EP0071069A2 - Mikrowellenantenne für Zirkularpolarisation - Google Patents

Mikrowellenantenne für Zirkularpolarisation Download PDF

Info

Publication number
EP0071069A2
EP0071069A2 EP82106235A EP82106235A EP0071069A2 EP 0071069 A2 EP0071069 A2 EP 0071069A2 EP 82106235 A EP82106235 A EP 82106235A EP 82106235 A EP82106235 A EP 82106235A EP 0071069 A2 EP0071069 A2 EP 0071069A2
Authority
EP
European Patent Office
Prior art keywords
microwave antenna
waveguide
exciter
radiator
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82106235A
Other languages
English (en)
French (fr)
Other versions
EP0071069A3 (de
Inventor
Werner Dr.-Ing. Lange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richard Hirschmann Radiotechnisches Werk
Original Assignee
Richard Hirschmann Radiotechnisches Werk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Hirschmann Radiotechnisches Werk filed Critical Richard Hirschmann Radiotechnisches Werk
Publication of EP0071069A2 publication Critical patent/EP0071069A2/de
Publication of EP0071069A3 publication Critical patent/EP0071069A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0241Waveguide horns radiating a circularly polarised wave

Definitions

  • the invention relates to a microwave antenna for left-and right-circularly polarized electromagnetic waves comprising a waveguide radiator and two over a 90 - driven coupler (hybrid) to 9 0 ° to one another perpendicular to the axis of the waveguide radiator disposed excitation radiators - 3 dB.
  • Such a microwave antenna which can also be used for satellite reception and is known in practice, is shown in FIG. 1.
  • Waves with left or right polarization can be generated or received by feeding (transmitting) or removing (receiving) the high-frequency energy at one of the two connecting gates of the hybrid that are decoupled from one another.
  • the other connection gate is either closed or used to receive or send the orthogonal components.
  • the quality of the circular polarization depends crucially on the fact that the two connecting lines L 1 , L 2 between the excitation radiators S designed as plugs immersed in the waveguide radiator HS via plug connector ST and the hybrid H, and the metal pins and the plug connectors are exactly the same are long.
  • the length difference in the area around 12 GHz is only about 0.1 mm if there is a deviation from the required 90 ° phase difference of max. 3 0 should be observed.
  • these high demands on the manufacturing accuracy of the cables and connectors can only be met with the aid of complicated and expensive manufacturing and assembly techniques.
  • the invention has for its object to provide a microwave antenna of the type mentioned, which has a simple and inexpensive structure, as far as possible suitable for mass production, with high accuracy of the phase difference of the polarization components.
  • This object is achieved in that the exciter radiator, the hybrid, and their connecting lines are implemented in printing technology on a substrate, the part of which supports the exciter radiator and is arranged transversely in the waveguide radiator.
  • the printed circuit is produced photographically with a single template.
  • the advantage is achieved in a simple and elegant manner that the connectors required for the known antenna and their inaccuracies are eliminated and, moreover, the connecting lines between the excitation radiators and the corresponding connections of the hybrid are practically arbitrarily precise and by a correspondingly large template are also extremely inexpensive to manufacture.
  • the circuit board is ideally suited for mass production, without fear of any deterioration or fluctuations in accuracy. Rather, with the antenna according to the invention, the deviations from the 90 ° phase difference can easily be kept below 1 °. In addition, it also has a lower damping compared to the prior art described.
  • the structure according to the invention eliminates any weather protection that may be necessary (for example by covering the radiator aperture) because the substrate arranged transversely in the waveguide radiator already provides adequate sealing against weather influences.
  • a longitudinal current-free plane is generated in this way at a distance of a quarter wavelength from the short circuit, in which the installation of the substrate does not cause any interference.
  • FIGS. 2 and 3 show an exemplary embodiment of the microwave antenna according to the invention, FIG. 2 representing an axial section and FIG. 3 a plan view of the substrate to be inserted transversely into the antenna.
  • the microwave antenna has an open circular waveguide radiator part 1 widened in a funnel shape in the radiation direction and a round waveguide radiator part 3 short-circuited at the end 2.
  • a substrate 7 is inserted between the two radiator parts 1, 3, which are firmly connected to one another by means of fastening flanges 4, 4 'or 5, 5' and screws 6, and consists of a carrier plate 8 made of insulating material coated on both sides with a metal covering, the one facing the radiator part 1 , together with the housing, the metal layer 9 forming the ground surface has a circular recess whose diameter corresponds to the inside diameter of the circular waveguide, so that the electromagnetic waves can pass through the carrier plate 8 unhindered.
  • the metal layer 10 is, apart from two antenna connection lines 11, one connected to it, made up of four ⁇ / 4-long, interconnected in a rectangular configuration interconnects 12, two further lines 13 of exactly the same length for connecting the hybrid 12 with two below 9 0 ° to each other excitation radiators 14, the equal lengths of the protruding into the radiant section 1 Endab - cutting the lines 13 are formed, and two exciter emitters 14 diametrically opposed, extending into the operating position also in the radiant section 1 short, remaining with the Ground surface lo connected metal strips 15 etched away.
  • the lines 11 and 13 are formed as 5 0 -Ohm lines in microstrip technology.
  • a channel 16 is formed between the flanges 4 and 5 for the contact-free arrangement of the connecting lines 13, the hybrid 12 and the connecting lines 11, the latter via a plug connection 17, part of which is arranged in a holder 18 further cables 19 are connected.
  • the linearly polarized wave carried in the lines 11 is converted into a circularly polarized wave that can be emitted or received by the funnel radiator.
  • the entire microwave antenna can be manufactured very precisely in terms of dimensions due to the complete structure in printing technology in an extremely simple and inexpensive manner.
  • very good adaptation and interference-free coupling at the insertion point of the substrate 7 are achieved.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Bei einem aus einem Hohlleiterstrahler und zwei über einen Hybrid (12) angesteuerten, um 90° zueinander senkrecht zur Achse des Hohlleiterstrahlers angeordneten Erregerstrahlem (14) bestehenden Mikrowellenantenne (1) für rechts- und linkszirkular polarisierte elektromagnetische Wellen sind zum Zweck der Erzielung einer hochgenauen Phasendifferenz der Polarisationsanteile mit einfachen und kostensparenden, möglichst für Mengenherstellung geeigneten Mitteln die Erregerstrahler (14), der Hybrid (12), sowie deren Verbindungsleitungen (13) in Drucktechnik auf einem Substrat (7) ausgeführt, dessen die Erregerstrahler (14) tragender Teil transversal im Hohlleiterstrahler angeordnet ist.

Description

  • Die Erfindung betrifft eine Mikrowellenantenne für links-und rechtszirkular polarisierte elektromagnetische Wellen, bestehend aus einem Hohlleiterstrahler und zwei über einen 90 - 3 dB - Koppler (Hybrid) angesteuerten, um 90° zueinander senkrecht zur Achse des Hohlleiterstrahlers angeordneten Erregerstrahlern.
  • Eine derartige, z.B. auch für den Satellitenempfang verwendbare aus der Praxis bekannte Mikrowellenantenne ist in Figur 1 dargestellt. Bei ihr können durch Einspeisen (Sendefall) bzw. Entnehmen (Empfangsfall) der Hochfrequenzenergie an einem der beiden voneinander entkoppelten AnschluBtore des Hybrids links-oder rechtspolarisierte Wellen erzeugt bzw. empfangen werden. Das jeweils andere AnschluBtor ist dabei entweder abgeschlossen, oder zum Empfangen bzw. Senden der jeweils orthogonalen Komponenten benutzt. Die Güte der Zirkularpolarisation hängt bei dieser bekannten Mikrowellenantenne entscheidend davon ab, daB die beiden Verbindungsleitungen L1, L2 zwischen den als über Steckverbinder ST in den Hohlleiterstrahler HS eintauchende Metallstifte ausgebildeten Erregerstrahlern S und dem Hybrid H, sowie die Metallstifte und die Steckverbinder exakt gleich lang sind. Beispielsweise darf der Längenunterschied im Bereich um 12 GHz (Satelliten-TV) nur etwa o,l mm betragen, wenn eine Abweichung von der erforderlichen 90° Phasendifferenz von max. 30 eingehalten werden soll. Diese hohen Anforderungen an die Herstellungsgenauigkeit der Kabel und Verbinder sind jedoch in der Praxis nur unter Zuhilfenahme komplizierter und teuerer Fertigungs- und Montagetechniken erfüllbar.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Mikrowellenantenne der eingangs genannten Art zu schaffen, die bei hoher Genauigkeit der Phasendifferenz der Polarisationsanteile einen einfachen und kostengünstigen, möglichst für die Mengenfertigung geeigneten Aufbau aufweist. Diese Aufgabe ist dadurch gelöst, daB die Erregerstrahler, der Hybrid, sowie deren Verbindungsleitungen in Drucktechnik auf einem Substrat ausgeführt sind, dessen die Erregerstrahler tragender Teil transversal im Hohlleiterstrahler angeordnet ist. Die gedruckte Schaltung ist dabei mit einer einzigen Vorlage fotografisch hergestellt. Bei dieser erfindungsgemäBen Mikrowellenantenne ist auf ebenso einfache wie elegante Weise der Vorteil erreicht, daB die bei der bekannten Antenne erforderlichen Steckverbinder und ihre Ungenauigkeiten entfallen und darüber hinaus die Verbindungsleitungen zwischen den Erregerstrahlern und den entsprechenden Anschlüssen des Hybrids durch eine entsprechend groBe Vorlage praktisch beliebig genau und zudem äußerst kostengünstig herstellbar sind. Weiterhin ist die Platine bestens für die Mengenfertigung geeignet, ohne daB irgendwelche Verschlechterungen oder Schwankungen der Genauigkeit befürchtet werden müBten. Vielmehr sind mit der erfindungsgemäBen Antenne die Abweichungen von der 90° - Phasendifferenz ohne weiteres unter 1° zu halten. Außerdem weist sie im Vergleich zu dem beschriebenen Stand der Technik auch eine geringere Dämpfung auf. SchlieBlich entfällt durch den erfindungsgemäBen Aufbau ein gegebenenfalls nötiger Witterungsschutz (z.B. durch Abdeckung der Strahler - apertur), weil das transversal im Hohlleiterstrahler angeordnete Substrat bereits eine ausreichende Abdichtung gegen Witterungseinflüsse bewirkt.
  • Durch die in Anspruch 2 beschriebene Ausgestaltung der er - findungsgemäBen Mikrowellenantenne ist ein einfaches Mittel an die Hand gegeben, die Wellentypwandlung von der unsymme - trischen Ein- bzw. Auskopplung auf die achssymmetrische Hohl- leiterwelle (beim Rundhohlleiter H11 - Typ) und damit die Anpassung zu verbessern, wobei selbstverständlich die Länge der Metallstreifen entsprechend dem jeweiligen Betriebsfrequenzbereich dimensioniert ist.
  • Die durch den Aufbau gemäB Anspruch 3 gebildete Viertelwellenstichleitung, die bei Bedarf mittels eines verstellbaren Kurzschlusses einstellbar ausgeführt ist, kompensiert die durch die Erregerstrahler erzeugten störenden Blindkomponenten und verbessert dadurch ebenfalls die Anpassung der Antenne. AuBerdem ist auf diese Weise im Abstand einer Viertelwellenlänge vom KurzschluB eine längsstromfreie Ebene erzeugt, in der der Einbau des Substrats keine Störungen verursacht.
  • Die Figuren 2 und 3 zeigen ein Ausführungsbeispiel der erfindungsgemäBen Mikrowellenantenne, wobei Fig. 2 einen Achsial-schnitt darstellt und Fig. 3 eine Draufsicht auf das transversal in die Antenne einzuführende Substrat.
  • Die Mikrowellenantenne weist einen in Strahlungsrichtung trichterförmig aufgeweiteten offenen Rundhohlleiter - Strahlerteil 1 und einen am Ende 2 kurzgeschlossenen Rundhohlleiter - Strahlerteil 3 auf. Zwischen den beiden mittels Befestigungsflanschen 4, 4' bzw. 5, 5' und Schrauben 6 fest miteinander verbundenen Strahlerteilen 1, 3 ist ein Substrat 7 eingebracht, welches aus einer beidseitig mit Metallbelag beschichteten Trägerplatte 8 aus Isoliermaterial besteht, wobei die dem Strahlerteil 1 zugewandte, zusammen mit dem Gehäuse die Massefläche bildende Me - tallschicht 9 eine kreisförmige Ausnehmung aufweist, deren Durchmesser dem Innendurchmesser des Rundhohlleiters entspricht, sodaB die elektromagnetischen Wellen ungehindert die Trägerplatte 8 passieren können. Auf deren anderer Seite ist die Metallschicht 10 bis auf zwei AntennenanschluBleitungen 11, einen daran angeschlossenen, aus vier jeweils λ/4-langen, in Rechteckkonfiguration zusammengeschalteten Leiterbahnen aufgebauten Hybrid 12, zwei weitere exakt gleich lange Leitungen 13 zum Verbinden des Hybrid 12 mit zwei unter 90° zueinander angeordneten Erregerstrahlern 14, deren gleiche Längen aus dem in den Strahlerteil 1 hineinragenden Endab - schnitt der Leitungen 13 gebildet sind, sowie zwei den Er - regerstrahlern 14 diametral gegenüberliegenden, in Betriebsstellung ebenfalls in den Strahlerteil 1 hineinragenden kurzen, mit der verbleibenden Massefläche lo verbundenen Metallstreifen 15 weggeätzt. Die Leitungen 11 und 13 sind als 50-Ohm-Leitungen in Mikrostrip-Technik ausgebildet. In montiertem Zustand der Mikrowellenantenne ist zwischen den Flanschen 4 und 5 ein Kanal 16 zur berührungsfreien Anordnung der Verbindungsleitungen 13, des Hybrids 12, sowie der AnschluBleitungen 11 gebildet, welch letztere über eine Steckverbindung 17, deren einer Teil in einer Halterung 18 angeordnet ist, an weiterführende Kabel 19 angeschlossen sind.
  • Durch die Ansteuerung der beiden gekreuzten Erregerstrahler 14 über einen Hybrid 12 ist die in den Leitungen 11 geführte linear polarisierte Welle in.eine vom Trichterstrahler ab - strahlbare bzw. empfangbare zirkular polarisierte Welle umgewandelt. Die gesamte Mikrowellenantenne ist durch den vollständigen Aufbau in Drucktechnik auf äuBerst einfache und kosten - günstige Weise in den Abmessungen sehr genau herstellbar. Darüber hinaus ist durch exakte Dimensionierung der beschriebenen Antennenteile einerseits, sowie durch die beiden entsprechend der jeweiligen Betriebsfrequenz bemessenen Metallstreifen 15 und das kurzgeschlossene Viertelwellen-Strahlerteil 3 eine sehr gute Anpassung und störungsfreie Auskopplung am Einfügungs - ort des Substrats 7 erreicht.

Claims (3)

1. Mikrowellenantenne für links- und rechtszirkular polarisierte elektromagnetische Wellen, bestehend aus einem Hohlleiterstrahler und zwei über einen 90ο - 3 dB - Koppler (Hybrid) angesteuerten, um 90o zueinander senkrecht zur Achse des Hohlleiterstrahlers angeordneten Erregerstrahlern, dadurch gekennzeichnet, daß die Erregerstrahler (14), der Hybrid (12); sowie deren Verbindungsleitungen (13) in Drucktechnik auf einem Substrat (7) ausgeführt sind, dessen die Erregerstrahler (14) tragender Teil transversal im Hohlleiterstrahler angeordnet ist.
2. Mikrowellenantenne nach Anspruch 1, dadurch gekennzeichnet, daB auf dem Substrat (7) um 180° zu den Erregerstrahlern (14) versetzte, in deren Verlängerung angeordnete Metallstrei - fen (15) vorgesehen sind, die vorzugsweise über die Stirnfläche des auf der Massefläche (lo) aufliegenden Hohlleiter-Strahlerteils (3) mit diesem leitend verbunden sind.
3. Mikrowellenantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daB die Erregerstrahler (14) in einem Abstand von etwa einem Viertel der mittleren Hohlleiter-Betriebswellenlänge vor dem kurzgeschlossenen Ende des Hohlleiterstrahlers angeordnet sind.
EP82106235A 1981-07-25 1982-07-13 Mikrowellenantenne für Zirkularpolarisation Withdrawn EP0071069A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813129425 DE3129425A1 (de) 1981-07-25 1981-07-25 Mikrowellenantenne fuer zirkularpolarisation
DE3129425 1981-07-25

Publications (2)

Publication Number Publication Date
EP0071069A2 true EP0071069A2 (de) 1983-02-09
EP0071069A3 EP0071069A3 (de) 1985-10-09

Family

ID=6137752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82106235A Withdrawn EP0071069A3 (de) 1981-07-25 1982-07-13 Mikrowellenantenne für Zirkularpolarisation

Country Status (3)

Country Link
EP (1) EP0071069A3 (de)
DE (1) DE3129425A1 (de)
FI (1) FI75239C (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0073511A2 (de) * 1981-08-31 1983-03-09 Nec Corporation Empfänger für Satellitenfunk
FR2545280A1 (fr) * 1983-04-29 1984-11-02 Labo Electronique Physique Element rayonnant ou recepteur de signaux hyperfrequences a polarisations orthogonales et antenne plane comprenant un reseau de tels elements juxtaposes
FR2550891A1 (fr) * 1983-08-19 1985-02-22 Labo Electronique Physique Separateur de modes pour systeme de reception hyperfrequence
EP0215240A2 (de) * 1985-07-23 1987-03-25 Sony Corporation Planarantennengruppe für zirkular polarisierte Mikrowellen
US4742354A (en) * 1986-08-08 1988-05-03 Hughes Aircraft Company Radar transceiver employing circularly polarized waveforms
US4833482A (en) * 1988-02-24 1989-05-23 Hughes Aircraft Company Circularly polarized microstrip antenna array
EP0350324A2 (de) * 1988-07-08 1990-01-10 Gec-Marconi Limited Kopplungsvorrichtung für einen Wellenleiter
EP0355898A1 (de) * 1988-08-03 1990-02-28 Emmanuel Rammos Ebene Antennengruppe mit gedruckten coplanaren Wellenleiter-Speiseleitungen in Zusammenwirkung mit Oeffnungen in einer Grundplatte
US4990926A (en) * 1987-10-19 1991-02-05 Sony Corporation Microwave antenna structure
US5010348A (en) * 1987-11-05 1991-04-23 Alcatel Espace Device for exciting a waveguide with circular polarization from a plane antenna
US5218374A (en) * 1988-09-01 1993-06-08 Apti, Inc. Power beaming system with printer circuit radiating elements having resonating cavities
EP0564266A2 (de) * 1992-03-31 1993-10-06 Sony Corporation Zirkular polarisierte Mikrowellenantenne
US5438340A (en) * 1992-06-12 1995-08-01 Sony Corporation Elliptical feedhorn and parabolic reflector with perpendicular major axes
EP0735610A2 (de) * 1995-03-31 1996-10-02 Daewoo Electronics Co., Ltd Vorrichtung zum Empfang von zirkular polarisierten Signalen
US5781161A (en) * 1995-02-06 1998-07-14 Matsushita Electric Industrial Co., Ltd. Waveguide and microstrip lines mode transformer and receiving converter comprising a polarization isolating conductor
EP0933833A1 (de) * 1998-01-30 1999-08-04 DaimlerChrysler AG Hohlleiterstrahler
EP1274149A2 (de) * 2001-07-05 2003-01-08 Matsushita Electric Industrial Co., Ltd. Herstellungsverfahren für Hochfrequenzschaltung und Hochfrequenzschaltung
EP2506363A1 (de) * 2011-04-01 2012-10-03 KROHNE Messtechnik GmbH Hohlleitereinkopplung
CN103811876A (zh) * 2014-02-26 2014-05-21 中国工程物理研究院电子工程研究所 一种应用于太赫兹波段相控阵的芯片-介质填充喇叭天线

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW344152B (en) * 1995-07-19 1998-11-01 Alps Electric Co Ltd Outdoor converter for receiving satellite broadcast
DE19629593A1 (de) * 1996-07-23 1998-01-29 Endress Hauser Gmbh Co Anordnung zum Erzeugen und zum Senden von Mikrowellen, insb. für ein Füllstandsmeßgerät
DE19633147A1 (de) * 1996-08-18 1998-02-19 Pates Tech Patentverwertung Multifocus-Reflektorantenne
DE19800306B4 (de) * 1998-01-07 2008-05-15 Vega Grieshaber Kg Antenneneinrichtung für ein Füllstandmeß-Radargerät

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375474A (en) * 1965-10-08 1968-03-26 Martin Marietta Corp Microwave waveguide to coax coupling system
US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
EP0014635A1 (de) * 1979-02-02 1980-08-20 Thomson-Csf Offene Hohlraumantenne mit Dipolspeisung
EP0064313A1 (de) * 1981-05-04 1982-11-10 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Mikrowellenstrahlerelement für Zirkularpolarisation und ebene Mikrowellenantenne mit einer Gruppe solcher Elemente

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375447A (en) * 1963-11-29 1968-03-26 Philips Corp Automatic gain control circuit with delayed decay of the gain control signal
US4097869A (en) * 1977-03-14 1978-06-27 Stanford Research Institute Orthogonal-port, biconical-horn, direction-finder antenna
DE2745566C2 (de) * 1977-10-11 1983-05-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Kopplungsanordnung für eine Mikrostrip-Schaltung mit integriertem Halbleiter-Bauelement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375474A (en) * 1965-10-08 1968-03-26 Martin Marietta Corp Microwave waveguide to coax coupling system
US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
EP0014635A1 (de) * 1979-02-02 1980-08-20 Thomson-Csf Offene Hohlraumantenne mit Dipolspeisung
EP0064313A1 (de) * 1981-05-04 1982-11-10 Laboratoires D'electronique Et De Physique Appliquee L.E.P. Mikrowellenstrahlerelement für Zirkularpolarisation und ebene Mikrowellenantenne mit einer Gruppe solcher Elemente

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0073511A2 (de) * 1981-08-31 1983-03-09 Nec Corporation Empfänger für Satellitenfunk
EP0073511A3 (en) * 1981-08-31 1985-05-22 Nec Corporation Satellite broadcasting receiver
FR2545280A1 (fr) * 1983-04-29 1984-11-02 Labo Electronique Physique Element rayonnant ou recepteur de signaux hyperfrequences a polarisations orthogonales et antenne plane comprenant un reseau de tels elements juxtaposes
FR2550891A1 (fr) * 1983-08-19 1985-02-22 Labo Electronique Physique Separateur de modes pour systeme de reception hyperfrequence
EP0215240A3 (en) * 1985-07-23 1989-01-18 Sony Corporation Planar-array antenna for circularly polarized microwaves
EP0215240A2 (de) * 1985-07-23 1987-03-25 Sony Corporation Planarantennengruppe für zirkular polarisierte Mikrowellen
US4742354A (en) * 1986-08-08 1988-05-03 Hughes Aircraft Company Radar transceiver employing circularly polarized waveforms
US4990926A (en) * 1987-10-19 1991-02-05 Sony Corporation Microwave antenna structure
US5010348A (en) * 1987-11-05 1991-04-23 Alcatel Espace Device for exciting a waveguide with circular polarization from a plane antenna
US4833482A (en) * 1988-02-24 1989-05-23 Hughes Aircraft Company Circularly polarized microstrip antenna array
EP0350324A2 (de) * 1988-07-08 1990-01-10 Gec-Marconi Limited Kopplungsvorrichtung für einen Wellenleiter
US5043683A (en) * 1988-07-08 1991-08-27 Gec-Marconi Limited Waveguide to microstripline polarization converter having a coupling patch
EP0350324B1 (de) * 1988-07-08 1992-09-16 Gec-Marconi Limited Kopplungsvorrichtung für einen Wellenleiter
EP0355898A1 (de) * 1988-08-03 1990-02-28 Emmanuel Rammos Ebene Antennengruppe mit gedruckten coplanaren Wellenleiter-Speiseleitungen in Zusammenwirkung mit Oeffnungen in einer Grundplatte
US5218374A (en) * 1988-09-01 1993-06-08 Apti, Inc. Power beaming system with printer circuit radiating elements having resonating cavities
EP0564266A2 (de) * 1992-03-31 1993-10-06 Sony Corporation Zirkular polarisierte Mikrowellenantenne
EP0564266A3 (en) * 1992-03-31 1994-08-24 Sony Corp Circular polarization apparatus for micro wave antenna
US5438340A (en) * 1992-06-12 1995-08-01 Sony Corporation Elliptical feedhorn and parabolic reflector with perpendicular major axes
US5781161A (en) * 1995-02-06 1998-07-14 Matsushita Electric Industrial Co., Ltd. Waveguide and microstrip lines mode transformer and receiving converter comprising a polarization isolating conductor
EP0735610A2 (de) * 1995-03-31 1996-10-02 Daewoo Electronics Co., Ltd Vorrichtung zum Empfang von zirkular polarisierten Signalen
EP0735610A3 (de) * 1995-03-31 1997-12-10 Daewoo Electronics Co., Ltd Vorrichtung zum Empfang von zirkular polarisierten Signalen
EP0933833A1 (de) * 1998-01-30 1999-08-04 DaimlerChrysler AG Hohlleiterstrahler
US6154183A (en) * 1998-01-30 2000-11-28 Daimlerchrysler Ag Waveguide antenna
EP1274149A2 (de) * 2001-07-05 2003-01-08 Matsushita Electric Industrial Co., Ltd. Herstellungsverfahren für Hochfrequenzschaltung und Hochfrequenzschaltung
EP1274149A3 (de) * 2001-07-05 2003-10-01 Matsushita Electric Industrial Co., Ltd. Herstellungsverfahren für Hochfrequenzschaltung und Hochfrequenzschaltung
EP2506363A1 (de) * 2011-04-01 2012-10-03 KROHNE Messtechnik GmbH Hohlleitereinkopplung
US8981867B2 (en) 2011-04-01 2015-03-17 Krohne Messtechnik Gmbh Coupling between a waveguide and a feed line on a carrier plate through a cross-shaped coupling element
CN103811876A (zh) * 2014-02-26 2014-05-21 中国工程物理研究院电子工程研究所 一种应用于太赫兹波段相控阵的芯片-介质填充喇叭天线

