensités élevées |
CH350710A (de) * | 1956-11-09 | 1960-12-15 | Bbc Brown Boveri & Cie | Stromwandleranlage für Höchstspannungsanlagen |
DE1281545B (de) * | 1963-05-29 | 1968-10-31 | Siemens Ag | Eisenkernwandler mit Luftspalt zur Strommessung |
-
1981
- 1981-08-26 FR FR8116416A patent/FR2512264A1/fr active Granted
-
1982
- 1982-08-13 EP EP19820401529 patent/EP0074297B2/fr not_active Expired
- 1982-08-13 DE DE8282401529T patent/DE3267597D1/de not_active Expired
- 1982-08-13 CA CA000409402A patent/CA1203284A/fr not_active Expired
- 1982-08-25 JP JP57146324A patent/JPS5895266A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
EP0074297A1 (fr) | 1983-03-16 |
JPH0447271B2 (fr) | 1992-08-03 |
JPS5895266A (ja) | 1983-06-06 |
FR2512264B1 (fr) | 1983-10-28 |
EP0074297B2 (fr) | 1988-12-07 |
DE3267597D1 (en) | 1986-01-02 |
CA1203284A (fr) | 1986-04-15 |
FR2512264A1 (fr) | 1983-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0326459B1 (fr) | Déclencheur statique comportant un circuit de déclenchement instantané indépendant de la tension d'alimentation | |
EP0407310B1 (fr) | Déclencheur statique comportant un système de désensibilisation de la protection terre | |
EP0499589B1 (fr) | Dispositif de mesure de courants | |
EP0692098B1 (fr) | Dispositif de mesure de courant electrique comportant un capteur sensible au flux magnetique et destine en particulier aux vehicules a propulsion electrique | |
EP0391812B1 (fr) | Système de controle d'isolement d'un réseau à courant continu | |
EP0099784B1 (fr) | Déclencheur électronique analogique pour disjoncteur de protection contre les surintensités d'un réseau à courant alternatif | |
FR2568425A1 (fr) | Circuit de coupure de courant en cas de defaut a la terre, avec protection contre l'interruption des conducteurs de neutre et de terre. | |
FR2643460A1 (fr) | Dispositif de mesure sans contact d'un courant continu | |
EP0074297B1 (fr) | Capteur de courant hybride compensé | |
EP0570304B1 (fr) | Déclencheur électronique comportant un dispositif de correction | |
EP0069655B1 (fr) | Dispositif de protection différentielle à haute sensibilité pour la détection de courants de défaut phase ou neutre à la terre | |
EP1217707A1 (fr) | Dispositif de détermination du courant primaire d'un transformateur de courant comportant des moyens de correction de saturation | |
EP0116482B1 (fr) | Régulateur de tension à maintien de phase et protection contre les courts-circuits d'excitation d'alternateur | |
US6897758B1 (en) | Method for reproducing direct currents and a direct current transformer for carrying out said method | |
EP0783110B1 (fr) | Capteur de courant à large gamme de fonctionnement | |
EP0739073B1 (fr) | Dispositif de protection différentielle | |
CA1084995A (fr) | Circuit de controle de l'induction d'un transformateur d'intensite | |
FR2868844A1 (fr) | Dispositif de mesure d'un courant continu et dispositif de controle du fonctionnement d'une batterie de vehicule automobile | |
EP0295234A1 (fr) | Procédé et dispositifs de protection et de contrôle d'installations électriques alimentées par transformateur et du transformateur lui-même | |
EP0998003B1 (fr) | Dispositif de protection différentielle comportant un circuit test multitension | |
FR2830692A1 (fr) | Declencheur electronique comportant un dispositif de test des capteurs de courant | |
SU729717A1 (ru) | Способ защиты обмотки трансформатора от внутренних повреждений и устройство дл его осуществлени | |
FR2568999A1 (fr) | Capteur de deplacements sans contacts | |
BE399645A (fr) | Dispositif de compoundage et de protection des appareils à décharge électrique | |
FR2586817A1 (fr) | Capteur de courant et son procede de mise en oeuvre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19830524 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19851121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19851130 |
|
REF | Corresponds to: |
Ref document number: 3267597 Country of ref document: DE Date of ref document: 19860102 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: MWB MESSWANDLER-BAU AG Effective date: 19860818 |
|
ITF | It: translation for a ep patent filed | ||
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19881207 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE CH DE GB IT LI NL SE |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930806 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950503 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990811 Year of fee payment: 18 Ref country code: CH Payment date: 19990811 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19991013 Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000831 |
|
BERE | Be: lapsed |
Owner name: MERLIN GERIN Effective date: 20000831 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000813 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |