EP0071069A2 - Mikrowellenantenne für Zirkularpolarisation - Google Patents
Mikrowellenantenne für Zirkularpolarisation Download PDFInfo
- Publication number
- EP0071069A2 EP0071069A2 EP82106235A EP82106235A EP0071069A2 EP 0071069 A2 EP0071069 A2 EP 0071069A2 EP 82106235 A EP82106235 A EP 82106235A EP 82106235 A EP82106235 A EP 82106235A EP 0071069 A2 EP0071069 A2 EP 0071069A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- microwave antenna
- waveguide
- exciter
- radiator
- hybrid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0241—Waveguide horns radiating a circularly polarised wave
Definitions
- the invention relates to a microwave antenna for left-and right-circularly polarized electromagnetic waves comprising a waveguide radiator and two over a 90 - driven coupler (hybrid) to 9 0 ° to one another perpendicular to the axis of the waveguide radiator disposed excitation radiators - 3 dB.
- Such a microwave antenna which can also be used for satellite reception and is known in practice, is shown in FIG. 1.
- Waves with left or right polarization can be generated or received by feeding (transmitting) or removing (receiving) the high-frequency energy at one of the two connecting gates of the hybrid that are decoupled from one another.
- the other connection gate is either closed or used to receive or send the orthogonal components.
- the quality of the circular polarization depends crucially on the fact that the two connecting lines L 1 , L 2 between the excitation radiators S designed as plugs immersed in the waveguide radiator HS via plug connector ST and the hybrid H, and the metal pins and the plug connectors are exactly the same are long.
- the length difference in the area around 12 GHz is only about 0.1 mm if there is a deviation from the required 90 ° phase difference of max. 3 0 should be observed.
- these high demands on the manufacturing accuracy of the cables and connectors can only be met with the aid of complicated and expensive manufacturing and assembly techniques.
- the invention has for its object to provide a microwave antenna of the type mentioned, which has a simple and inexpensive structure, as far as possible suitable for mass production, with high accuracy of the phase difference of the polarization components.
- This object is achieved in that the exciter radiator, the hybrid, and their connecting lines are implemented in printing technology on a substrate, the part of which supports the exciter radiator and is arranged transversely in the waveguide radiator.
- the printed circuit is produced photographically with a single template.
- the advantage is achieved in a simple and elegant manner that the connectors required for the known antenna and their inaccuracies are eliminated and, moreover, the connecting lines between the excitation radiators and the corresponding connections of the hybrid are practically arbitrarily precise and by a correspondingly large template are also extremely inexpensive to manufacture.
- the circuit board is ideally suited for mass production, without fear of any deterioration or fluctuations in accuracy. Rather, with the antenna according to the invention, the deviations from the 90 ° phase difference can easily be kept below 1 °. In addition, it also has a lower damping compared to the prior art described.
- the structure according to the invention eliminates any weather protection that may be necessary (for example by covering the radiator aperture) because the substrate arranged transversely in the waveguide radiator already provides adequate sealing against weather influences.
- a longitudinal current-free plane is generated in this way at a distance of a quarter wavelength from the short circuit, in which the installation of the substrate does not cause any interference.
- FIGS. 2 and 3 show an exemplary embodiment of the microwave antenna according to the invention, FIG. 2 representing an axial section and FIG. 3 a plan view of the substrate to be inserted transversely into the antenna.
- the microwave antenna has an open circular waveguide radiator part 1 widened in a funnel shape in the radiation direction and a round waveguide radiator part 3 short-circuited at the end 2.
- a substrate 7 is inserted between the two radiator parts 1, 3, which are firmly connected to one another by means of fastening flanges 4, 4 'or 5, 5' and screws 6, and consists of a carrier plate 8 made of insulating material coated on both sides with a metal covering, the one facing the radiator part 1 , together with the housing, the metal layer 9 forming the ground surface has a circular recess whose diameter corresponds to the inside diameter of the circular waveguide, so that the electromagnetic waves can pass through the carrier plate 8 unhindered.
- the metal layer 10 is, apart from two antenna connection lines 11, one connected to it, made up of four ⁇ / 4-long, interconnected in a rectangular configuration interconnects 12, two further lines 13 of exactly the same length for connecting the hybrid 12 with two below 9 0 ° to each other excitation radiators 14, the equal lengths of the protruding into the radiant section 1 Endab - cutting the lines 13 are formed, and two exciter emitters 14 diametrically opposed, extending into the operating position also in the radiant section 1 short, remaining with the Ground surface lo connected metal strips 15 etched away.
- the lines 11 and 13 are formed as 5 0 -Ohm lines in microstrip technology.
- a channel 16 is formed between the flanges 4 and 5 for the contact-free arrangement of the connecting lines 13, the hybrid 12 and the connecting lines 11, the latter via a plug connection 17, part of which is arranged in a holder 18 further cables 19 are connected.
- the linearly polarized wave carried in the lines 11 is converted into a circularly polarized wave that can be emitted or received by the funnel radiator.
- the entire microwave antenna can be manufactured very precisely in terms of dimensions due to the complete structure in printing technology in an extremely simple and inexpensive manner.
- very good adaptation and interference-free coupling at the insertion point of the substrate 7 are achieved.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Bei einem aus einem Hohlleiterstrahler und zwei über einen Hybrid (12) angesteuerten, um 90° zueinander senkrecht zur Achse des Hohlleiterstrahlers angeordneten Erregerstrahlem (14) bestehenden Mikrowellenantenne (1) für rechts- und linkszirkular polarisierte elektromagnetische Wellen sind zum Zweck der Erzielung einer hochgenauen Phasendifferenz der Polarisationsanteile mit einfachen und kostensparenden, möglichst für Mengenherstellung geeigneten Mitteln die Erregerstrahler (14), der Hybrid (12), sowie deren Verbindungsleitungen (13) in Drucktechnik auf einem Substrat (7) ausgeführt, dessen die Erregerstrahler (14) tragender Teil transversal im Hohlleiterstrahler angeordnet ist.
Description
- Die Erfindung betrifft eine Mikrowellenantenne für links-und rechtszirkular polarisierte elektromagnetische Wellen, bestehend aus einem Hohlleiterstrahler und zwei über einen 90 - 3 dB - Koppler (Hybrid) angesteuerten, um 90° zueinander senkrecht zur Achse des Hohlleiterstrahlers angeordneten Erregerstrahlern.
- Eine derartige, z.B. auch für den Satellitenempfang verwendbare aus der Praxis bekannte Mikrowellenantenne ist in Figur 1 dargestellt. Bei ihr können durch Einspeisen (Sendefall) bzw. Entnehmen (Empfangsfall) der Hochfrequenzenergie an einem der beiden voneinander entkoppelten AnschluBtore des Hybrids links-oder rechtspolarisierte Wellen erzeugt bzw. empfangen werden. Das jeweils andere AnschluBtor ist dabei entweder abgeschlossen, oder zum Empfangen bzw. Senden der jeweils orthogonalen Komponenten benutzt. Die Güte der Zirkularpolarisation hängt bei dieser bekannten Mikrowellenantenne entscheidend davon ab, daB die beiden Verbindungsleitungen L1, L2 zwischen den als über Steckverbinder ST in den Hohlleiterstrahler HS eintauchende Metallstifte ausgebildeten Erregerstrahlern S und dem Hybrid H, sowie die Metallstifte und die Steckverbinder exakt gleich lang sind. Beispielsweise darf der Längenunterschied im Bereich um 12 GHz (Satelliten-TV) nur etwa o,l mm betragen, wenn eine Abweichung von der erforderlichen 90° Phasendifferenz von max. 30 eingehalten werden soll. Diese hohen Anforderungen an die Herstellungsgenauigkeit der Kabel und Verbinder sind jedoch in der Praxis nur unter Zuhilfenahme komplizierter und teuerer Fertigungs- und Montagetechniken erfüllbar.
- Der Erfindung liegt die Aufgabe zugrunde, eine Mikrowellenantenne der eingangs genannten Art zu schaffen, die bei hoher Genauigkeit der Phasendifferenz der Polarisationsanteile einen einfachen und kostengünstigen, möglichst für die Mengenfertigung geeigneten Aufbau aufweist. Diese Aufgabe ist dadurch gelöst, daB die Erregerstrahler, der Hybrid, sowie deren Verbindungsleitungen in Drucktechnik auf einem Substrat ausgeführt sind, dessen die Erregerstrahler tragender Teil transversal im Hohlleiterstrahler angeordnet ist. Die gedruckte Schaltung ist dabei mit einer einzigen Vorlage fotografisch hergestellt. Bei dieser erfindungsgemäBen Mikrowellenantenne ist auf ebenso einfache wie elegante Weise der Vorteil erreicht, daB die bei der bekannten Antenne erforderlichen Steckverbinder und ihre Ungenauigkeiten entfallen und darüber hinaus die Verbindungsleitungen zwischen den Erregerstrahlern und den entsprechenden Anschlüssen des Hybrids durch eine entsprechend groBe Vorlage praktisch beliebig genau und zudem äußerst kostengünstig herstellbar sind. Weiterhin ist die Platine bestens für die Mengenfertigung geeignet, ohne daB irgendwelche Verschlechterungen oder Schwankungen der Genauigkeit befürchtet werden müBten. Vielmehr sind mit der erfindungsgemäBen Antenne die Abweichungen von der 90° - Phasendifferenz ohne weiteres unter 1° zu halten. Außerdem weist sie im Vergleich zu dem beschriebenen Stand der Technik auch eine geringere Dämpfung auf. SchlieBlich entfällt durch den erfindungsgemäBen Aufbau ein gegebenenfalls nötiger Witterungsschutz (z.B. durch Abdeckung der Strahler - apertur), weil das transversal im Hohlleiterstrahler angeordnete Substrat bereits eine ausreichende Abdichtung gegen Witterungseinflüsse bewirkt.
- Durch die in Anspruch 2 beschriebene Ausgestaltung der er - findungsgemäBen Mikrowellenantenne ist ein einfaches Mittel an die Hand gegeben, die Wellentypwandlung von der unsymme - trischen Ein- bzw. Auskopplung auf die achssymmetrische Hohl- leiterwelle (beim Rundhohlleiter H11 - Typ) und damit die Anpassung zu verbessern, wobei selbstverständlich die Länge der Metallstreifen entsprechend dem jeweiligen Betriebsfrequenzbereich dimensioniert ist.
- Die durch den Aufbau gemäB Anspruch 3 gebildete Viertelwellenstichleitung, die bei Bedarf mittels eines verstellbaren Kurzschlusses einstellbar ausgeführt ist, kompensiert die durch die Erregerstrahler erzeugten störenden Blindkomponenten und verbessert dadurch ebenfalls die Anpassung der Antenne. AuBerdem ist auf diese Weise im Abstand einer Viertelwellenlänge vom KurzschluB eine längsstromfreie Ebene erzeugt, in der der Einbau des Substrats keine Störungen verursacht.
- Die Figuren 2 und 3 zeigen ein Ausführungsbeispiel der erfindungsgemäBen Mikrowellenantenne, wobei Fig. 2 einen Achsial-schnitt darstellt und Fig. 3 eine Draufsicht auf das transversal in die Antenne einzuführende Substrat.
- Die Mikrowellenantenne weist einen in Strahlungsrichtung trichterförmig aufgeweiteten offenen Rundhohlleiter - Strahlerteil 1 und einen am Ende 2 kurzgeschlossenen Rundhohlleiter - Strahlerteil 3 auf. Zwischen den beiden mittels Befestigungsflanschen 4, 4' bzw. 5, 5' und Schrauben 6 fest miteinander verbundenen Strahlerteilen 1, 3 ist ein Substrat 7 eingebracht, welches aus einer beidseitig mit Metallbelag beschichteten Trägerplatte 8 aus Isoliermaterial besteht, wobei die dem Strahlerteil 1 zugewandte, zusammen mit dem Gehäuse die Massefläche bildende Me - tallschicht 9 eine kreisförmige Ausnehmung aufweist, deren Durchmesser dem Innendurchmesser des Rundhohlleiters entspricht, sodaB die elektromagnetischen Wellen ungehindert die Trägerplatte 8 passieren können. Auf deren anderer Seite ist die Metallschicht 10 bis auf zwei AntennenanschluBleitungen 11, einen daran angeschlossenen, aus vier jeweils λ/4-langen, in Rechteckkonfiguration zusammengeschalteten Leiterbahnen aufgebauten Hybrid 12, zwei weitere exakt gleich lange Leitungen 13 zum Verbinden des Hybrid 12 mit zwei unter 90° zueinander angeordneten Erregerstrahlern 14, deren gleiche Längen aus dem in den Strahlerteil 1 hineinragenden Endab - schnitt der Leitungen 13 gebildet sind, sowie zwei den Er - regerstrahlern 14 diametral gegenüberliegenden, in Betriebsstellung ebenfalls in den Strahlerteil 1 hineinragenden kurzen, mit der verbleibenden Massefläche lo verbundenen Metallstreifen 15 weggeätzt. Die Leitungen 11 und 13 sind als 50-Ohm-Leitungen in Mikrostrip-Technik ausgebildet. In montiertem Zustand der Mikrowellenantenne ist zwischen den Flanschen 4 und 5 ein Kanal 16 zur berührungsfreien Anordnung der Verbindungsleitungen 13, des Hybrids 12, sowie der AnschluBleitungen 11 gebildet, welch letztere über eine Steckverbindung 17, deren einer Teil in einer Halterung 18 angeordnet ist, an weiterführende Kabel 19 angeschlossen sind.
- Durch die Ansteuerung der beiden gekreuzten Erregerstrahler 14 über einen Hybrid 12 ist die in den Leitungen 11 geführte linear polarisierte Welle in.eine vom Trichterstrahler ab - strahlbare bzw. empfangbare zirkular polarisierte Welle umgewandelt. Die gesamte Mikrowellenantenne ist durch den vollständigen Aufbau in Drucktechnik auf äuBerst einfache und kosten - günstige Weise in den Abmessungen sehr genau herstellbar. Darüber hinaus ist durch exakte Dimensionierung der beschriebenen Antennenteile einerseits, sowie durch die beiden entsprechend der jeweiligen Betriebsfrequenz bemessenen Metallstreifen 15 und das kurzgeschlossene Viertelwellen-Strahlerteil 3 eine sehr gute Anpassung und störungsfreie Auskopplung am Einfügungs - ort des Substrats 7 erreicht.
Claims (3)
1. Mikrowellenantenne für links- und rechtszirkular polarisierte elektromagnetische Wellen, bestehend aus einem Hohlleiterstrahler und zwei über einen 90ο - 3 dB - Koppler (Hybrid) angesteuerten, um 90o zueinander senkrecht zur Achse des Hohlleiterstrahlers angeordneten Erregerstrahlern, dadurch gekennzeichnet, daß die Erregerstrahler (14), der Hybrid (12); sowie deren Verbindungsleitungen (13) in Drucktechnik auf einem Substrat (7) ausgeführt sind, dessen die Erregerstrahler (14) tragender Teil transversal im Hohlleiterstrahler angeordnet ist.
2. Mikrowellenantenne nach Anspruch 1, dadurch gekennzeichnet, daB auf dem Substrat (7) um 180° zu den Erregerstrahlern (14) versetzte, in deren Verlängerung angeordnete Metallstrei - fen (15) vorgesehen sind, die vorzugsweise über die Stirnfläche des auf der Massefläche (lo) aufliegenden Hohlleiter-Strahlerteils (3) mit diesem leitend verbunden sind.
3. Mikrowellenantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daB die Erregerstrahler (14) in einem Abstand von etwa einem Viertel der mittleren Hohlleiter-Betriebswellenlänge vor dem kurzgeschlossenen Ende des Hohlleiterstrahlers angeordnet sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19813129425 DE3129425A1 (de) | 1981-07-25 | 1981-07-25 | Mikrowellenantenne fuer zirkularpolarisation |
DE3129425 | 1981-07-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0071069A2 true EP0071069A2 (de) | 1983-02-09 |
EP0071069A3 EP0071069A3 (de) | 1985-10-09 |
Family
ID=6137752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82106235A Withdrawn EP0071069A3 (de) | 1981-07-25 | 1982-07-13 | Mikrowellenantenne für Zirkularpolarisation |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0071069A3 (de) |
DE (1) | DE3129425A1 (de) |
FI (1) | FI75239C (de) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0073511A2 (de) * | 1981-08-31 | 1983-03-09 | Nec Corporation | Empfänger für Satellitenfunk |
FR2545280A1 (fr) * | 1983-04-29 | 1984-11-02 | Labo Electronique Physique | Element rayonnant ou recepteur de signaux hyperfrequences a polarisations orthogonales et antenne plane comprenant un reseau de tels elements juxtaposes |
FR2550891A1 (fr) * | 1983-08-19 | 1985-02-22 | Labo Electronique Physique | Separateur de modes pour systeme de reception hyperfrequence |
EP0215240A2 (de) * | 1985-07-23 | 1987-03-25 | Sony Corporation | Planarantennengruppe für zirkular polarisierte Mikrowellen |
US4742354A (en) * | 1986-08-08 | 1988-05-03 | Hughes Aircraft Company | Radar transceiver employing circularly polarized waveforms |
US4833482A (en) * | 1988-02-24 | 1989-05-23 | Hughes Aircraft Company | Circularly polarized microstrip antenna array |
EP0350324A2 (de) * | 1988-07-08 | 1990-01-10 | Gec-Marconi Limited | Kopplungsvorrichtung für einen Wellenleiter |
EP0355898A1 (de) * | 1988-08-03 | 1990-02-28 | Emmanuel Rammos | Ebene Antennengruppe mit gedruckten coplanaren Wellenleiter-Speiseleitungen in Zusammenwirkung mit Oeffnungen in einer Grundplatte |
US4990926A (en) * | 1987-10-19 | 1991-02-05 | Sony Corporation | Microwave antenna structure |
US5010348A (en) * | 1987-11-05 | 1991-04-23 | Alcatel Espace | Device for exciting a waveguide with circular polarization from a plane antenna |
US5218374A (en) * | 1988-09-01 | 1993-06-08 | Apti, Inc. | Power beaming system with printer circuit radiating elements having resonating cavities |
EP0564266A2 (de) * | 1992-03-31 | 1993-10-06 | Sony Corporation | Zirkular polarisierte Mikrowellenantenne |
US5438340A (en) * | 1992-06-12 | 1995-08-01 | Sony Corporation | Elliptical feedhorn and parabolic reflector with perpendicular major axes |
EP0735610A2 (de) * | 1995-03-31 | 1996-10-02 | Daewoo Electronics Co., Ltd | Vorrichtung zum Empfang von zirkular polarisierten Signalen |
US5781161A (en) * | 1995-02-06 | 1998-07-14 | Matsushita Electric Industrial Co., Ltd. | Waveguide and microstrip lines mode transformer and receiving converter comprising a polarization isolating conductor |
EP0933833A1 (de) * | 1998-01-30 | 1999-08-04 | DaimlerChrysler AG | Hohlleiterstrahler |
EP1274149A2 (de) * | 2001-07-05 | 2003-01-08 | Matsushita Electric Industrial Co., Ltd. | Herstellungsverfahren für Hochfrequenzschaltung und Hochfrequenzschaltung |
EP2506363A1 (de) * | 2011-04-01 | 2012-10-03 | KROHNE Messtechnik GmbH | Hohlleitereinkopplung |
CN103811876A (zh) * | 2014-02-26 | 2014-05-21 | 中国工程物理研究院电子工程研究所 | 一种应用于太赫兹波段相控阵的芯片-介质填充喇叭天线 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW344152B (en) * | 1995-07-19 | 1998-11-01 | Alps Electric Co Ltd | Outdoor converter for receiving satellite broadcast |
DE19629593A1 (de) * | 1996-07-23 | 1998-01-29 | Endress Hauser Gmbh Co | Anordnung zum Erzeugen und zum Senden von Mikrowellen, insb. für ein Füllstandsmeßgerät |
DE19633147A1 (de) * | 1996-08-18 | 1998-02-19 | Pates Tech Patentverwertung | Multifocus-Reflektorantenne |
DE19800306B4 (de) * | 1998-01-07 | 2008-05-15 | Vega Grieshaber Kg | Antenneneinrichtung für ein Füllstandmeß-Radargerät |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3375474A (en) * | 1965-10-08 | 1968-03-26 | Martin Marietta Corp | Microwave waveguide to coax coupling system |
US4208660A (en) * | 1977-11-11 | 1980-06-17 | Raytheon Company | Radio frequency ring-shaped slot antenna |
EP0014635A1 (de) * | 1979-02-02 | 1980-08-20 | Thomson-Csf | Offene Hohlraumantenne mit Dipolspeisung |
EP0064313A1 (de) * | 1981-05-04 | 1982-11-10 | Laboratoires D'electronique Et De Physique Appliquee L.E.P. | Mikrowellenstrahlerelement für Zirkularpolarisation und ebene Mikrowellenantenne mit einer Gruppe solcher Elemente |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3375447A (en) * | 1963-11-29 | 1968-03-26 | Philips Corp | Automatic gain control circuit with delayed decay of the gain control signal |
US4097869A (en) * | 1977-03-14 | 1978-06-27 | Stanford Research Institute | Orthogonal-port, biconical-horn, direction-finder antenna |
DE2745566C2 (de) * | 1977-10-11 | 1983-05-05 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Kopplungsanordnung für eine Mikrostrip-Schaltung mit integriertem Halbleiter-Bauelement |
-
1981
- 1981-07-25 DE DE19813129425 patent/DE3129425A1/de active Granted
-
1982
- 1982-07-13 EP EP82106235A patent/EP0071069A3/de not_active Withdrawn
- 1982-07-23 FI FI822598A patent/FI75239C/fi not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3375474A (en) * | 1965-10-08 | 1968-03-26 | Martin Marietta Corp | Microwave waveguide to coax coupling system |
US4208660A (en) * | 1977-11-11 | 1980-06-17 | Raytheon Company | Radio frequency ring-shaped slot antenna |
EP0014635A1 (de) * | 1979-02-02 | 1980-08-20 | Thomson-Csf | Offene Hohlraumantenne mit Dipolspeisung |
EP0064313A1 (de) * | 1981-05-04 | 1982-11-10 | Laboratoires D'electronique Et De Physique Appliquee L.E.P. | Mikrowellenstrahlerelement für Zirkularpolarisation und ebene Mikrowellenantenne mit einer Gruppe solcher Elemente |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0073511A2 (de) * | 1981-08-31 | 1983-03-09 | Nec Corporation | Empfänger für Satellitenfunk |
EP0073511A3 (en) * | 1981-08-31 | 1985-05-22 | Nec Corporation | Satellite broadcasting receiver |
FR2545280A1 (fr) * | 1983-04-29 | 1984-11-02 | Labo Electronique Physique | Element rayonnant ou recepteur de signaux hyperfrequences a polarisations orthogonales et antenne plane comprenant un reseau de tels elements juxtaposes |
FR2550891A1 (fr) * | 1983-08-19 | 1985-02-22 | Labo Electronique Physique | Separateur de modes pour systeme de reception hyperfrequence |
EP0215240A3 (en) * | 1985-07-23 | 1989-01-18 | Sony Corporation | Planar-array antenna for circularly polarized microwaves |
EP0215240A2 (de) * | 1985-07-23 | 1987-03-25 | Sony Corporation | Planarantennengruppe für zirkular polarisierte Mikrowellen |
US4742354A (en) * | 1986-08-08 | 1988-05-03 | Hughes Aircraft Company | Radar transceiver employing circularly polarized waveforms |
US4990926A (en) * | 1987-10-19 | 1991-02-05 | Sony Corporation | Microwave antenna structure |
US5010348A (en) * | 1987-11-05 | 1991-04-23 | Alcatel Espace | Device for exciting a waveguide with circular polarization from a plane antenna |
US4833482A (en) * | 1988-02-24 | 1989-05-23 | Hughes Aircraft Company | Circularly polarized microstrip antenna array |
EP0350324A2 (de) * | 1988-07-08 | 1990-01-10 | Gec-Marconi Limited | Kopplungsvorrichtung für einen Wellenleiter |
US5043683A (en) * | 1988-07-08 | 1991-08-27 | Gec-Marconi Limited | Waveguide to microstripline polarization converter having a coupling patch |
EP0350324B1 (de) * | 1988-07-08 | 1992-09-16 | Gec-Marconi Limited | Kopplungsvorrichtung für einen Wellenleiter |
EP0355898A1 (de) * | 1988-08-03 | 1990-02-28 | Emmanuel Rammos | Ebene Antennengruppe mit gedruckten coplanaren Wellenleiter-Speiseleitungen in Zusammenwirkung mit Oeffnungen in einer Grundplatte |
US5218374A (en) * | 1988-09-01 | 1993-06-08 | Apti, Inc. | Power beaming system with printer circuit radiating elements having resonating cavities |
EP0564266A2 (de) * | 1992-03-31 | 1993-10-06 | Sony Corporation | Zirkular polarisierte Mikrowellenantenne |
EP0564266A3 (en) * | 1992-03-31 | 1994-08-24 | Sony Corp | Circular polarization apparatus for micro wave antenna |
US5438340A (en) * | 1992-06-12 | 1995-08-01 | Sony Corporation | Elliptical feedhorn and parabolic reflector with perpendicular major axes |
US5781161A (en) * | 1995-02-06 | 1998-07-14 | Matsushita Electric Industrial Co., Ltd. | Waveguide and microstrip lines mode transformer and receiving converter comprising a polarization isolating conductor |
EP0735610A2 (de) * | 1995-03-31 | 1996-10-02 | Daewoo Electronics Co., Ltd | Vorrichtung zum Empfang von zirkular polarisierten Signalen |
EP0735610A3 (de) * | 1995-03-31 | 1997-12-10 | Daewoo Electronics Co., Ltd | Vorrichtung zum Empfang von zirkular polarisierten Signalen |
EP0933833A1 (de) * | 1998-01-30 | 1999-08-04 | DaimlerChrysler AG | Hohlleiterstrahler |
US6154183A (en) * | 1998-01-30 | 2000-11-28 | Daimlerchrysler Ag | Waveguide antenna |
EP1274149A2 (de) * | 2001-07-05 | 2003-01-08 | Matsushita Electric Industrial Co., Ltd. | Herstellungsverfahren für Hochfrequenzschaltung und Hochfrequenzschaltung |
EP1274149A3 (de) * | 2001-07-05 | 2003-10-01 | Matsushita Electric Industrial Co., Ltd. | Herstellungsverfahren für Hochfrequenzschaltung und Hochfrequenzschaltung |
EP2506363A1 (de) * | 2011-04-01 | 2012-10-03 | KROHNE Messtechnik GmbH | Hohlleitereinkopplung |
US8981867B2 (en) | 2011-04-01 | 2015-03-17 | Krohne Messtechnik Gmbh | Coupling between a waveguide and a feed line on a carrier plate through a cross-shaped coupling element |
CN103811876A (zh) * | 2014-02-26 | 2014-05-21 | 中国工程物理研究院电子工程研究所 | 一种应用于太赫兹波段相控阵的芯片-介质填充喇叭天线 |
Also Published As
Publication number | Publication date |
---|---|
FI75239C (fi) | 1988-05-09 |
DE3129425A1 (de) | 1983-02-10 |
FI75239B (fi) | 1988-01-29 |
DE3129425C2 (de) | 1991-10-24 |
FI822598A0 (fi) | 1982-07-23 |
FI822598L (fi) | 1983-01-26 |
EP0071069A3 (de) | 1985-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0071069A2 (de) | Mikrowellenantenne für Zirkularpolarisation | |
DE69121352T2 (de) | Vorrichtung zur Speisung eines Strahlungselementes für zwei orthogonale Polarisationen | |
DE3688588T2 (de) | Verkürzte Streifenleitungsantenne. | |
DE60009874T2 (de) | V-Schlitz-Antenne für zirkulare Polarisation | |
DE102007005928B4 (de) | Übertragungsleitungsübergang | |
DE1002828B (de) | Richtungskoppler im Mikrowellenbereich fuer unsymmetrische Bandleitungen | |
DE2162196B2 (de) | Wellentypwandler | |
DE2942035C2 (de) | Einrichtung zum Empfang von Mikrowellen | |
DE3546347A1 (de) | Hochfrequenzantenne der linsenbauart mit speiseeinrichtungen zur erzielung einer breiten richtcharakteristik | |
DE3241890A1 (de) | Polarisationsweiche mit speisehorn | |
DE2821781A1 (de) | Hochfrequenzantenne | |
DE1043429B (de) | Kopplungsvorrichtung an einer Hochfrequenzleitung | |
DE3889061T2 (de) | Mikrowellenantenne. | |
DE10221856A1 (de) | Einrichtung zur Trennung polarisierter Wellen, HF-Wellen-Empfangsumsetzer und Antennenvorrichtung | |
DE102004045707A1 (de) | Antenne | |
DE2746376C2 (de) | Koppelvorrichtung zwischen einer Koaxialleitung und einem Hohlleiter | |
DE2802585A1 (de) | Antenne | |
EP1454381A1 (de) | Hohlraumresonatorantenne mit breitbandschlitz | |
DE1107736B (de) | Hornstrahler mit rechteckigem Querschnitt fuer Mikrowellen | |
DE2503850A1 (de) | Hohlleiterantenne mit aperturschalter | |
DE69108155T2 (de) | Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk. | |
EP0178259A2 (de) | Hohlleiter mit Primärstrahler | |
DE4323387A1 (de) | Monopuls-Kleinradar | |
EP1109245A2 (de) | Antenne zur Abstrahlung und zum Empfang elektromagnetischer Wellen | |
EP0489934B1 (de) | Flächenantenne |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB IT LI NL SE |
|
RHK1 | Main classification (correction) |
Ipc: H01Q 25/00 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19860610 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LANGE, WERNER, DR.-ING. |