Also Published As

Publication number Publication date
FI75239C (fi) 1988-05-09
DE3129425A1 (de) 1983-02-10
FI75239B (fi) 1988-01-29
DE3129425C2 (de) 1991-10-24
FI822598A0 (fi) 1982-07-23
FI822598L (fi) 1983-01-26
EP0071069A3 (de) 1985-10-09

Similar Documents

Publication Publication Date Title
EP0071069A2 (de) Mikrowellenantenne für Zirkularpolarisation
DE69121352T2 (de) Vorrichtung zur Speisung eines Strahlungselementes für zwei orthogonale Polarisationen
DE3688588T2 (de) Verkürzte Streifenleitungsantenne.
DE60009874T2 (de) V-Schlitz-Antenne für zirkulare Polarisation
DE102007005928B4 (de) Übertragungsleitungsübergang
DE1002828B (de) Richtungskoppler im Mikrowellenbereich fuer unsymmetrische Bandleitungen
DE2162196B2 (de) Wellentypwandler
DE2942035C2 (de) Einrichtung zum Empfang von Mikrowellen
DE3546347A1 (de) Hochfrequenzantenne der linsenbauart mit speiseeinrichtungen zur erzielung einer breiten richtcharakteristik
DE3241890A1 (de) Polarisationsweiche mit speisehorn
DE2821781A1 (de) Hochfrequenzantenne
DE1043429B (de) Kopplungsvorrichtung an einer Hochfrequenzleitung
DE3889061T2 (de) Mikrowellenantenne.
DE10221856A1 (de) Einrichtung zur Trennung polarisierter Wellen, HF-Wellen-Empfangsumsetzer und Antennenvorrichtung
DE102004045707A1 (de) Antenne
DE2746376C2 (de) Koppelvorrichtung zwischen einer Koaxialleitung und einem Hohlleiter
DE2802585A1 (de) Antenne
EP1454381A1 (de) Hohlraumresonatorantenne mit breitbandschlitz
DE1107736B (de) Hornstrahler mit rechteckigem Querschnitt fuer Mikrowellen
DE2503850A1 (de) Hohlleiterantenne mit aperturschalter
DE69108155T2 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk.
EP0178259A2 (de) Hohlleiter mit Primärstrahler
DE4323387A1 (de) Monopuls-Kleinradar
EP1109245A2 (de) Antenne zur Abstrahlung und zum Empfang elektromagnetischer Wellen
EP0489934B1 (de) Flächenantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

RHK1 Main classification (correction)

Ipc: H01Q 25/00

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19860610

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LANGE, WERNER, DR.-ING.