EP0063082B1 - Détecteur de rayons X - Google Patents

Détecteur de rayons X Download PDF

Info

Publication number
EP0063082B1
EP0063082B1 EP82400628A EP82400628A EP0063082B1 EP 0063082 B1 EP0063082 B1 EP 0063082B1 EP 82400628 A EP82400628 A EP 82400628A EP 82400628 A EP82400628 A EP 82400628A EP 0063082 B1 EP0063082 B1 EP 0063082B1
Authority
EP
European Patent Office
Prior art keywords
gas
detector
rays
ionisation
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82400628A
Other languages
German (de)
English (en)
Other versions
EP0063082A1 (fr
Inventor
Robert Allemand
Jean-Jacques Gagelin
Edmond Tournier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0063082A1 publication Critical patent/EP0063082A1/fr
Application granted granted Critical
Publication of EP0063082B1 publication Critical patent/EP0063082B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers

Definitions

  • the present invention relates to an X-ray detector, in particular of X-rays which have passed through an object or an organ and which are supplied by a point source emitting, towards the object or the organ, a plane beam of X-rays. incidents with a wide angular opening and a small thickness.
  • This invention applies more particularly to the tomography of organs, but also to industrial control, such as baggage control for example.
  • X-ray detectors known in particular from patent application FR-A-2 314 699, make it possible to measure the absorption of an X-ray beam passing through an object or an organ, this absorption being linked to the density of the tissues of the organ examined or the density of the materials constituting the object studied.
  • ionization X-ray detectors used in tomography are of the multicell type and include cells delimited by conductive plates perpendicular to the plane of the X-ray beam and brought alternately to positive and negative potentials. These cells are located in a sealed enclosure containing an ionizable gas.
  • the advantages of this type of multicellular detector are as follows: they provide good collimation of X-rays when the plates used in the detection cells are made of a very absorbent material; the collection time of the charges resulting from the ionization of the gas by X-rays is very short because of the small spacing of the conductive plates and the good separation between the detection cells.
  • this type of detector has significant drawbacks: it is possible to reduce the thickness of the plates in order to increase the quantity of X-rays detected, but to the detriment of collimation due to the small thickness of the plates; this small thickness of the plates also causes a very large microphone.
  • detectors of this type have a great complexity of construction which leads to a high manufacturing cost and they require mounting in a dust-free room, since any dust on one of the plates, can cause an initiation or a deterioration of the leakage current. between two consecutive plates. It is added to these drawbacks that the numerous plates used require very numerous electrical connections, inside the sealed chamber, which poses difficult problems of reliability of the welds of the connections on the plates.
  • This other type of detector comprises a sealed chamber containing a gas ionizable by rays from the organ or object and, in this chamber, a plate for collecting the electrons resulting from the ionization of the gas; this plate is parallel to the plane of the beam of incident rays and it is brought to a positive high voltage.
  • a series of electrodes for collecting the ions resulting from the ionization of the gas by the X-rays coming from the object is arranged in parallel and facing the preceding plate; these ion collection electrodes are brought to a potential close to zero and are directed towards the source which emits X-rays, in the direction of the object.
  • This type of detector has certain advantages: there are no longer, as in the detector mentioned above, separation plates; this eliminates any annoying phenomenon of microphony. Due to the removal of these separation plates, the quantity of X-rays detected is maximum; the realization of this type of detector is very simple and it is very little sensitive to dust.
  • the gas contained in the ionization chamber of this detector is a gas such as xenon; this gas can be added to other gases to improve detection.
  • This type of detector has a serious drawback which results from the fact that during a significant irradiation, the positive ions such as the Xe + ions, of which the number is large, migrate towards the most negative electrode. These ions entrain the gas atoms, which causes gas movements inside the detector causing local overpressures and depressions which disturb the sensitivity of the detection at the locations of these disturbances. In addition, these disturbances are not located at fixed locations in the detector, but move therein, which further disturbs the measurement of currents flowing in the electrodes.
  • the invention aims to remedy these drawbacks and in particular to produce an X-ray detector which has the structure which has just been described, but in which one succeeds, thanks to an additional gas, in reducing the disturbances of the sensitivity of the detector, by attenuating the overpressures and depressions which appear in it, during a significant irradiation.
  • the subject of the invention is an X-ray detector, suitable for example for detecting rays having passed through an object or an organ and being supplied by a source emitting, towards the object, a plane beam of incident X-rays, this beam having a wide angular opening and a small thickness, this detector comprising at least one sealed ionization chamber containing at least one gas ionizable by rays, coming from the object, and, in this chamber, a plate for collecting charges resulting from the ionization of the gas, this plate being parallel to the plane of the beam of incident rays and being brought to a first potential and a series of electrodes for collecting charges resulting from the ionization of the gas, these electrodes for collecting the charges being brought to a second potential and being directed towards the source, in a plane parallel to the plane of the beam of incident rays opposite the charge collection plate, these charge collection electrodes es providing a current resulting from the ionization of the gas opposite each of the electrodes under the effect of X-
  • the electronegative gas is sulfur hexafluoride.
  • this electronegative gas can be oxygen or nitrogen.
  • the ionizable gas is xenon, or another neutral gas.
  • Figure 1 shows schematically and in perspective, a detector according to the invention comprising a plate 1 brought to a positive high voltage + HT and, opposite, a series of planar electrodes 2 brought to a potential close to 0 volts.
  • This plate and these electrodes are located in a sealed main chamber 3, shown diagrammatically and which contains at least one ionizable gas such as xenon for example, added with an electronegative gas such as sulfur hexafluoride SF6, oxygen or nitrogen.
  • This detector makes it possible to detect the X-rays which have passed through an object or an organ 0, these rays being supplied by a source S which emits towards the object or the organ, a plane beam F of incident X-rays; this beam has a wide angular opening and a small thickness.
  • the plate 1 is parallel to the plane of the beam of incident rays, while the electrodes 2 are located in a plane parallel to the plane of the beam of incident rays, opposite the plate 1.
  • the plate 1 which is brought to a neighboring positive potential of a few kilovolts, is a collection plate for negative charges, in particular negative ions SF6--.
  • the electrodes 2 are electrodes for collecting the positive ions obtained by ionization of the gas contained in the detector.
  • these positive ions are Xe + ions.
  • the electrodes are generally carried by an insulating plate (not shown in this figure) and are electrically isolated from each other. They can be obtained by depositing copper on an insulating support.
  • the pressure of the xenon inside the sealed chamber has a value between 5 and 30 bars; this gas can also be added to other gases intended to improve detection.
  • the electrodes 2 form bands converging in the direction of the point source S.
  • the currents which circulate in the electrodes 2, currents induced by the displacement of the charges, are amplified by amplifiers 5, before being treated by a system not shown, allowing the visualization of a section of the organ or the object studied.
  • Negative ions (SF6- for example in the example considered) are captured by plate 1.
  • FIG. 2 schematically represents a side view of the detector of the invention.
  • the plate 1 brought to a positive high voltage + HT this plate is assumed to be fixed to an insulating support 6 and the sealed chamber 3 has not been shown in this figure 3.
  • the detection gas is xenon and that the electronegative gas is sulfur hexafluoride; due to the ionization of the detection gas by X-rays from the object or organ O, the electrode 2 receives positive ions Xe +, while the released electrons are entrained towards the positive plate 1 with the electronegative gas.
  • sulfur hexafluoride SF6, for example. sulfur hexafluoride SF6, for example.
  • the electronegative gas introduced into the detector makes it possible to trap the free electrons coming from the ionization of the gas; this results in a movement of negative ions in the opposite direction to that of positive ions which reduces the importance of the disturbances.
  • the electronegative gas is an inert gas such as sulfur hexafluoride, in order to avoid ter any corrosion in the detector; it is however possible to use a non-inert gas such as oxygen for example, provided that electrodes and a gold plate are used or electrodes and a copper plate covered with a gold foil.

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

  • La présente invention concerne un détecteur de rayons X, notamment de rayons X qui ont traversé un objet ou un organe et qui sont fournis par une source ponctuelle émettant, en direction de l'objet ou de l'organe, un faisceau plan de rayons X incidents présentant une large ouverture angulaire et une faible épaisseur. Cette invention s'applique plus particulièrement à la tomographie d'organes, mais également au contrôle industriel, tel que le contrôle de bagages par exemple.
  • Ces détecteurs de rayons X, connus en particulier de la demande de brevet FR-A-2 314 699, permettent de mesurer l'absorption d'un faisceau de rayons X traversant un objet ou un organe, cette absorption étant liée à la densité des tissus de l'organe examiné ou la densité des matériaux constituant l'objet étudié.
  • Si l'on veut établir la carte de densité d'un organe ou d'un objet, il est possible et connu d'envoyer un faisceau plan de rayons X incidents sur cet objet ou cet organe, ce faisceau présentant une large ouverture angulaire et une faible épaisseur et, d'observer pour chaque position des faisceaux de rayons X incidents par rapport à l'objet ou l'organe, l'absorption correspondante. Une multiplicité de balayages dans des directions croisés, permet de connaître grâce au détecteur de rayons X, après un traitement numérique approprié des signaux recueillis sur les cellules du détecteur, la valeur de l'absorption des rayons X en un point du plan de coupe considéré, et ainsi de connaître la densité des tissus de l'organe ou la densité des matériaux constituant l'objet.
  • La plupart des détecteurs de rayons X, à ionisation, utilisés en tomographie sont de type multicellulaires et comportent des cellules délimitées par des plaques conductrices perpendiculaires au plan du faisceau de rayons X et portées alternativement à des potentiels positifs et négatifs. Ces cellules sont situées dans une enceinte étanche contenant un gaz ionisable. Les avantages de ce type de détecteur multicellulaires, sont les suivants: ils procurent une bonne collimation des rayons X lorsque les plaques utilisées dans les cellules de détection sont constituées dans un matériau très absorbant; le temps de collection des charges résultant de l'ionisation du gaz par les rayons X est très faible à cause du faible espacement des plaques conductrices et de la bonne séparation entre les cellules de détection. Cependant, ce type de détecteur présente des inconvénients importants: il est possible de diminuer l'épaisseur des plaques afin d'augmenter la quantité de rayons X détectés, mais au détriment de la collimation du fait de la faible épaisseur des plaques; cette faible épaisseur des plaques provoque en outre une microphonie très importante. Enfin, les détecteurs de ce type présentent une grande complexité de réalisation qui entraîne un coût de fabrication élevé et ils nécessitent un montage en salle dépoussiérée, car toute poussière sur l'une des plaques, peut provoquer un amorçage ou une détérioration du courant de fuite entre deux plaques consécutives. Il s'ajoute à ces inconvénients que les nombreuses plaques utilisées nécessitent des connexions électriques très nombreuses, a l'intérieur de la chambre étanche, ce qui pose des problèmes difficiles de fiabilité des soudures des connexions sur les plaques.
  • On connaît un autre type de détecteur qui présente une structure beaucoup plus simple, mais qui n'est pas parfait. Cet autre type de détecteur comprend une chambre étanche contenant un gaz ionisable par des rayons issus de l'organe ou de l'objet et, dans cette chambre, une plaque de collection des électrons résultant de l'ionisation du gaz; cette plaque est parallèle au plan du faisceau de rayons incidents et elle est portée à une haute tension positive. Une série d'électrodes de collection des ions résultant de l'ionisation du gaz par les rayons X issus de l'objet, est disposée parallèlement et en regard de la plaque précédente; ces électrodes de collection des ions sont portées à un potentiel voisin de Zéro et sont dirigées vers la source qui émet les rayons X, en direction de l'objet. Elles sont situées dans un plan parallèle au plan du faisceau des rayons incidents et fournissent respectivement un courant de mesure proportionnel à la quantité d'ions obtenus par l'ionisation du gaz en regard de chaque électrode, sous l'effet des rayons issus de l'objet ou de l'organe, dans une direction correspondant à celle des rayons incidents.
  • Ce type de détecteur présente certains avantages: il n'y a plus, comme dans le détecteur mentionné précédemment, de plaques de séparation; ceci élimine tout phénomène gênant de microphonie. Du fait de la suppression de ces plaques de séparation, la quantité de rayons X détectés est maximale; la réalisation de ce type de détecteur est très simple et il est très peu sensible aux poussières.
  • Généralement, le gaz contenu dans la chambre d'ionisation de ce détecteur est un gaz tel que le xénon; ce gaz peut être additionné à d'autres gaz pour améliorer la détection.
  • Ce type de détecteur présente un grave inconvénient qui résulte du fait que lors d'une irradiation importante, les ions positifs tels que les ions Xe +, dont le nombre est important, migrent vers l'électrode la plus négative. Ces ions entraînent les atomes de gaz, ce qui provoque à l'intérieur du détecteur, des mouvements de gaz entraînant des surpressions et des dépressions locales qui perturbent la sensibilité de la détection aux emplacements de ces perturbations. De plus, ces perturbations ne sont pas situées à des endroits fixes dans le détecteur, mais se déplacent dans celui-ci, ce qui perturbe encore plus les mesure de courants circulant dans les électrodes.
  • L'invention a pour but de remédier à ces inconvénients et notamment de réaliser un détecteur de rayons X qui présente la structure qui vient d'être décrite, mais dans lequel on parvient, grâce à un gaz supplémentaire, à diminuer les perturbations de la sensibilité du détecteur, en atténuant les surpressions et dépressions qui apparaissent dans celui-ci, lors d'une irradiation importante.
  • L'invention a pour objet, un détecteur de rayons X, apte par exemple à détecter des rayons ayant traversé un objet ou un organe et étant fournis par une source émettant, en direction de l'objet, un faisceau plan de rayons X incidents, ce faisceau présentant une large ouverture angulaire et une faible épaisseur, ce détecteur comprenant au moins une chambre d'ionisation étanche contenant au moins un gaz ionisable par les rayons, issus de l'objet, et, dans cette chambre, une plaque de collection des charges résultant de l'ionisation du gaz, cette plaque étant parallèle au plan du faisceau de rayons incidents et étant portée à un premier potentiel et une série d'électrodes de collection des charges résultant de l'ionisation du gaz, ces électrodes de collection des charges étant portées à un second potentiel et étant dirigées vers la source, dans un plan paralléle au plan du faisceau de rayons incidents en regard de la plaque de collection des charges, ces électrodes de collection des charges fournissant un courant résultant de l'ionisation du gaz en regard de chacune des électrodes sous l'effet des rayons X, caractérisé en ce que la chambre d'ionisation contient en outre un gaz électronégatif.
  • Selon une autre caractéristique, le gaz électronégatif est de l'hexafluorure de soufre.
  • Selon une autre caractéristique, ce gaz électronégatif peut être de l'oxygène ou de l'azote.
  • Enfin, selon une autre caractéristique, le gaz ionisable est du xénon, ou un autre gaz neutre.
  • D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui va suivre, donnée en référence aux dessins annexés dans lesquels:
    • - la figure 1 est une figure schématique, en perspective, du détecteur conforme à l'invention;
    • - la figure 2 est une vue latérale du détecteur de l'invention, qui permet de mieux comprendre le fonctionnement de celui-ci.
  • La figure 1 représente schématiquement et en perspective, un détecteur conforme à l'invention comprenant une plaque 1 portée à une haute tension positive +HT et, en regard, une série d'électrodes planes 2 portées à un potentiel voisin de 0 volt. Cette plaque et ces électrodes sont situées dans une chambre principale 3 étanche, représentée schématiquement et qui contient au moins un gaz ionisable tel que le xénon par exemple, additionné d'un gaz électronégatif tel que l'hexafluorure de soufre SF6, l'oxygène ou l'azote. Ce détecteur permet de détecter les rayons X qui ont traversé un objet ou un organe 0, ces rayons étant fournis par une source S qui émet en direction de l'objet ou de l'organe, un faisceau F plan de rayons X incidents; ce faisceau présente une large ouverture angulaire et une faible épaisseur. La plaque 1 est parallèle au plan du faisceau de rayons incidents, tandis que les électrodes 2 sont situées dans un plan parallèle au plan du faisceau de rayons incidents, en regard de la plaque 1. La plaque 1 qui est portée à un potentiel positif voisin de quelques kilovolts, est une plaque de collection des charges négatives, notamment des ions négatifs SF6--. Les électrodes 2 sont des électrodes de collection des ions positifs obtenus par ionisation du gaz contenu dans le détecteur. Dans l'exemple décrit, ces ions positifs sont des ions Xe+. Les électrodes sont généralement portées par une plaque isolante (non représentée sur cette figure) et sont isolées électriquement entre elles. Elles peuvent être obtenues par dépot de cuivre sur un support isolant. La pression du xénon à l'intérieur de la chambre étanche a une valeur comprise entre 5 et 30 bars; ce gaz peut d'ailleurs être additionné à d'autres gaz destinés à améliorer la détection. Les électrodes 2 forment des bandes convergeant en direction de la source ponctuelle S. Les courants qui circulent dans les électrodes 2, courants induits par le déplacement des charges, sont amplifiés par des amplificateurs 5, avant d'être traités par un système non représenté, permettant la visualisation d'une coupe de l'organe ou de l'objet étudié. Les ions négatifs (SF6- par exemple dans l'exemple considéré) sont captés par la plaque 1.
  • La figure 2 représente schématiquement une vue latérale du détecteur de l'invention. On distingue sur cette figure la plaque 1 portée à une haute tension positive +HT; cette plaque est supposée fixée à un support isolant 6 et on n'a pas représenté sur cette figure, la chambre étanche 3. On distingue également sur cette figure, l'une des électrodes 2, portée par une plaque isolante 7; cette électrode est reliée à l'un des amplificateurs 5 mentionnés haut. Dans le mode de réalisation du détecteur de l'invention, décrit en exemple, on suppose que le gaz de détection est du xénon et que le gaz électronégatif est de l'hexafluorure de soufre; par suite de l'ionisation du gaz de détection par les rayons X provenant de l'objet ou de l'organe O, l'électrode 2 reçoit des ions positifs Xe+, tandis que les électrons libérés sont entraînés vers la plaque positive 1 avec le gaz électronégatif. (L'hexafluorure de soufre SF6, par exemple.) Comme on l'a indiqué plus haut, ce mélange d'au moins un gaz de détection et d'un gaz électronégatif, permet, lors d'une irradiation importante qui crée un très grand nombre d'ions positifs (Xe dans l'exemple considéré), d'éviter des mouvements de gaz qui entraînent des surpressions et des dépressions locales perturbant la sensibilité de la détection. Le gaz électronégatif introduit dans le détecteur, conformément à l'invention, permet de piéger les électrons libres provenant de l'ionisation du gaz; il en résulte un mouvement d'ions négatifs en sens contraire de celui des ions positifs qui réduit l'importance des perturbations. De préférence, le gaz électronégatif est un gaz inerte tel que l'hexafluorure de soufre, afin d'éviter toute corrosion dans le détecteur; il est cependant possible d'utiliser un gaz non inerte tel que l'oxygène par exemple, à condition d'utiliser des électrodes et une plaque en or ou des électrodes et une plaque de cuivre recouvertes d'une feuiIIed'or.
  • Il est bien évident que dans le détecteur qui vient d'être décrit, les moyens utilisés auraient pu être remplacés par des moyens équivalents, sans sortir du cadre de l'invention. En particulier tous les gaz susceptibles de faire naître, au sein du mélange détecteur, un mouvement de gaz inverse de celui des ions produits par l'irradiation X permettent de mettre en oeuvre cette dernière.

Claims (5)

1. Détecteur de rayons X, apte par exemple à détecter des rayons ayant traversé un objet ou un organe (0) et étant fournis par une source (S) émettant, en direction de l'objet, un faisceau plan (F) de rayons X incidents, ce faisceau présentant une large ouverture angulaire et une faible épaisseur, ce détecteur comprenant au moins une chambre d'ionisation (3) étanche contenant au moins un gaz ionisable par les rayons issus de l'objet, et, dans cette chambre, une plaque (1) de collection des charges résultant de l'ionisation du gaz, cette plaque étant parallèle au plan du faisceau de rayons incidents (F) et étant portée à un premier potentiel ( + HT), et une série d'électrodes (2) de collection des charges résultant de l'ionisation du gaz, ces électrodes de collection des charges étant portées à un second potentiel et convergéant vers la source (S), dans un plan parallèle au plan du faisceau (F) de rayons incidents, en regard de la plaque (1) de collection des électrons, chacune de ces électrodes (2) de collection des charges fournissant un courant résultant de l'ionisation du gaz détecteur en regard sous l'effet des rayons X, caractérisé en ce que la chambre d'ionisation (3) contient en outre un gaz susceptible de créer au sein du mélange ainsi formé un movement de gaz en sens inverse du mouvement des ions.
2. Détecteur selon la revendication 1, caractérisé en ce que ledit gaz est électronégatif.
3. Détecteur selon la revendication 2, caractérisé en ce que le gaz électronégatif est de l'hexafluorure de soufre.
4. Détecteur selon la revendication 1, caracté- risé en ce que le gaz électronégatif est de l'oxygène ou de l'azote.
5. Détecteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le gaz ionisable est du xénon.
EP82400628A 1981-04-15 1982-04-06 Détecteur de rayons X Expired EP0063082B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8107567A FR2504277A1 (fr) 1981-04-15 1981-04-15 Detecteur de rayons x
FR8107567 1981-04-15

Publications (2)

Publication Number Publication Date
EP0063082A1 EP0063082A1 (fr) 1982-10-20
EP0063082B1 true EP0063082B1 (fr) 1985-01-23

Family

ID=9257429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82400628A Expired EP0063082B1 (fr) 1981-04-15 1982-04-06 Détecteur de rayons X

Country Status (5)

Country Link
US (1) US4461953A (fr)
EP (1) EP0063082B1 (fr)
JP (1) JPS57179775A (fr)
DE (1) DE3262010D1 (fr)
FR (1) FR2504277A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691108A (en) * 1983-12-27 1987-09-01 General Electric Company Ionization detector
US5767518A (en) * 1996-11-27 1998-06-16 Westwood Biomedical Fiber optic x-ray exposure control sensor
SE513161C2 (sv) * 1997-11-03 2000-07-17 Digiray Ab En metod och en anordning för radiografi med plant strålknippe och en strålningsdetektor
SE514443C2 (sv) * 1999-04-14 2001-02-26 Xcounter Ab Strålningsdetektor och en anordning för användning vid radiografi med plant strålknippe
SE514472C2 (sv) * 1999-04-14 2001-02-26 Xcounter Ab Strålningsdetektor och en anordning för användning vid radiografi
SE514475C2 (sv) * 1999-04-14 2001-02-26 Xcounter Ab Strålningsdetektor, en anordning för användning vid radiografi med plant strålknippe och ett förfarande för detektering av joniserande strålning
SE514460C2 (sv) * 1999-04-14 2001-02-26 Xcounter Ab Förfarande för detektering av joniserande strålning, strålningsdetektor och anordning för användning vid radiografi med plant strålknippe
SE515884C2 (sv) * 1999-12-29 2001-10-22 Xcounter Ab Förfarande och anordning för radiografi samt strålningsdetektor
SE0000957D0 (sv) * 2000-02-08 2000-03-21 Digiray Ab Detector and method for detection of ionizing radiation
JP4498779B2 (ja) * 2004-03-15 2010-07-07 川崎重工業株式会社 X線イオンチャンバ検出器およびx線検出装置
JP5930628B2 (ja) * 2011-08-22 2016-06-08 株式会社日立製作所 放射線照射装置及び放射線計測方法
CN106659874B (zh) 2014-03-26 2021-01-05 文科罗斯公司 静脉疾病治疗
CN112326774B (zh) * 2020-10-30 2024-04-23 四川赛康智能科技股份有限公司 高能射线照射sf6气体的电离测试方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2936388A (en) * 1958-12-15 1960-05-10 Talbot A Chubb Counters with a negative-ion-forming vapor additive
US3126479A (en) * 1962-03-01 1964-03-24 X-ray analyzer system with ionization
FR2314699A1 (fr) * 1975-06-19 1977-01-14 Commissariat Energie Atomique Dispositif d'analyse pour tomographie a rayons x par transmission
US4047041A (en) * 1976-04-19 1977-09-06 General Electric Company X-ray detector array
JPS5856957B2 (ja) * 1978-04-21 1983-12-17 日本原子力研究所 放射線計数管

