EP0069421B1 - Process for manufacturing semi-finished or finished articles from a metallic material by hot-shaping - Google Patents

Process for manufacturing semi-finished or finished articles from a metallic material by hot-shaping Download PDF

Info

Publication number
EP0069421B1
EP0069421B1 EP82200780A EP82200780A EP0069421B1 EP 0069421 B1 EP0069421 B1 EP 0069421B1 EP 82200780 A EP82200780 A EP 82200780A EP 82200780 A EP82200780 A EP 82200780A EP 0069421 B1 EP0069421 B1 EP 0069421B1
Authority
EP
European Patent Office
Prior art keywords
temperature
workpiece
hot
process according
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200780A
Other languages
German (de)
French (fr)
Other versions
EP0069421A1 (en
Inventor
Gernot Dr. Gessinger
Günther Dr. Schroeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT82200780T priority Critical patent/ATE19531T1/en
Publication of EP0069421A1 publication Critical patent/EP0069421A1/en
Application granted granted Critical
Publication of EP0069421B1 publication Critical patent/EP0069421B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the invention is based on a method for producing a semifinished product or a finished part according to the preamble of claim 1.
  • US-A-3 975 219 describes a method for the thermomechanical treatment of nickel superalloys.
  • a superplastic state in the range below the y 'solution annealing temperature is initially sought.
  • the hot pre-compacted blank is subjected to a gradual cooling down to room temperature via a salt bath and then reheated and an extrusion process just below the y'-solution annealing temperature.
  • Disks are cut from the extruded material and subjected to further hot forming by isothermal forging within a temperature range which is below, but at most 120 ° C lower than the ys' solution annealing temperature.
  • the deformation should be at least 10% (example 1: 83% decrease in height) and the rate of deformation should not exceed 0.017s- 1- (example 1: 0.0017s- 1 ).
  • the workpiece shaped in this way is then zone-annealed under a temperature gradient of approx. 1 ° C./mm and a temperature at the end of the workpiece which lies between the y'-solution annealing temperature and the solidus temperature in order to set a coarse grain structure.
  • This process which is specifically aimed at superalloys and the achievement of a coarse grain in the longitudinal direction of the workpiece, requires a superplastic condition beforehand and is characterized by numerous complex process steps.
  • the invention has for its object to provide a hot-forming process in general for metallic materials, wherein a workpiece initially made as a cast ingot, rolled ingot, forged blank or powder-metallurgically manufactured blank made of a metal alloy, except for a nickel-based superalloy which has been brought into the superplastic state, in as few steps as possible can be converted into a semi-finished or finished part. Thanks to the good mold filling capacity of the workpiece, the process should allow for great simplicity to expand the design limits and be applicable to a large number of materials.
  • the guiding principle of the invention is to deform the material as close as possible below the solidus temperature, but to avoid local liquefaction with the greatest care. This measure considerably reduces the yield stress (deformation resistance) of the material, so that optimum mold filling capacity is achieved.
  • the abscissa represents the time axis, the ordinate the temperature axis.
  • T sol solidus temperature of the material (alloy) to be deformed
  • 2 is the maximum temperature which - usually at the end of the shaping - can be reached by the workpiece and tool at the same time.
  • T sol the maximum temperature which - usually at the end of the shaping - can be reached by the workpiece and tool at the same time.
  • T sol represents the homogenization temperature of the workpiece, for which the same applies as for temperature 2, so that subsequent melting during the forming process can be avoided with certainty.
  • 4 is the course of the workpiece temperature over time until the end of the shaping. This operation breaks down into the preheating phase 8 and the forming phase 9.
  • 5 represents the course of the workpiece temperature with normal cooling to room temperature.
  • 6 is the analogous course after the shaping in the event that the latter is subjected to further additional heat treatment (eg heat aging, thermal hardening) etc.) is connected. In most cases, you will not be able to avoid homogenizing the material beforehand. However, this is not an absolutely necessary requirement for the method according to the invention, but it means a preferred safety measure.
  • the course of the temperature during the homogenization phase 10 is shown by the line 7.
  • a disc in the form of a rod section was used as the starting material.
  • the rod was made from a section of a larger diameter press stud made by extrusion by extrusion.
  • workpieces produced by open-die forging can also be used as preforms.
  • the shape of the compressor wheel to be produced had 18 radially standing blades, slightly curved on the circumference in the tangential direction, of approximately 30 mm depth, which had a wall thickness of approximately 4 mm at the base and one of approximately 2 mm at the head.
  • the disk-shaped wheel body had an axial wall thickness of approx. 6 mm on the circumference.
  • the raw material was subjected to a homogenization annealing at a temperature of 520 ° C. for 20 hours before the shaping. This measure serves to avoid local melting or local pore formation when the maximum temperature is subsequently passed during the deformation process. The latter was called isothermal. High-temperature die presses carried out on a specially designed hydraulic press equipped with inductive workpiece and tool heating.
  • the press was set up for low stamp speeds of 0.05 - 5 mm / s, which could be changed as required during the pressing. Furthermore, the pressing force could also be kept constant over a longer predetermined period of time after reaching a predetermined limit value.
  • the table and stamp were provided with a cooling device.
  • the inductive heating system consisted of an induction coil for heating the workpiece blank as well as the tools (dies) made of hot-work steel. Precise temperature control and temperature control was ensured via thermocouples in the tool and via buttons on the workpiece blank.
  • a specially designed device was used for transporting the workpiece into the heating zone or into the area of the tool, as well as for ejecting it from the tool after forming and transporting it to storage.
  • the workpiece blank in the form of a disk was first continuously heated to a temperature of 480 ° ⁇ 10 ° C by being pushed into the associated induction coil. The blank was then placed in the die heated to 480 ° - 520 ° C. Now the pressing speed was set to an average value of approx. 0.5 - 1 mm / s. During this first phase of upsetting, in which the workpiece temperature adapts to the tool temperature, the pressing force rose only slightly (from 0 to approx. 500 kN). The blades were then shaped in a second phase, the punch speed being reduced to 0.05-0.1 mm / s and the pressing force steadily increasing at the same time until it reached its maximum (approx. 3000 kN). The pressing force was now kept constant in order to completely fill the mold during this third phase, which lasted about 5 to 10 minutes. The pressing time for such a compressor wheel was approx. 10-20 min average pressing pressure was about 120 MPa.
  • the solidus temperature is 549 ° C
  • the solution annealing temperature is 530 ° C.
  • the undissolved intermetallic compound FeNiAl 9 still exists as an independent phase in this alloy. It prevents uncontrolled grain growth during high temperature shaping.
  • the deformation temperature of 480 ° - 520 ° C was optimally chosen in this regard and local pore formation due to melting was also not to be feared.
  • the shaping according to conventional forging technology which is carried out for the aforementioned aluminum alloy in the temperature range of approximately 410-450 ° C., is considerably less favorable.
  • the pressures here are between 200 and 500 MPa, which requires heavier and more powerful presses.
  • the mold filling capacity is significantly worse, so that the blades do not reach the target dimension (rib wall thickness 2 - 4 mm) by far and you have to make do with rib thicknesses of approx. 8 - 10 mm in the first work step. This requires at least a few additional work steps, including additional costly machining.
  • a section from a rolled bar was used as the starting material.
  • the primary material was first annealed under protective gas at a temperature of 1080 ° C. for 8 h and then quenched in water.
  • the hydraulic press intended to carry out the operation was constructed in principle in a similar manner to that described in Example I. It had an adjustment range for the stamp speed of 0.05 - 25 mm / s.
  • it was encapsulated in such a way that operation under protective gas or vacuum was possible.
  • dies made from the well-known molybdenum alloy TZM were used, which allow working temperatures up to over 1200 ° C.
  • the inductive heating was designed in the same way as that in example 1.
  • lock chambers which enabled the transition between the press room and the outside world.
  • the blank was first heated to an average temperature of 1100 ° C in the associated induction coil and then placed in the TZM die heated to 1150 ° - 1200 ° C.
  • the stamp was then pressed against the lower half of the die at a pressing speed of approx. 4 mm / s (phase I). After the pressing force began to increase, a further pressing was carried out at a pressing speed of approx. 0.1 mm / s to fill the ridge section (phase 11). After reaching the maximum force, this value was reached for about 5 minutes until the mold was finally filled. kept constant (phase 111). Depending on the shape and material, this phase can last approx. 1 - 10 min. The total pressing time for such a turbine blade can be approximately 2-15 minutes. In the present case, the mean pressing pressure reached the value of approx. 200 MPa.
  • the present nickel-based superalloy has a solidus temperature of approx. 1360 ° C and a solution annealing temperature of approx. 1080 ° C. In the temperature range of 1150 ° - 1200 ° C, which corresponds to a sufficiently large distance from the solidus line to prevent melting, there are still undissolved metal carbides in finely divided form. These prevent uncontrolled grain growth during high-temperature deformation, which could also be determined by comparing metallographic micrographs.
  • a section of an extruded rod was used as the starting material.
  • the alloy itself was produced in a known manner by powder metallurgy by mechanical alloying and subsequent compression by extrusion.
  • the blank was first homogenized at a temperature of 1150 ° C. for 15 minutes and cooled again to room temperature.
  • the further process steps were carried out in a manner analogous to that described in Example 11.
  • the workpiece temperature after preheating was approx. 1150 ° C, that of the TZM tools (upper and lower part of the die) was 1150 ° C-1200 ° C. All other parameters were adhered to in a manner similar to Example II (deformation phases I-III).
  • the oxidic dispersoids Y 2 0 3 and Ti0 2 which are present in submicroscopic form and distribution, are thermally stable up to over 1200 ° C and reliably prevent uncontrolled grain growth during the operations.
  • a finished part made in this way from a dispersion alloy is characterized by maximum density, ie absolute freedom from pores compared to the conventional type of workpiece directly produced by powder metallurgy (pressing + sintering, hot isostatic pressing).
  • the starting material used was a powder-metallurgically produced pre-compacted ingot produced by mechanical alloying from a Cu / Ni pre-alloy and aluminum with A1 2 0 3 , which served as a press bolt.
  • the press bolt was first homogenized at 950 ° C. for 1 h and cooled again to room temperature. Thereupon it was heated to a temperature of 850 ° C. and pressed at a temperature of 850 ° to 950 ° C. through a matrix made of a nickel-based alloy (trade name IN-100) to form a strand of 5 mm in diameter.
  • the presence of the A1 2 0 3 dispersoid in an ultrafine distribution prevents inadmissible grain growth during the pressing process.
  • the workpiece Before shaping, the workpiece is advantageously homogenized for 0.1 to 100 h at a temperature which corresponds to the highest effective deformation temperature, in order to avoid local melting and pore formation, and is cooled again to room temperature. Cooling after shaping can also be done by quenching to room temperature in water or oil. Furthermore, quenching, similar to thermal hardening, can also be carried out to a temperature above room temperature in a metal or salt bath with subsequent aging.
  • hot forming can be drop forging, hot pressing, hot extrusion or hot extrusion. The hot forming should advantageously be carried out in a temperature range in which, in addition to a first phase, which is the main structural component, there is a second phase which inhibits grain growth at least during the entire shaping time.
  • the latter can preferably consist, for example, of an oxidic dispersoid, such as Y 2 0 3 , Ti0 2 , A1 2 0 3 etc., or of an ordinary oxide or of a carbide.
  • an oxidic dispersoid such as Y 2 0 3 , Ti0 2 , A1 2 0 3 etc.
  • the process can also be applied to heat-resistant, rustproof ferritic, ferritic-austenitic and austenitic steels, especially use oxide dispersion hardened steels.
  • the raw material can also be in the raw state as a porous sintered body or as a green, cold-pressed body made of a sintered material, which is compressed, sintered and converted into the intended shape during the molding process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Adornments (AREA)

Abstract

The semi-finished and finished products of an aluminum, copper, nickel and iron alloy with or without oxydic dispersoids are obtained by thermoforming, wherein the forming is carried out isothermally or quasi-isothermally in a single step, at a temperature which is just lower than the temperature of the solidus of the alloy of the work piece, at a relatively low deformation rate and under low specific deformation forces. The workpiece and the tool are maintained at least during the last, longer face of the forming at the maximum allowable temperature nearest to the solidus line. Preferably, a previous homogenisation of the material at said maximum allowable temperature followed by a cooling to the surrounding temperature before the forming. Very good filling power of the mold.

Description

Die Erfindung geht aus von einem Verfahren zur Herstellung eines Halbzeugs oder eines Fertigteils nach der Gattung des Anspruchs 1.The invention is based on a method for producing a semifinished product or a finished part according to the preamble of claim 1.

Bei der Warm-Formgebung metallischer Werkstoffe trachtet man aus wirtschaftlichen Gründen danach, einerseits die Anzahl der Verfahrensschritte möglichst niedrig zu halten, andererseits möglichst nahe an die endgültige Form heranzukommen, um das Ausmass eventuell erforderlicher kostspieliger spanabhebender Bearbeitung zu beschränken. Bekannte Verfahren dieser Art sind z.B. das isotherme oder quasi-isotherme Umformen (Umformen mit beheizten Werkzeugen), wie es sich vor allem beim Schmieden (Gesenkschmieden) durchgesetzt hat. Man versucht ferner, durch Formgebung im sog. superplastischen Zustand des Werkstoffes - sofern sich ein solcher Zustand überhaupt einstellen lässt - gleichzeitig den Formänderungswiderstand herabzusetzen und das Formfüllungsvermögen zu verbessern (siehe: G.Schröder, Isothermes und superplastisches Umformen beim Gesenkschmieden, Werkstatt und Betrieb 113/1980/11, S. 765 - 770; G.H.Gessinger, Isothermes Umformen - ein kostengünstiges Präzisionsschmiedeverfahren, Fachberichte Hüttenpraxis Metallweiterverarbeitung 11/78, S. 954-957).When it comes to the hot shaping of metallic materials, for economic reasons one tries to keep the number of process steps as low as possible, and on the other hand to get as close as possible to the final shape in order to limit the extent of the costly machining that may be required. Known methods of this type are e.g. isothermal or quasi-isothermal forming (forming with heated tools), as has become the norm in forging (drop forging). Attempts are also being made to reduce the resistance to deformation and to improve the mold filling capacity by shaping in the so-called superplastic state of the material - if such a state can be set at all (see: G. Schröder, isotherms and superplastic forming in drop forging, workshop and operation 113 / 1980/11, pp. 765 - 770; GHGessinger, isothermal forming - a cost-effective precision forging process, technical reports metallurgical practice metal processing 11/78, pp. 954-957).

Bei den beschriebenen Umformverfahren werden die Möglichkeiten kostengünstiger Fertigung nur in unvollkommener Weise genutzt. Die konventionelle isotherme Verformung wird in der Regel bei Temperaturen durchgeführt, die vergleichsweise tief liegen, d.h. aus Sicherheitsgründen einen beträchtlichen Abstand von der Solidustemperatur aufweisen. Bei diesen Temperaturen lässt jedoch die Duktilität des zu verformenden Werkstücks zu wünschen übrig und die notwendigen Formänderungskräfte sowie die Formänderungsenergie ist verhältnismässig hoch. Beim superplastischen Umformen andererseits ist man auf ein ultrafeines Korn des Rohlings angewiesen, das sich nur durch gewisse Legierungszusätze und aufwendige thermomechanische Verfahren erreichen lässt. Gewisse Werkstoffe zeigen überhaupt keine Superplastizität, so dass man wegen dieser Forderungen bezüglich Gefügeaufbau wieder an entsprechende Werkstoffgrenzen anstösst.In the forming processes described, the possibilities of cost-effective production are only used in an imperfect manner. Conventional isothermal deformation is usually carried out at temperatures that are comparatively low, i.e. have a considerable distance from the solidus temperature for safety reasons. At these temperatures, however, the ductility of the workpiece to be deformed leaves something to be desired and the necessary deformation forces and the deformation energy are relatively high. Superplastic forming, on the other hand, relies on an ultra-fine grain of the blank that can only be achieved with certain alloy additives and complex thermomechanical processes. Certain materials do not show any superplasticity at all, so that due to these requirements with regard to the structure of the structure, one again hits the corresponding material limits.

In der US-A-3 975 219 wird ein Verfahren zur thermomechanischen Behandlung von Nickelsuperlegierungen beschrieben. Ausgehend von eingekapseltem und heissverdichtetem Pulver wird zunächst ein superplastischer Zustand im Bereich unterhalb der y'-Lösungsglühtemperatur angestrebt. Der heiss vorverdichtete Rohling wird einer stufenweisen Abkühlung via Salzbad bis auf Raumtemperatur und anschliessend einer Wiedererwärmung und einem Strangpressprozess dicht unterhalb der y'-Lösungsglühtemperatur unterworfen. Vom stranggepressten Material werden Scheiben abgeschnitten und einer weiteren Warmumformung durch isothermes Schmieden innerhalb eines Temperaturbereiches unterworfen, der unterhalb, jedoch höchstens 120° C tiefer als die ys'-Lösungsglühtemperatur liegt. Dabei soll die Verformungmindestens 10 % (Beispiel 1: 83 % Höhenabnahme) und die Verformungsgeschwindigkeit höchstens 0,017s-1- (Beispiel 1: 0,0017s-1) betragen. Anschliessend wird das derart geformte Werkstück unter einem Temperaturgradienten von ca. 1°C/mm und einer Temperatur am Ende des Werkstücks, welche zwischen der y'-Lösungsglüh- und der Solidustemperatur liegt, zwecks Einstellung eines Grobkorngefüges zonengeglüht.US-A-3 975 219 describes a method for the thermomechanical treatment of nickel superalloys. Starting from encapsulated and hot-compacted powder, a superplastic state in the range below the y 'solution annealing temperature is initially sought. The hot pre-compacted blank is subjected to a gradual cooling down to room temperature via a salt bath and then reheated and an extrusion process just below the y'-solution annealing temperature. Disks are cut from the extruded material and subjected to further hot forming by isothermal forging within a temperature range which is below, but at most 120 ° C lower than the ys' solution annealing temperature. The deformation should be at least 10% (example 1: 83% decrease in height) and the rate of deformation should not exceed 0.017s- 1- (example 1: 0.0017s- 1 ). The workpiece shaped in this way is then zone-annealed under a temperature gradient of approx. 1 ° C./mm and a temperature at the end of the workpiece which lies between the y'-solution annealing temperature and the solidus temperature in order to set a coarse grain structure.

Dieses speziell auf Superlegierungen und die Erreichung eines in der Längsrichtung des Werkstücks gestreckten Grobkorns gerichtete Verfahren bedingt zuvor einen superplastischen Zustand und ist durch zahlreiche aufwendige Verfahrensschritte gekennzeichnet.This process, which is specifically aimed at superalloys and the achievement of a coarse grain in the longitudinal direction of the workpiece, requires a superplastic condition beforehand and is characterized by numerous complex process steps.

Es besteht daher ein grosses Bedürfnis, ganz allgemein die Möglichkeiten der Warm-Formgebung metallischer Werkstoffe durch Verfeinerung und Verbreiterung der Verfahren zu erweitern und auf möglichst viele Werkstoffe zu erstrecken.There is therefore a great need to expand the possibilities of hot-shaping metallic materials in general by refining and broadening the processes and to extend them to as many materials as possible.

Der Erfindung liegt die Aufgabe zugrunde, ein Warm-Formgebungsverfahren ganz allgemein für metallische Werkstoffe anzugeben, wobei ein zunächst als Gussbarren, Walzbarren, Schmiederohling oder pulvermetallurgisch hergestelltes Rohteil vorliegendes Werkstück aus einer Metallegierung ausser einer in den superplastischen Zustand versetzten Nickelbasis-Superlegierung in möglichst wenig Arbeitsschritten in ein Halbzeug oder Fertigteil übergeführt werden kann. Das Verfahren soll bei grosser Einfachheit dank gutem Formfüllungsvermögen des Werkstücks die konstruktiven Grenzen zu erweitern gestatten und auf eine Vielzahl von Werkstoffen anwendbar sein.The invention has for its object to provide a hot-forming process in general for metallic materials, wherein a workpiece initially made as a cast ingot, rolled ingot, forged blank or powder-metallurgically manufactured blank made of a metal alloy, except for a nickel-based superalloy which has been brought into the superplastic state, in as few steps as possible can be converted into a semi-finished or finished part. Thanks to the good mold filling capacity of the workpiece, the process should allow for great simplicity to expand the design limits and be applicable to a large number of materials.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst.According to the invention, this object is achieved by the features of claim 1.

Der Leitgedanke der Erfindung besteht darin, den Werkstoff möglichst dicht unterhalb der Solidustemperatur zu verformen, lokale Verflüssigung jedoch peinlichst zu vermeiden. Durch diese Massnahme wird die Fliess-Spannung (Verformungswiderstand) des Werkstoffs ganz beträchtlich herabgesetzt, so dass optimales Formfüllungsvermögen erreicht wird.The guiding principle of the invention is to deform the material as close as possible below the solidus temperature, but to avoid local liquefaction with the greatest care. This measure considerably reduces the yield stress (deformation resistance) of the material, so that optimum mold filling capacity is achieved.

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele und einer erläuternden Figur beschrieben.The invention is described with reference to the following exemplary embodiments and an explanatory figure.

Dabei zeigt:

  • die Figur das Arbeitsdiagramm des Verfahrens in Form einer Zeit/Temperatur-Funktion.
It shows:
  • the figure shows the working diagram of the method in the form of a time / temperature function.

In der Figur stellt die Abszisse die Zeit-, die Ordinate die Temperaturachse dar. Mit der Horizontalen auf dem Niveau 1 ist die Solidustemperatur Tsol des zu verformenden Werkstoffs (Legierung) gekennzeichnet, welche unter allen Umständen während des ganzen Arbeitsprozesses nicht erreicht werden darf. Andernfalls würden sich örtliche Anschmelzungen ergeben und der Zusammenhang und kontrollierte Gefügeaufbau des Werkstücks ginge verloren. 2 ist die maximale Temperatur, welche - meist am Ende der Formgebung - gleichzeitig vom Werkstück und Werkzeug erreicht werden darf. Je nach Legierung und Art des Werkstücks muss sie stets um einen gewissen Betrag unterhalb 1 (Tsol) bleiben. 3 stellt die Homogenisierungstemperatur des Werkstücks dar, für welche dasselbe wie für Temperatur 2 gilt, damit mit Sicherheit spätere Anschmelzungen während des Umformens vermieden werden. 4 ist der Verlauf der Werkstücktemperatur über der Zeit bis zum Ende der Formgebung. Diese Operation zerfällt in die Vorwärmphase 8 und die Umformphase 9. 5 stellt den Verlauf der Werkstücktemperatur bei normaler Abkühlung auf Raumtemperatur dar. 6 ist der analoge Verlauf nach der Formgebung für den Fall, dass an letztere direkt eine weitere zusätzliche Wärmebehandlung (z.B. Warmauslagern, Thermalhärten etc.) angeschlossen wird. In den meisten Fällen wird man um eine vorgängige Homogenisierung des Werkstoffs nicht herumkommen. Diese stellt jedoch keine unbedingt notwendige Voraussetzung für das erfindungsgemässe Verfahren dar, bedeutet jedoch eine bevorzugte Sicherheitsmassnahme. Der Verlauf der Temperatur während der Homogenisierungsphase 10 ist durch den Linienzug 7 dargestellt.In the figure, the abscissa represents the time axis, the ordinate the temperature axis. With the horizontal at level 1, the solidus temperature T sol of the material (alloy) to be deformed is identified, which under all circumstances during the whole Work process must not be achieved. Otherwise local melting would occur and the connection and controlled structure of the workpiece would be lost. 2 is the maximum temperature which - usually at the end of the shaping - can be reached by the workpiece and tool at the same time. Depending on the alloy and type of workpiece, it must always remain below 1 (T sol ) by a certain amount. 3 represents the homogenization temperature of the workpiece, for which the same applies as for temperature 2, so that subsequent melting during the forming process can be avoided with certainty. 4 is the course of the workpiece temperature over time until the end of the shaping. This operation breaks down into the preheating phase 8 and the forming phase 9. 5 represents the course of the workpiece temperature with normal cooling to room temperature. 6 is the analogous course after the shaping in the event that the latter is subjected to further additional heat treatment (eg heat aging, thermal hardening) etc.) is connected. In most cases, you will not be able to avoid homogenizing the material beforehand. However, this is not an absolutely necessary requirement for the method according to the invention, but it means a preferred safety measure. The course of the temperature during the homogenization phase 10 is shown by the line 7.

Ausführungsbeispiel 1:

  • Gesenkpressen eines Radialverdichterrades aus einer AI-Cu-Mg-Ni-Legierung.
Example 1:
  • Die pressing of a radial compressor wheel made of an Al-Cu-Mg-Ni alloy.

Ein Radialverdichterrad von 180 mm Durchmesser wurde in einem Arbeitsgang durch isothermes Hochtemperaturpressen aus einem scheibenförmigen zylindrischen Rohling hergestellt. Die verwendete Aluminiumlegierung entsprach der US-AA-Norm 2618 und hatte folgende Zusammensetzung:

  • Si = 0,10 - 0,25 Gew.-%
  • Fe = 0,9 - 1,3 Gew.-%
  • Cu = 1,9 - 2,7 Gew.-%
  • Mg = 1,3 - 1,8 Gew.-%
  • Ni = 0,9 - 1,2 Gew.-%
  • Zn = 0,10 Gew.-%
  • Ti = 0,04 - 1,10 Gew.-%
  • AI = Rest
A radial compressor wheel with a diameter of 180 mm was produced in one operation by isothermal high-temperature pressing from a disc-shaped cylindrical blank. The aluminum alloy used corresponded to US AA standard 2618 and had the following composition:
  • Si = 0.10 - 0.25% by weight
  • Fe = 0.9 - 1.3% by weight
  • Cu = 1.9-2.7% by weight
  • Mg = 1.3-1.8% by weight
  • Ni = 0.9-1.2% by weight
  • Zn = 0.10% by weight
  • Ti = 0.04 - 1.10% by weight
  • AI = rest

Als Ausgangsmaterial wurde eine Scheibe in Form eines Stangenabschnittes benutzt. Die Stange war ihrerseits aus einem Abschnitt eines durch Strangguss hergestellten Pressbolzens grösseren Durchmessers durch Strangpressen hergestellt worden. Bei grösseren Rohlingabmessungen (Scheibe von mehr als 200 mm Durchmesser) können als Vorformen auch durch Freiformschmieden hergestellte Werkstücke zum Einsatz gelangen. Die Form des herzustellenden Verdichterrades wies 18 radial stehende, am Umfang in tangentialer Richtung leicht gekrümmte Schaufeln von ca. 30 mm Tiefe auf, welche am Fuss eine Wandstärke von ca. 4 mm, am Kopf eine solche von ca. 2 mm hatten. Der scheibenförmige Radkörper hatte am Umfang eine axiale Wandstärke von ca. 6 mm.A disc in the form of a rod section was used as the starting material. The rod, in turn, was made from a section of a larger diameter press stud made by extrusion by extrusion. In the case of larger blank dimensions (disc with a diameter of more than 200 mm), workpieces produced by open-die forging can also be used as preforms. The shape of the compressor wheel to be produced had 18 radially standing blades, slightly curved on the circumference in the tangential direction, of approximately 30 mm depth, which had a wall thickness of approximately 4 mm at the base and one of approximately 2 mm at the head. The disk-shaped wheel body had an axial wall thickness of approx. 6 mm on the circumference.

Versuche in der Praxis haben bewiesen, dass es völlig unmöglich ist, einen Körper von derart komplizierter Geometrie durch konventionelles Pressen oder Schmieden zu fertigen. Die Istform weicht zufolge ungenügenden Formfüllungsvermögen beträchtlich von den Sollwerten ab.Practical tests have shown that it is completely impossible to manufacture a body of such a complicated geometry by conventional pressing or forging. The actual shape deviates considerably from the target values due to insufficient mold filling capacity.

Das Vormaterial wurde vor der Formgebung einer Homogenisierungsglühung bei einer Temperatur von 520° C während 20 h unterworfen. Diese Massnahme dient zur Vermeidung örtlichen Anschmelzens oder örtlicher Porenbildung beim nachträglichen Durchlaufen der maximalen Temperatur während des Verformungsvorganges. Letzterer wurde als isothermes . Hochtemperaturgesenkpressen auf einer speziell eingerichteten und mit einer induktiven Werkstück- und Werkzeugheizung versehenen hydraulischen Presse durchgeführt.The raw material was subjected to a homogenization annealing at a temperature of 520 ° C. for 20 hours before the shaping. This measure serves to avoid local melting or local pore formation when the maximum temperature is subsequently passed during the deformation process. The latter was called isothermal. High-temperature die presses carried out on a specially designed hydraulic press equipped with inductive workpiece and tool heating.

Die Presse war für niedrige Stempelgeschwindigkeiten von 0,05 - 5 mm/s eingerichtet, welche während des Pressens beliebig verändert werden konnte. Ferner konnte die Presskraft auch über längere vorbestimmte Zeitdauer nach Erreichen eines vorgegebenen Grenzwertes konstant gehalten werden. Tisch und Stempel waren mit einer Kühlvorrichtung versehen. Die induktive Heizanlage bestand aus je einer Induktionsspule für die Erwärmung des Werkstückrohlings wie auch der aus Warmarbeitsstahl gefertigten Werkzeuge (Gesenke). Eine genaue Temperaturkontrolle und Temperaturregelung wurde über Thermoelemente im Werkzeug sowie über Taster am Werkstückrohling gewährleistet. Zum Transport des Werkstücks in die Erwärmungszone bzw. in den Bereich des Werkzeuges sowie zum Ausstossen aus dem Werkzeug nach erfolgter Umformung und Transport bis zur Ablage diente eine speziell konstruierte Vorrichtung.The press was set up for low stamp speeds of 0.05 - 5 mm / s, which could be changed as required during the pressing. Furthermore, the pressing force could also be kept constant over a longer predetermined period of time after reaching a predetermined limit value. The table and stamp were provided with a cooling device. The inductive heating system consisted of an induction coil for heating the workpiece blank as well as the tools (dies) made of hot-work steel. Precise temperature control and temperature control was ensured via thermocouples in the tool and via buttons on the workpiece blank. A specially designed device was used for transporting the workpiece into the heating zone or into the area of the tool, as well as for ejecting it from the tool after forming and transporting it to storage.

Der Werkstückrohling in Form einer Scheibe wurde zunächst durch Einschieben in die zugehörige Induktionsspule durchgebend auf eine Temperatur von 480° ± 10°C erwärmt. Daraufhin wurde der Rohling in das auf 480° - 520° C erwärmte Gesenk eingelegt. Nun wurde die Pressgeschwindigkeit auf einen mittleren Wert von ca. 0,5 - 1 mm/s eingestellt. Während dieser ersten Phase des Stauchens, bei welcher sich die Werkstücktemperatur der Werkzeugtemperatur anpasst, stieg die Presskraft nur wenig an (von 0 auf ca. 500 kN). In einer zweiten Phase erfolgte nun das Ausformen der Schaufeln, wobei die Stempelgeschwindigkeit auf 0,05 - 0,1 mm/s herabgesetzt wurde und die Presskraft gleichzeitig stetig anstieg, bis sie ihr Maximum erreichte (ca. 3000 kN). Die Presskraft wurde nun konstant gehalten, um während dieser ca. 5 - 10 min dauernden dritten Phase die Form vollends zu füllen. Die Presszeit für ein derartiges Verdichterrad betrug ca. 10 - 20 min, wobei der mittlere Pressdruck sich zu ca. 120 MPa ergab.The workpiece blank in the form of a disk was first continuously heated to a temperature of 480 ° ± 10 ° C by being pushed into the associated induction coil. The blank was then placed in the die heated to 480 ° - 520 ° C. Now the pressing speed was set to an average value of approx. 0.5 - 1 mm / s. During this first phase of upsetting, in which the workpiece temperature adapts to the tool temperature, the pressing force rose only slightly (from 0 to approx. 500 kN). The blades were then shaped in a second phase, the punch speed being reduced to 0.05-0.1 mm / s and the pressing force steadily increasing at the same time until it reached its maximum (approx. 3000 kN). The pressing force was now kept constant in order to completely fill the mold during this third phase, which lasted about 5 to 10 minutes. The pressing time for such a compressor wheel was approx. 10-20 min average pressing pressure was about 120 MPa.

Bei der hier gepressten AI-Cu-Mg-Ni-Legierung liegt die Solidustemperatur bei 549° C, die Lösungsglühtemperatur bei 530° C. Bei 520° C existiert in dieser Legierung noch die ungelöste intermetallische Verbindung FeNiAl9 als selbständige Phase. Sie verhindert ein unkontrolliertes Kornwachstum bei der Hochtemperaturformgebung. Die Verformungstemperatur von 480° - 520° C war in dieser Beziehung optimal gewählt und örtliche Porenbildung durch Anschmelzungen war ebenfalls nicht zu befürchten.In the case of the pressed Al-Cu-Mg-Ni alloy, the solidus temperature is 549 ° C, the solution annealing temperature is 530 ° C. At 520 ° C, the undissolved intermetallic compound FeNiAl 9 still exists as an independent phase in this alloy. It prevents uncontrolled grain growth during high temperature shaping. The deformation temperature of 480 ° - 520 ° C was optimally chosen in this regard and local pore formation due to melting was also not to be feared.

Im Vergleich zum erfindungsgemässen Gesenkpressen stellt sich die Formgebung nach konventioneller Schmiedetechnik, die für die vorgenannte Aluminiumlegierung im Temperaturbereich von ca. 410 - 450° C durchgeführt wird, wesentlich ungünstiger. Die Pressdrücke liegen hier erfahrungsgemäss bei 200 - 500 MPa, was schwerere und kräftigere Pressen erfordert. Das Formfüllungsvermögen ist bedeutend schlechter, so dass die Schaufeln das Sollmass (Rippenwandstärke 2 - 4 mm) bei weitem nicht erreichen und man mit Rippenstärken von ca. 8 - 10 mm im ersten Arbeitsgang Vorlieb nehmen muss. Dies bedingt mindestens einige weitere Arbeitsschritte, unter anderem eine zusätzliche kostspielige spanabhebende Bearbeitung.In comparison to the die press according to the invention, the shaping according to conventional forging technology, which is carried out for the aforementioned aluminum alloy in the temperature range of approximately 410-450 ° C., is considerably less favorable. Experience has shown that the pressures here are between 200 and 500 MPa, which requires heavier and more powerful presses. The mold filling capacity is significantly worse, so that the blades do not reach the target dimension (rib wall thickness 2 - 4 mm) by far and you have to make do with rib thicknesses of approx. 8 - 10 mm in the first work step. This requires at least a few additional work steps, including additional costly machining.

Ausführungsbeispiel II:

  • Gesenkpressen einer Turbinenschaufel aus einer ausscheidungshärtbaren Nickelbasis-Superlegierung.
Working example II:
  • Die pressing of a turbine blade made of a precipitation hardenable nickel-based superalloy.

Eine Turbinenschaufel von 150 mm Länge und 35 mm Breite wurde in einem Arbeitsgang durch isothermes Hochtemperaturpressen aus einem Stangenabschnitt hergestellt. Die verwendete Legierung mit dem Handelsnamen Nimonic-80A hatte folgende Zusammensetzung:

  • Cr = 19,5 Gew.-%
  • Co = 1,0 Gew.-%
  • Ti = 2,25 Gew.-%
  • AI = 1,4 Gew.-%
  • Fe = 1,5 Gew.-%
  • C = 0,05 Gew.-%
  • Cu = max. 0,10 Gew.-%
  • Ni = Rest
A turbine blade 150 mm long and 35 mm wide was produced in one operation by isothermal high-temperature pressing from a rod section. The alloy used with the trade name Nimonic-80A had the following composition:
  • Cr = 19.5% by weight
  • Co = 1.0% by weight
  • Ti = 2.25% by weight
  • AI = 1.4% by weight
  • Fe = 1.5% by weight
  • C = 0.05% by weight
  • Cu = max. 0.10% by weight
  • Ni = rest

Als Ausgangsmaterial wurde ein Abschnitt aus einer gewalzten Stange benutzt. Um für die Formgebung ein homogenes Gefüge bereitzustellen, wurde das Vormaterial zunächst unter Schutzgas bei einer Temperatur von 1080° C während 8 h geglüht und anschliessend in Wasser abgeschreckt. Die zur Durchführung der Operation vorgesehene hydraulische Presse war im Prinzip ähnlich aufgebaut wie diejenige unter Beispiel I beschriebane. Sie wies einen Einstellbereich für die Stempelgeschwindigkeit von 0,05 - 25 mm/s auf. Ausserdem war sie derart gekapselt, dass wahlweise ein Betrieb unter Schutzgas oder Vakuum möglich war. Als Werkzeug dienten Gesenke aus der bekannten Molybdänlegierung TZM, welche Arbeitstemperaturen bis über 1200°C erlauben. Die induktive Heizung war gleich gestaltet wie diejenige unter Beispiel 1. Zusätzlich zum Transportsystem für das Werkstück waren Schleusenkammern vorhanden, welche den Uebergang zwischen Pressraum und Aussenwelt ermöglichten.A section from a rolled bar was used as the starting material. In order to provide a homogeneous structure for the shaping, the primary material was first annealed under protective gas at a temperature of 1080 ° C. for 8 h and then quenched in water. The hydraulic press intended to carry out the operation was constructed in principle in a similar manner to that described in Example I. It had an adjustment range for the stamp speed of 0.05 - 25 mm / s. In addition, it was encapsulated in such a way that operation under protective gas or vacuum was possible. As a tool, dies made from the well-known molybdenum alloy TZM were used, which allow working temperatures up to over 1200 ° C. The inductive heating was designed in the same way as that in example 1. In addition to the transport system for the workpiece, there were lock chambers, which enabled the transition between the press room and the outside world.

Der Rohling wurde zunächst in der zugehörigen Induktionsspule auf eine mittlere Temperatur von 1100°C erwärmt und anschliessend in das auf 1150° - 1200°C erwärmte TZM-Gesenk eingelegt. Daraufhin wurde der Stempel mit einer Pressgeschwindigkeit von ca. 4 mm/s gegen die untere Gesenkhälfte gedrückt (Phase I). Nach beginnendem Anstieg der Presskraft wurde dann mit einer Pressgeschwindigkeit von ca. 0,1 mm/s zwecks Füllen der Gratpartie weiterverformt (Phase 11). Nach Erreichen der Maximalkraft wurde dieser Wert bis zur endgültigen Formfüllung während ca. 5 min. konstant gehalten (Phase 111). Diese Phase kann je nach Form und Werkstoff ca. 1 - 10 min dauern. Die gesamte Presszeit für eine derartige Turbinenschaufel kann ca. 2 - 15 min betragen. Der mittlere Pressdruck erreichte im vorliegenden Fall den Wert von ca. 200 MPa.The blank was first heated to an average temperature of 1100 ° C in the associated induction coil and then placed in the TZM die heated to 1150 ° - 1200 ° C. The stamp was then pressed against the lower half of the die at a pressing speed of approx. 4 mm / s (phase I). After the pressing force began to increase, a further pressing was carried out at a pressing speed of approx. 0.1 mm / s to fill the ridge section (phase 11). After reaching the maximum force, this value was reached for about 5 minutes until the mold was finally filled. kept constant (phase 111). Depending on the shape and material, this phase can last approx. 1 - 10 min. The total pressing time for such a turbine blade can be approximately 2-15 minutes. In the present case, the mean pressing pressure reached the value of approx. 200 MPa.

Die vorliegende Nickelbasis-Superlegierung weist eine Solidustemperatur von ca. 1360°C und eine Lösungsglühtemperatur von ca. 1080° C auf. Im Temperaturbereich von 1150° - 1200°C, was einen hinreichend grossen Abstand von der Soliduslinie zur Verhütung von Anschmelzungen entspricht, existieren noch ungelöste Metallkarbide in feinverteilter Form. Diese verhüten ein unkontrolliertes Kornwachstum während der Hochtemperaturverformung, was auch durch den Vergleich von metallographischen Schliffbildern festgestellt werden konnte.The present nickel-based superalloy has a solidus temperature of approx. 1360 ° C and a solution annealing temperature of approx. 1080 ° C. In the temperature range of 1150 ° - 1200 ° C, which corresponds to a sufficiently large distance from the solidus line to prevent melting, there are still undissolved metal carbides in finely divided form. These prevent uncontrolled grain growth during high-temperature deformation, which could also be determined by comparing metallographic micrographs.

Beim konventionellen Schmieden/Pressen unter Hämmern und Spindelpressen hoher Geschwindigkeit sind die Pressdrücke vergleichsweise beträchtlich höher und würden im vorliegenden Beispiel Werte von 500 - 1000 MPa erreichen. Abgesehen von der erforderlichen Grösse derartiger Maschinen kommt man dabei auch an die Grenzen der Temperatur-Materialfestigkeit (Gefahr der Oberflächenrisse) der Gesenkwerkstoffe. Betreffend Formfüllungsvermögen bestehen die gleichen Nachteile wie unter Beispiel I ausgeführt wurde.In conventional forging / pressing under hammers and high-speed screw presses, the pressures are comparatively considerably higher and would reach values of 500 - 1000 MPa in the present example. Apart from the required size of such machines, the limits of the temperature-material strength (risk of surface cracks) of the die materials are also reached. With regard to mold filling capacity, there are the same disadvantages as described under Example I.

Ausführungsbeispiel 111:

  • Hochtemperaturpressen einer Turbinenschaufel aus einem oxyddispersionsgehärteten rostfreien ferritischen Stahl mit einer Solidustemperatur von ca. 1440°C.
Embodiment 111:
  • High temperature presses of a turbine blade made of an oxide dispersion hardened stainless ferritic steel with a solidus temperature of approx. 1440 ° C.

Eine Turbinenschaufel von 200 mm Länge und 50 mm Breite wurde in einem Arbeitsgang durch isothermes Hochtemperaturpressen aus einem Stangenabschnitt hergestellt. Die verwendete Eisenlegierung hatte die nachfolgende Zusammensetzung:

  • Cr = 12,5 Gew.-%
  • Ti = 3,5 Gew.-%
  • Mo = 1,5 Gew.-%
  • C = 0,02 Gew.-% Y203 = 0,5 Gew.-%
  • Ti02 = 1,0 Gew.-%
  • Fe = Rest
A turbine blade of 200 mm in length and 50 mm in width was produced in one operation by isothermal high-temperature pressing from a rod section. The iron alloy used had the following composition:
  • Cr = 12.5% by weight
  • Ti = 3.5% by weight
  • Mo = 1.5% by weight
  • C = 0.02% by weight Y 2 0 3 = 0.5% by weight
  • Ti0 2 = 1.0% by weight
  • Fe = rest

Als Ausgangsmaterial wurde ein Abschnitt aus einer stranggepressten Stange verwendet. Die Legierung an sich wurde in bekannter Weise pulvermetallurgisch durch mechanisches Legieren und darauffolgendes Verdichten durch Strangpressen hergestellt. Der Rohling wurde zuerst während 15 min bei einer Temperatur von 1150°C homogenisiert und wieder auf Raumtemperatur abgekühlt. Die weiteren Verfahrensschritte wurden in analoger Weise wie unter Beispiel 11 beschrieben durchgeführt. Die Werkstücktemperatur betrug nach dem Vorwärmen ca. 1150°C, diejenige der TZM-Werkzeuge (Gesenkoberteil und -Unterteil) 1150°C-1200°C. Alle übrigen Parameter wurden in ähnlicher Art wie Beispiel II eingehalten (Verformungsphasen I-III).A section of an extruded rod was used as the starting material. The alloy itself was produced in a known manner by powder metallurgy by mechanical alloying and subsequent compression by extrusion. The blank was first homogenized at a temperature of 1150 ° C. for 15 minutes and cooled again to room temperature. The further process steps were carried out in a manner analogous to that described in Example 11. The workpiece temperature after preheating was approx. 1150 ° C, that of the TZM tools (upper and lower part of the die) was 1150 ° C-1200 ° C. All other parameters were adhered to in a manner similar to Example II (deformation phases I-III).

Die in submikroskopischer Form und Verteilung vorliegenden oxydischen Dispersoide Y203 und Ti02 sind bis über 1200°C thermisch stabil und verhindern ein unkontrolliertes Kornwachstum während den Operationen mit Sicherheit. Ein auf diese Art und Weise hergestelltes Fertigteil aus einer Dispersionslegierung zeichnet sich durch maximale Dichte, d.h. absolute Porenfreiheit gegenüber noch herkömmlicher Art durch Pulvermetallurgie (Pressen + Sintern, heissisostatisches Pressen) direkt gefertigtes Werkstück aus.The oxidic dispersoids Y 2 0 3 and Ti0 2, which are present in submicroscopic form and distribution, are thermally stable up to over 1200 ° C and reliably prevent uncontrolled grain growth during the operations. A finished part made in this way from a dispersion alloy is characterized by maximum density, ie absolute freedom from pores compared to the conventional type of workpiece directly produced by powder metallurgy (pressing + sintering, hot isostatic pressing).

Ausführungsbeispiel IV:

  • Hochtemperatur-Strangpressen/Warmfliesspressen von Halbzeug und Fertigteilen aus einer Cu/AI/Ni-Gedächtnislegierung mit Oxyddispersoid mit einer Solidustemperatur von ca. 1040°C.
Working example IV:
  • High temperature extrusion / hot extrusion of semi-finished and finished parts made of a Cu / Al / Ni memory alloy with oxide dispersoid with a solidus temperature of approx. 1040 ° C.

Ein Rundstab von 5 mm Durchmesser wurde durch isothermes Hochtemperaturstrangpressen aus einem Pressbolzen von 20 mm Durchmesser hergestellt. Die verwendete Formgedächtnislegierung hatte folgende Zusammensetzung:

  • AI = 13 Gew.-%
  • Ni = 3 Gew.-%
  • A1203 = 0,4 Gew.-%
  • Cu = Rest
A round rod of 5 mm in diameter was produced by isothermal high-temperature extrusion from a press bolt of 20 mm in diameter. The shape memory alloy used had the following composition:
  • AI = 13% by weight
  • Ni = 3% by weight
  • A1 2 0 3 = 0.4% by weight
  • Cu = rest

Als Ausgangsmaterial wurde ein pulvermetallurgisch durch mechanisches Legieren aus einer Cu/Ni-Vorlegierung und Aluminium mit A1203 hergestellter vorverdichteter Barren verwendet, welcher als Pressbolzen diente. Der Pressbolzen wurde zunächst während 1 h bei 950°C homogenisiert und wieder auf Raumtemperatur abgekühlt. Hierauf wurde er auf eine Temperatur von 850° C erhitzt und bei einer Temperatur von 850° - 950°C durch eine Matrize aus einer Nickelbasislegierung (Handelsbezeichnung IN-100) zu einem Strang von 5 mm Durchmesser gepresst. Durch die Anwesenheit des A1203-Dispersoids in ultrafeiner Verteilung wird ein unzulässiges Kornwachstum während des Pressvorgangs vermieden.The starting material used was a powder-metallurgically produced pre-compacted ingot produced by mechanical alloying from a Cu / Ni pre-alloy and aluminum with A1 2 0 3 , which served as a press bolt. The press bolt was first homogenized at 950 ° C. for 1 h and cooled again to room temperature. Thereupon it was heated to a temperature of 850 ° C. and pressed at a temperature of 850 ° to 950 ° C. through a matrix made of a nickel-based alloy (trade name IN-100) to form a strand of 5 mm in diameter. The presence of the A1 2 0 3 dispersoid in an ultrafine distribution prevents inadmissible grain growth during the pressing process.

Das Strangpressen und auch das Warmfliesspressen bei diesen verhältnismässig hohen Temperaturen dicht unter der Soliduslinie erlaubt dank dem besseren Formfüllungsvermögen kompliziertere Formen und Uebergänge mit kleineren Krümmungsradien. Es können auf diese Weise insbesondere auch dünnwandige Rippen (z.B. an Rippenrohren) erzeugt werden, was vor allem auch für Wärmeaustauscher von grosser Bedeutung ist (Aluminium- oder Kupferlegierungen).The extrusion and also the hot extrusion at these relatively high temperatures just below the solidus line allows, thanks to the better mold filling capacity, more complicated shapes and transitions with smaller radii of curvature. In this way, thin-walled fins (e.g. on finned tubes) can also be produced, which is particularly important for heat exchangers (aluminum or copper alloys).

Die Erfindung ist nicht auf die obigen Ausführungsbeispiele beschränkt. Sowohl Werkstück wie Werkzeug sollen für den Verformungsprozess auf eine Temperatur gebracht werden, welche zwischen 5 Kelvin und höchstens 0,15 Tsol in Grad Kelvin (Tsol = Solidustemperatur in Grad Kelvin) tiefer liegt als Tsol. Der Temperaturunterschied im Werkstückquerschnitt und über die gesamte Zeit der isothermen/ quasiisothermen Formgebung soll höchstens 50°C und die Verformungsgeschwindigkeit von > 0 bis 10s1 betragen, wobei

Figure imgb0001

  • v = Werkzeuggeschwindigkeit
  • h = Werkstückhöhe
The invention is not restricted to the above exemplary embodiments. Both the workpiece and the tool should be brought to a temperature for the deformation process that is between 5 Kelvin and at most 0.15 T sol in degrees Kelvin (T sol = solidus temperature in degrees Kelvin) lower than T sol . The temperature difference in the workpiece cross section and over the entire time of the isothermal / quasi-isothermal shaping should be at most 50 ° C. and the rate of deformation from> 0 to 10 s 1 , where
Figure imgb0001
  • v = tool speed
  • h = workpiece height

Vorteilhafterweise wird das Werkstück vor der Formgebung während 0,1 bis 100 h bei einer Temperatur, welche der höchsten effektiv auftretenden Verformungstemperatur entspricht, zwecks Vermeidung von örtlichen Anschmelzungen und Porenbildung homogenisiert und wieder auf Raumtemperatur abgekühlt. Die Abkühlung nach der Formgebung kann auch in einem Abschrecken auf Raumtemperatur in Wasser oder Oel erfolgen. Ferner kann die Abschreckung ähnlich Thermalhärtung auch auf eine über der Raumtemperatur liegende Temperatur in ein Metall- oder Salzbad mit nachfolgender Auslagerung durchgeführt werden. Die Warmverformung kann prinzipiell in einem Gesenkschmieden, Warmpressen, Warmfliesspressen oder Warmstrangpressen bestehen. Vorteilhafterweise sollte die Warmverformung im einem Temperaturgebiet durchgeführt werden, in dem aussereiner als Hauptgefügebestandteil vorliegenden ersten Phase mindestens während der gesamten Verformungszeit noch eine das Kornwachstum hemmende zweite Phase vorliegt. Letztere kann beispielsweise bevorzugt aus einem oxydischen Dispersoid, wie Y203, Ti02, A1203 etc. oder aus einem gewöhnlichen Oxyd oder aus einem Karbid bestehen. Auf diese Weise lassen sich zum Beispiel Aluminiumlegierungen, Kupferlegierungen (insbesondere Cu/ AI/Ni), Nickelbasis-Superlegierungen, Nickelbasis-Dispersionslegierungen sowie Nickellegierungen des Typs Ni/Ti (Gedächtnislegierungen) oder Ni/Ti/Cu umformen. Das Verfahren lässt sich ferner auf warmfeste, rostfreie ferritische, ferritisch-austenitische und austenitische Stähle, insbesondere oxyddispersionsgehärtete Stähle anwenden. Der zu verformende Werkstoff kann ausserdem im Rohzustand als poröser Sinterkörper oder als grüner, kalt vorgepresster Körper aus einem Sinterwerkstoff vorliegen, welcher während des Verformungsvorganges gleichzeitig verdichtet, gesintert und in die beabsichtigte Form übergeführt wird.Before shaping, the workpiece is advantageously homogenized for 0.1 to 100 h at a temperature which corresponds to the highest effective deformation temperature, in order to avoid local melting and pore formation, and is cooled again to room temperature. Cooling after shaping can also be done by quenching to room temperature in water or oil. Furthermore, quenching, similar to thermal hardening, can also be carried out to a temperature above room temperature in a metal or salt bath with subsequent aging. In principle, hot forming can be drop forging, hot pressing, hot extrusion or hot extrusion. The hot forming should advantageously be carried out in a temperature range in which, in addition to a first phase, which is the main structural component, there is a second phase which inhibits grain growth at least during the entire shaping time. The latter can preferably consist, for example, of an oxidic dispersoid, such as Y 2 0 3 , Ti0 2 , A1 2 0 3 etc., or of an ordinary oxide or of a carbide. In this way, aluminum alloys, copper alloys (in particular Cu / Al / Ni), nickel-based superalloys, nickel-based dispersion alloys and nickel alloys of the Ni / Ti type (memory alloys) or Ni / Ti / Cu can be formed, for example. The process can also be applied to heat-resistant, rustproof ferritic, ferritic-austenitic and austenitic steels, especially use oxide dispersion hardened steels. The raw material can also be in the raw state as a porous sintered body or as a green, cold-pressed body made of a sintered material, which is compressed, sintered and converted into the intended shape during the molding process.

Claims (10)

1. Process for producing a semi-finished or finished component from a metallic material by hot-forming, a workpiece initially present as a cast billet, rolled billet, forging blank or blank produced by powder metallurgy and consisting of a metal alloy with the exception of Ni super-alloys brought into the superplastic state being heated to a temperature which is more than 5 degrees Kelvin up to at most 0.15 Tsol in degrees Kelvin below the solidus temperature of the material,
that the workpiece is then brought into contact with a tool, the temperature of which is kept constant and is 5 degrees Kelvin to 0.15 Tsol in degrees Kelvin lower than the solidus temperature of the material but higher than the preheating temperature of the workpiece, and that the workpiece is isothermally or quasi- isothermally deformed at a deformation rate relative to a change in cross-section of > 0 to 10 s-1, in such a way that the temperature difference considered across the whole crosssection of the workpiece and over the total time of forming is at most 50°C, (p being defined as follows:
Figure imgb0003
v = tool speed
h = workpiece height
Tsol = solidus temperature in degrees Kelvin,

that moreover the hot-forming is carried out in a temperature region of the material in which, in addition to a first phase as the main structural component, a second phase inhibiting grain growth is also present at least for the total deformation time, and that finally the workpiece is subjected to cooling.
2. Process according to Claim 1, characterised in that the phase inhibiting grain growth consists of an oxide dispersoid such as Y203, Ti02 or of an oxide or a carbide.
3. Process according to Claim 1, characterised in that the cooling of the workpiece consists in quenching from the deformation temperature to room temperature in water or oil or to a temperature lying above room temperature in oil, metal or salt bath and that the workpiece is then aged at room temperature or at a temperature lying above room temperature.
4. Process according to Claim 1, characterised in that the hot-forming consists of drop-forging, hotpressing, hot impact extrusion or hot die extrusion.
5. Process according to Claim 1, characterised in that, before heating for hot-forming, the workpiece is homogenised for 0.1 to 100 hours at a temperature, which corresponds to the highest, effectively arising deformation temperature of the workpiece, in order to avoid later local fusions and pore formation, and is then cooled again to room temperature.
6. Process according to Claim 1, characterised in that the material to be deformed is an aluminium alloy, in particular an AI/Cu/Mg/Ni alloy.
7. Process according to Claim 1, characterised in that the material to be deformed is a copper alloy of the Cu/AI/Ni type.
8. Process according to Claim 1, characterised in that the material to be deformed is a nickel-based superalloy or a nickel-based dispersion alloy or a nickel alloy of the Ni/Ti or Ni/Ti/Cu types.
9. Process according to Claim 1, characterised in that the material to be deformed is a high- temperature stainless ferritic steel, a ferritic oxide-dispersion hardened steel, a ferritic- austenitic steel or austenitic steel.
10. Process according to Claim 1, characterised in that the material to be deformed is a sintered material which is present in the raw state as a porous sintered body or as a green, cold- prepressed body and which, during the deformation process, is simultaneously compacted, sintered and converted to the intended shape.
EP82200780A 1981-06-26 1982-06-23 Process for manufacturing semi-finished or finished articles from a metallic material by hot-shaping Expired EP0069421B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82200780T ATE19531T1 (en) 1981-06-26 1982-06-23 PROCESS FOR MANUFACTURING A SEMI-PRODUCT OR FINISHED PARTS FROM A METALLIC MATERIAL BY HOT FORMING.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4224/81 1981-06-26
CH422481 1981-06-26

Publications (2)

Publication Number Publication Date
EP0069421A1 EP0069421A1 (en) 1983-01-12
EP0069421B1 true EP0069421B1 (en) 1986-04-30

Family

ID=4272115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200780A Expired EP0069421B1 (en) 1981-06-26 1982-06-23 Process for manufacturing semi-finished or finished articles from a metallic material by hot-shaping

Country Status (8)

Country Link
EP (1) EP0069421B1 (en)
JP (1) JPS58501041A (en)
KR (1) KR890003976B1 (en)
AT (1) ATE19531T1 (en)
BR (1) BR8207730A (en)
DE (1) DE3270846D1 (en)
PL (1) PL237150A1 (en)
WO (1) WO1983000168A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519503A (en) * 1967-12-22 1970-07-07 United Aircraft Corp Fabrication method for the high temperature alloys
US3698962A (en) * 1971-04-30 1972-10-17 Crucible Inc Method for producing superalloy articles by hot isostatic pressing
FR2259159A1 (en) * 1974-01-25 1975-08-22 Crucible Inc
FR2298605A1 (en) * 1975-01-24 1976-08-20 Mitsubishi Heavy Ind Ltd Metal forming press for superplastic deformation of metals - uses cyclic heating and cooling of metal at transformation temps
US3975219A (en) * 1975-09-02 1976-08-17 United Technologies Corporation Thermomechanical treatment for nickel base superalloys

Also Published As

Publication number Publication date
EP0069421A1 (en) 1983-01-12
BR8207730A (en) 1983-05-31
ATE19531T1 (en) 1986-05-15
KR840000655A (en) 1984-02-25
JPS6360819B2 (en) 1988-11-25
DE3270846D1 (en) 1986-06-05
WO1983000168A1 (en) 1983-01-20
PL237150A1 (en) 1983-02-14
JPS58501041A (en) 1983-06-30
KR890003976B1 (en) 1989-10-14

Similar Documents

Publication Publication Date Title
EP0464366B1 (en) Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
DE3445767C2 (en)
DE2303802C3 (en) Process for increasing the strength and toughness of dispersion-strengthened wrought alloys
DE102015115683A1 (en) A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines
EP3372700B1 (en) Method for making forged tial components
EP0035601B1 (en) Process for making a memory alloy
DE112013007406T5 (en) Method and device for producing axially symmetrical high-performance components
DE3842117C2 (en) Multi-stage forging process and device for producing forgings
DE3904776C2 (en)
DE60131945T2 (en) Process for sintering and forging raw material
US4479833A (en) Process for manufacturing a semi-finished product or a finished component from a metallic material by hot working
DE2362650C3 (en) Process for improving the deformability of atomized powders
EP0069421B1 (en) Process for manufacturing semi-finished or finished articles from a metallic material by hot-shaping
EP0356718B1 (en) Method for shaping by extrusion and modifying the mechanical properties of semi-finished products made from metallic-powder alloys having an increased heat resistance
EP0227001B1 (en) Method for manufacturing tools
AT409831B (en) METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF PRE-MATERIAL AND PRE-MATERIAL
EP0045984B1 (en) Process for manufacturing an article from a heat-resisting alloy
EP0101097B1 (en) Process for manufacturing work-hardened metallic workpieces by forging or pressing
DE2438315C3 (en) Process for the powder metallurgical production of precision parts
DE102015115726B4 (en) Method for producing a component from a flat steel product
AT394325B (en) METAL MOLD FOR EXTRUDING AND METHOD FOR PRODUCING THE SAME
DE1923524C3 (en) Process for the production of gas turbine parts from highly heat-resistant precipitation hardening alloys based on nickel or titanium
DE102006032593B4 (en) Method for the production of internal cooling channels having tools
DE2048151C (en) Heat treatable, tempering, chromium-containing carbide tool steel and its use
DE2058696B (en) Process for the manufacture of semi-finished products for tools, in particular for cutting tools

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19830420

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19860430

REF Corresponds to:

Ref document number: 19531

Country of ref document: AT

Date of ref document: 19860515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3270846

Country of ref document: DE

Date of ref document: 19860605

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890519

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19890522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19890526

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890531

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890825

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890926

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900623

Ref country code: AT

Effective date: 19900623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900630

Ref country code: CH

Effective date: 19900630

Ref country code: BE

Effective date: 19900630

BERE Be: lapsed

Owner name: BBC A.G. BROWN BOVERI & CIE

Effective date: 19900630

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82200780.3

Effective date: 19910206