Also Published As

Publication number Publication date
DE3262010D1 (en) 1985-03-07
FR2504277B1 (fr) 1983-05-27
FR2504277A1 (fr) 1982-10-22
EP0063082A1 (fr) 1982-10-20
US4461953A (en) 1984-07-24
JPS57179775A (en) 1982-11-05

Similar Documents

Publication Publication Date Title
EP0063082B1 (fr) Détecteur de rayons X
EP0678896B1 (fr) Dispositif d'imagerie médicale en Rayonnement ionisant X ou gamma à faible dose
JP4416318B2 (ja) 平面ビームラジオグラフィーで画像を得る方法とその装置、及び放射線検出器
EP0855086B1 (fr) Detecteur de position, a haute resolution, de hauts flux de particules ionisantes
FR2668612A1 (fr) Dispositif d'imagerie de radiations ionisantes.
AU2001290484B2 (en) Apparatus for planar beam radiography and method of aligning an ionizing radiation detector with respect to a radiation source
Danilatos A gaseous detector device for an environmental SEM
EP0064913B1 (fr) Multidétecteur de rayons X
US5530249A (en) Electrode configuration and signal subtraction technique for single polarity charge carrier sensing in ionization detectors
EP0063083B1 (fr) Détecteur de rayons X
EP0228933B1 (fr) Dispositif de détection et de localisation de particules neutres, et application
EP0730291B1 (fr) Dispositifs d'imagerie médicale en rayonnement ionisant X ou gamma à faible dose
EP0045704B1 (fr) Détecteur de rayonnement
JP3375361B2 (ja) X線検出器
FR2639436A1 (fr) Procede et dispositif de localisation de particules neutres, a haute resolution
EP0326479B1 (fr) Détecteur pour tomographie à rayons X
FR2570908A1 (fr) Systeme de traitement des signaux electriques issus d'un detecteur de rayons x
WO2015022725A1 (fr) Dispositif de détection des rayons x
Ioudin et al. Synchrotron radiation parameters registration using beam cross-section image detector: The first experiments
FR2602058A1 (fr) Detecteur a gaz utilisant une anode a microbandes
JPH08122443A (ja) 放射線検出装置
US20040056206A1 (en) Ionization chamber
FR2713348A1 (fr) Dispositif de détection de rayons X de faible énergie.
JPS6014737A (ja) 反射電子検出装置
JP2001084952A (ja) 吸収チャンバ及び複数のなだれチャンバを備えた放射線分析装置及び検出器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19830308

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB NL

REF Corresponds to:

Ref document number: 3262010

Country of ref document: DE

Date of ref document: 19850307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890317

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890430

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900430

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee