EP0062363B1 - Process for the simultaneous production of fuel gas and thermal energy from carbonaceous materials - Google Patents

Process for the simultaneous production of fuel gas and thermal energy from carbonaceous materials Download PDF

Info

Publication number
EP0062363B1
EP0062363B1 EP82200261A EP82200261A EP0062363B1 EP 0062363 B1 EP0062363 B1 EP 0062363B1 EP 82200261 A EP82200261 A EP 82200261A EP 82200261 A EP82200261 A EP 82200261A EP 0062363 B1 EP0062363 B1 EP 0062363B1
Authority
EP
European Patent Office
Prior art keywords
gas
fluidized bed
combustion
process according
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200261A
Other languages
German (de)
French (fr)
Other versions
EP0062363A1 (en
Inventor
Hans Beisswenger
Georg Dr. Daradimos
Martin Hirsch
Ludolf Dr. Plass
Harry Dr. Serbent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT82200261T priority Critical patent/ATE17866T1/en
Publication of EP0062363A1 publication Critical patent/EP0062363A1/en
Application granted granted Critical
Publication of EP0062363B1 publication Critical patent/EP0062363B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/86Other features combined with waste-heat boilers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/005Fluidised bed combustion apparatus comprising two or more beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/101Entrained or fast fluidised bed

Definitions

  • the invention relates to a process for the simultaneous generation of fuel gas and process heat from carbon-containing materials by gasification in a first fluidized bed and subsequent combustion of the combustible constituents remaining in the gasification in a second fluidized bed, the gasification being carried out at a pressure of at most 5 bar and one Temperature of 800 to 1100 ° C by means of oxygen-containing gases in the presence of water vapor and 40 to 80 wt .-% of the carbon contained in the starting material are reacted, and then the residue from the gasification together with the by-products from gas cleaning are fed to a further fluidized bed becomes.
  • DE A 27 29 764 relates to a process for the gasification of carbon-containing material by means of oxygen-containing gases and water vapor, in which the gasification residue is then burned and the combustion gas is used as an additional gasification agent and heat transfer medium in the gasification reactor. Both gasification and combustion take place in the "classic fluidized bed", ie in a fluidized state which is completely different compared to the "circulating fluidized beds” used in the application.
  • the process envisages entering the by-products from mechanical gas cleaning (dust) and gas cooling (water) into the combustion stage. There is no detailed information on the desulfurization of the gases produced.
  • US Pat. No. 4,026,679 deals with the production of fuel gas by two-stage gasification of carbon-containing material using two expanded fluidized beds connected in a crosswise manner. The desulfurization of the gas produced takes place for the most part in the gasification reactor itself. A combustion and thus generation of process heat is not provided.
  • the object of the invention is to provide a method for the simultaneous generation of fuel gas and process heat from carbon-containing materials which does not have the known, in particular the aforementioned disadvantages, high flexibility in converting the energy content of the starting material into fuel gas on the one hand and process heat on the other hand owns and thus enables a short-term adjustment to the respective energy form requirement.
  • the object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that both the gasification and the combustion take place in a separate, circulating fluidized bed and the two gas streams obtained are cleaned, cooled and dedusted separately, the in the gasification stage generated fuel gas at a temperature in the range of 800 to 1000 ° C i. Whirl state is freed of sulfur compounds with the aid of CaS-forming materials and the combustion of the remaining combustible constituents takes place at an air ratio of ⁇ 1.05 to 1.40.
  • the method according to the invention can be used for all carbon-containing materials which can be gasified and burned independently. It is suitable for all types of coal, but is particularly attractive for coal of inferior quality, such as coal washing mountains, mud coal, coal with a high salt content. However, lignite and oil shale can also be used.
  • the principle of the circulating fluidized bed used in the gasification and combustion stages It is characterized in that, in contrast to the "classic" fluidized bed, in which a dense phase is separated from the gas space above by a clear density jump, there are distribution states without a defined boundary layer. A leap in density between the dense phase and the dust space above it does not exist; however, the solids concentration within the reactor decreases continuously from bottom to top.
  • the desulfurization of the gas produced can take place in any vortex state, e.g. in a Venturi fluidized bed with solids discharge in a downstream separator.
  • a circulating fluidized bed can also advantageously be used for desulfurization.
  • a particularly advantageous embodiment of the invention consists in converting 40 to 60% by weight of the carbon contained in the starting material into the gasification. In this way, a fuel gas with a particularly high calorific value can be generated. In addition, it is possible to dispense with the use of otherwise significantly higher amounts of water vapor, which in the subsequent process steps are again produced as gas water which is undesirable per se.
  • water vapor and the required oxygen-containing gas should be entered at different levels.
  • An expedient embodiment of the invention consists in that in the gasification stage water vapor, predominantly in the form of fluidizing gas, and oxygen-containing gas, predominantly in the form of secondary gas, are supplied. This procedure does not rule out that the entry of minor amounts of water vapor can also take place together with the oxygen-containing secondary gas and the entry of minor amounts of oxygen-containing gases together with water vapor as the fluidizing gas.
  • the residence time of the gases above the entry point of the carbon-containing material is 1 to 5 seconds in the gasification stage.
  • This condition is usually realized by entering the carbonaceous material at a higher level in the gasification stage.
  • this creates a gas that is richer in smoldering products and has a correspondingly higher calorific value, and on the other hand it ensures that the gas has practically no hydrocarbons with more than 6 carbon atoms.
  • the gas can be desulfurized using the usual desulfurization agents.
  • a preferred embodiment consists of desulfurizing the gases emerging from the gasification stage in a circulating fluidized bed by means of lime or dolomite or the corresponding fired products with a particle size dp 50 of 30 to 200 tim, and for this purpose an average suspension density of 0.1 to 10 kg / m in the fluidized bed reactor 3 , preferably 1 to 5 kg / m 3; and to set an hourly solids circulation rate which is at least 5 times the solids weight in the reactor shaft.
  • This procedure is characterized in that the desulfurization can be carried out at high Oas throughputs and at a very constant temperature.
  • the high temperature stability has a positive effect on the desulfurization in that the desulfurizing agent retains its activity and thus its absorption capacity against sulfur.
  • the high degree of granularity of the desulfurization agent complements this advantage, since the ratio of surface area to volume is particularly favorable for the binding rate of the sulfur, which is essentially determined by the rate of diffusion.
  • the desulphurization agent dosage should be at least 1.2 to 2.0 times the stoichiometric requirement be. It should be noted that when using dolomite or burnt dolomite, practically only the calcium component reacts with the sulfur compounds.
  • the desulfurizing agent is most advantageously introduced into the fluidized bed reactor via one or more lances, e.g. by pneumatic blowing.
  • a preferred embodiment of the invention consists in adding all of the desulfurization agent also required for the combustion stage to the gas desulfurization stage. In this way, the thermal energy required for heating and possibly for deacidification is withdrawn from the gas and thus preserved in the combustion stage.
  • the combustion of the combustible constituents not converted in the gasification stage takes place in a further circulating fluidized bed, at the same time also eliminating the by-products obtained in gas cleaning in an environmentally friendly manner.
  • the loaded desulphurization agents coming from the gas purification stage in particular insofar as they are in sulfidic form, such as calcium sulfide, are sulfated and thereby converted into landfill-compatible compounds, such as calcium sulfate.
  • the heat of reaction released in the sulfation process is also obtained as process heat, and the other by-products, such as dust from gas dedusting and gas water, are also removed.
  • process heat is a heat transfer medium, the energy content of which can be used in various ways to carry out processes. It can be gas for heating or, if it is an oxygen-containing gas, for the operation of combustion devices of various types.
  • the generation of saturated steam or superheated steam is also particularly advantageous for heating, for example of reactors or for driving electrical generators, or for heating heat transfer salts, for example for heating tubular reactors or autoclaves.
  • the combustion is in two stages with different levels supplied oxygen-containing gases performed.
  • Their advantage lies in "soft" combustion, in which local overheating phenomena are avoided and NO o formation is largely suppressed.
  • the upper supply point for oxygen-containing gas should be so far above the lower one that the oxygen content of the gas supplied at the lower part has already been largely consumed.
  • an advantageous embodiment of the invention consists in creating an average suspension density of 15 to 100 kg / m3 above the upper gas supply by adjusting the amounts of fluidization and secondary gas and at least a substantial part of the heat of combustion by means of above the upper gas supply within the dissipate cooling surfaces in the free reactor space.
  • the gas velocities prevailing in the fluidized bed reactor above the secondary gas supply are generally above 5 m / s at normal pressure and can be up to 15 m / s and the ratio of diameter to height of the fluidized bed reactor should be chosen such that gas residence times of 0.5 to 8. 0 s, preferably 1 to 4 s, are obtained.
  • a plurality of supply openings for secondary gas are advantageous within each entry level.
  • the advantage of this procedure is in particular that a change in the production of process heat is possible in the simplest way by changing the suspension density in the furnace space of the fluidized bed reactor located above the secondary gas supply.
  • a certain heat transfer is associated with a prevailing operating state under predetermined fluidizing gas and secondary gas volumes and the resultant specific average bus pension density.
  • the heat transfer to the cooling surfaces can be increased by increasing the suspension density by increasing the amount of fluidizing gas and possibly also the amount of secondary gas. With the increased heat transfer at practically constant combustion temperature, it is possible to dissipate the amounts of heat generated with increased combustion output.
  • the increased oxygen requirement required due to the higher combustion output is here virtually automatically present due to the higher fluidization gas and possibly secondary gas quantities used to increase the suspension density.
  • the combustion output can be regulated by reducing the suspension density in the furnace space of the fluidized bed reactor located above the secondary gas line. By lowering the suspension density, the heat transfer is also reduced, so that less heat is removed from the fluidized bed reactor.
  • the combustion performance can be reduced essentially without a change in temperature.
  • the entry of the carbonaceous material is also most conveniently via one or more lances, e.g. by pneumatic blowing.
  • Another expedient, more universally applicable design of the combustion process consists in creating an average suspension density of 10 to 40 kg / m 3 above the upper gas supply by adjusting the amounts of fluidization and secondary gas, removing hot solids from the circulating fluidized bed and in the fluidized state by direct and indirect heat exchange cool and return at least a partial flow of cooled solid into the circulating fluidized bed.
  • the temperature constancy can be achieved practically without changing the operating conditions prevailing in the fluidized bed reactor, that is to say without changing the suspension density, among other things, solely by controlled recycling of the cooled solid.
  • the recirculation rate is more or less high.
  • the combustion temperatures can range from very low temperatures, which are close above the ignition limit, to very high temperatures
  • Set temperatures as required which are limited by softening the combustion residues. They can be between 450 ° C and 950 ° C.
  • the combustion temperature in the fluidized bed reactor is controlled by recycling at least a partial stream of cooled solid from the fluidized bed cooler.
  • the required partial flow of cooled solid can be fed directly into the fluidized bed reactor.
  • the exhaust gas can also be cooled by introducing cooled solid matter, which is fed, for example, to a pneumatic conveyor line or a floating exchanger stage, the solid matter which is later separated off from the exhaust gas then being returned to the fluidized bed cooler.
  • the exhaust gas heat ultimately ends up in the fluidized bed cooler. It is particularly advantageous to enter cooled solid as a partial stream directly and as another indirectly after cooling the exhaust gases in the fluidized bed reactor.
  • the recooling of the hot solid of the fluidized bed reactor should take place in a fluidized bed cooler with several cooling chambers flowing through one after the other, into which interconnected cooling registers are immersed, in countercurrent to the coolant. This enables the heat of combustion to be bound to a comparatively small amount of coolant.
  • the universality of the last-mentioned embodiment is particularly given by the fact that almost any heat transfer media can be heated in the fluidized bed cooler. Of particular importance from a technical point of view is the generation of steam in various forms and the heating of heat transfer salt.
  • the flexibility of the method according to the invention can be further increased if, in a further advantageous embodiment of the invention, the combustion stage is additionally fed with carbon-containing materials.
  • This embodiment has the advantage that the production of process heat can be increased as desired in the combustion stage without influencing the combustion gas generation in the gasification stage.
  • air or oxygen-enriched air or technically pure oxygen can be used as the oxygen-containing gases.
  • the use of an oxygen-rich gas is recommended.
  • an increase in performance can be achieved within the combustion stage by carrying out the combustion under pressure, up to about 20 bar.
  • the fluidized bed reactors used in carrying out the method according to the invention can be of rectangular, square or circular cross section.
  • the lower region of the fluidized bed reactor can also be conical, which is particularly advantageous in the case of large reactor cross sections and thus high gas throughputs.
  • Carbon-containing material is added to the circulating fluidized bed formed from the fluidized bed reactor 1, the cyclone separator 2 and the return line 3 via line 4 and gasified there by adding oxygen via secondary gas line 5 and water vapor via fluidizing gas line 6.
  • the gas generated is dedusted in a second cyclone separator 7 and introduced into a Venturi reactor 8, which is supplied with desulfurizing agent via line 9.
  • the desulfurization agent is introduced together with the gas into a waste heat boiler 10, separated there and discharged via line 11.
  • the gas enters a scrubber 12, in which it is freed of residual dust.
  • the washing liquid is pumped through line I3, a filter device 14 and a further line 15. Finally, the gas arrives in a condenser 16 for water separation and is then discharged via line 44 after passing through a wet electrostatic precipitator 17.
  • the gasification residue is taken from the circulating fluidized bed 1, 2, 3 via line 18, via a cooler 19 and line 20 of the second circulating fluidized bed used for combustion and formed from a fluidized bed reactor 21, cyclone separator 22 and return line 23.
  • Oxygen-containing gas is supplied via lines 24 and 25 as fluidizing gas and as secondary gas.
  • a separate addition of fuel is possible via line 26 and of desulfurizing agent via line 27.
  • desulphurization agents, sludge and gas water are also introduced, which are introduced via lines 11, 42 and 43, respectively.
  • the gas emerging from the separator 22 of the fluidized bed reactor 21 is freed of dust in a further cyclone separator 29 and cooled in a waste heat boiler 30. Further ash is extracted from the exhaust gas in the separator 31.
  • the exhaust gas is finally discharged via line 32.
  • a partial flow of solid circulated via fluidized bed reactor 21, separating cyclone 22 and return line 23 is withdrawn from return line 23 by means of line 33 and cooled in fluidized bed cooler 34.
  • the dust which is deposited in the separating cyclone 29 and in the waste heat boiler 30 is fed via lines 35, 36 and 37, respectively.
  • a heat transfer salt is used as the coolant, which is passed in countercurrent through the fluidized bed cooler 34 by means of cooling registers 38.
  • the oxygen-containing fluidizing gas which is supplied to the fluidized bed cooler 34 via line 41 and heated there passes via line 39 as secondary gas into the fluidized bed reactor 21 Solid is fed to the fluidized bed reactor 21 via line 40 to absorb the heat of combustion.
  • the desulfurized gas together with the loaded desulfurizing agent emerged at a temperature of 920 ° C. and was introduced into the waste heat boiler 10. 155 kg / h of loaded desulfurizing agent were obtained in the waste heat boiler 10, and saturated steam of 45 bar was also produced in an amount of 1.75 t / h.
  • the dedusted and cooled gas then reached the scrubber 12, in which it was cleaned with washing liquid pumped over line 13, filter device 14 and line 15. It was then transferred to the condenser 16 by being cooled to 35 ° C by indirect cooling. After passing through a wet electrostatic precipitator 17, 3940 Nm 3 / h of fuel gas were removed via line 44. The calorific value of the fuel gas generated was 10.6 MJ / Nm 3 .
  • the gasification circulating fluidized bed of gasification residue was removed via line 18 and fed to the fluidized bed reactor 21 via line 20 together with the loaded desulphurizing agent discharged via line 11 and the filter residue discharged via line 43.
  • the total feed rate was 1869 kg / h.
  • the fluidized bed reactor 21 was also supplied with 34 3400 Nm 3 of air via the fluidizing gas line 24 and 25 4900 Nm 3 / h of air via the secondary gas line.
  • Another secondary gas supply in the form of air heated in the fluidized bed cooler 34 was carried out via line 39 in an amount of 1900 Nm 3 / h. The latter air flow was at a temperature of 500 ° C.
  • the combustion temperature was 850 ° C and above the top secondary gas line an average suspension density of 30 kg / m 3 .
  • the exhaust gas from the fluidized bed reactor was freed from the solids discharged in the downstream recycle cyclone 22, dusted in the downstream cyclone separator 29 and finally introduced into the waste heat boiler 30.
  • the temperature of the exhaust gases was reduced from 850 ° C. to 140 ° C. 3.6 t / h of superheated steam of 45 bar and 480 ° C. were generated.
  • the gas was then introduced into the separator 31 and freed from further ash there. Finally, it was fed to the chimney at a temperature of 140 ° C. via line 32.
  • 660 kg / h of ash and an additional 247 kg / h of sulfated desulfurizing agent were obtained.
  • the ash quantity of 660 kg / h corresponds to the total ash production in the combustion stage.
  • the gasification circulating fluidized bed of gasification residue was removed via line 18 and fed to the fluidized bed reactor 21 via line 20 together with the loaded desulphurizing agent discharged via line 11 and the filter residue discharged via line 43.
  • the total feed rate was 2068 kg / h.
  • the fluidized bed reactor 21 was further supplied with air via the fluidizing gas line 24 3075Nm 3 / h air and secondary gas line 25 7325Nm 3 / h.
  • Another secondary gas supply in the form of air heated in the fluidized bed cooler 34 was carried out via line 39 in an amount of 1900 Nm 3 / h. The latter air flow was at a temperature of 500 ° C.
  • the combustion temperature was 850 ° C and above the uppermost secondary gas line an average suspension density of 30 kg / m 3 .
  • the exhaust gas from the fluidized bed reactor was freed from the solids discharged in the downstream recycle cyclone 22, dusted in the downstream cyclone separator 29 and finally introduced into the waste heat boiler 30.
  • the temperature of the exhaust gases was reduced from 850 ° C. to 140 ° C. 4.4 t / h of superheated steam of 45 bar and 480 ° C. were generated.
  • the gas was then introduced into the separator 31 and freed from further ash there. Finally, it was fed to the chimney at a temperature of 140 ° C. via line 32.
  • 660 kg / h of ash and an additional 247 kg / h of sulfated desulfurizing agent were obtained.
  • the ash quantity of 660 kg / h corresponds to the total ash production in the combustion stage.
  • the heat transfer salt heated up to 420 ° C.
  • the ashes cooled in the cooler 34 to 400 ° C. were returned to the fluidized bed reactor 21 via line 40 to absorb the heat of combustion.
  • the fluidized bed cooler 34 which has four separate cooling chambers, was in turn fluidized with 1900 Nm 3 / h of air, which heated up to a mixing temperature of 500 ° C. As already mentioned above, it was fed via line 39 to the fluidized bed reactor 21 as secondary gas.
  • the energy parts which were used according to this example were divided as follows:
  • Example 2 was varied insofar as the energy generation in the combustion stage was increased by additional coal combustion without any change within the gasification stage.
  • the one led over the fluidized bed cooler 34 Increase the amount of solids to 73 t / h. 760 kg / h of ash and 284 kg / h of sulfated desulfurizing agent were obtained. Based on the total amount of coal added, the harnessed energy was divided as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

Die Erfindung betrifft ein Verfahren zur gleichzeitigen Erzeu-gung von Brenngas und prozeßwärme aus kohlenstoffhaltigen Materialien durch Vergasung in einer ersten Wirbelschicht und anschließende Verbrennung der bei der Vergasung verbliebenen brennbaren Bestandteile in einer zweiten Wirbelschicht, wobei die Vergasung bei einem Druck von maximal 5 bar und einer Temperatur von 800 bis 1100°C mittels sauerstoffhaltiger Gase in Gegenwart von Wasserdampf erfolgt und hierbei 40 bis 80 Gew.-% des im Ausgangsmaterial enthaltenen Kohlenstoffes umgesetzt werden, und anschließend der Rückstand aus der Vergasungzusammen mit den bei der Gasreinigung anfallenden Nebenprodukten einer weiteren Wirbelschicht zugeführt wird.The invention relates to a process for the simultaneous generation of fuel gas and process heat from carbon-containing materials by gasification in a first fluidized bed and subsequent combustion of the combustible constituents remaining in the gasification in a second fluidized bed, the gasification being carried out at a pressure of at most 5 bar and one Temperature of 800 to 1100 ° C by means of oxygen-containing gases in the presence of water vapor and 40 to 80 wt .-% of the carbon contained in the starting material are reacted, and then the residue from the gasification together with the by-products from gas cleaning are fed to a further fluidized bed becomes.

Bei der Herstellung industrieller Produkte wird Energie inverschiedenen Formen benötigt. Zu deren Erzeugung dienen häufig hochwertige Primärenergieträger, wie Gas und Öl. Deren zunehmende Verknappung sowie die wachsende politische Unsicherheit bei der Versorgung zwingen in steigendem Maße zur Substitution dieser Energieträger durch feste Brennstoffe. Diese Notwendigkeit erfordert die Entwicklung neuerTechnoiogien, mit deren Hilfe die festen Brennstoffe so umgewandelt werden können, daß sie im Rahmen bestehender Ver-fahren die traditionellen Energieträger ablösen können. Dabei müssen die mit dem Einsatz fester Brennstoffe verbundenen Umweltbelastungen zuverlässig vermieden werden. Dies insbesondere deshalb, weil die Verknappung der Primarenergie in zunehmendem Maße auch zum Einsatz hochasche-und hoch-schwefelhaltiger Kohlen zwingt.Energy is required in various forms in the manufacture of industrial products. High-quality primary energy sources such as gas and oil are often used to generate them. Their increasing scarcity and growing political uncertainty in the supply increasingly force them to substitute these fuels with solid fuels. This necessity requires the development of new technologies that can be used to convert solid fuels in such a way that they can replace traditional energy sources in the context of existing processes. The environmental pollution associated with the use of solid fuels must be reliably avoided. This is particularly because the shortage of primary energy is increasingly forcing the use of high-ash and high-sulfur coal.

Die Industrie benötigt je nach Art des jeweiligen Verfahrens-schrittes bei der Erzeugung eines bestimmten Produktes die Energie in unterschiedlicher Form, so z.B. als Dampf fur Beheizungszwecke, in Form anderer Hochtemperaturwärme und in Form sauberer Brenngase, bei deren Verbrennung die Pro-duktgualität nicht negativ beeinflußt wird.Depending on the type of process step involved, industry needs energy in various forms when producing a specific product, e.g. as steam for heating purposes, in the form of other high-temperature heat and in the form of clean fuel gases, the combustion of which does not adversely affect product quality.

Es ist zwar grundsätzlich möglich, die verschiedenen Energie-formen, wie z.B. Brenngas und Dampf, jeweils getrennt zu erzeugen, jedoch erfordert dies einen Investititions-und Betriebskostenaufwand, wie er im Rahmen üblicher industrieller Anlagegrößen nicht zu vertreten ist. Darüber hinaus istder Betrieb von unabhängig voneinander arbeitenden Energieumwandlungsanlagen mit erhöhten Verlusten und verstärktemAufwand für den Umweltschutz verbunden.In principle, it is possible to use the various forms of energy, e.g. To produce fuel gas and steam, each separately, but this requires an investment and operating costs, which is not justifiable in the context of conventional industrial plant sizes. In addition, the operation of energy conversion systems that work independently of one another is associated with increased losses and increased expenditure for environmental protection.

Um die mit der separaten Herstellung unterschiedlicher Ener-gieformen verbundenen Nachteile zu vermeiden, ist bereits ein Verfahren zur gleichzeitigen Erzeugung von Brenngas und Dampf vorgestellt worden, bei dem Kohle praktisch beliebiger Beschaffenheit in einem Wirbelbett vergast und der Vergasungs-rückstand zur Erzeugung von Dampf verbrannt wird (Processing, November 1980, Seite 23).In order to avoid the disadvantages associated with the separate production of different forms of energy, a process for the simultaneous generation of fuel gas and steam has already been presented, in which coal of practically any nature is gasified in a fluidized bed and the gasification residue is burned to produce steam (Processing, November 1980, page 23).

Obgleich mit diesem Verfahren ein Schritt in die erfolgver-sprechende Richtung getan ist, ist nachteilig, daß dessen Durchsatzleistung bezogen auf vorgegebene Reaktorabmes-sungen gering ist und daß wegen der gewählten Verfahrensbedingungen, insbesondere für die Vergasungsstufe, die Flexi-bilität hinsichtlich der Produktion von Brenngas und Dampf gering ist. Auch löst dieses Verfahren nicht die mit der erforderlichen Brenngasreinigung auftretenden Probleme, insbesondere das Problem der Entschwefelung und der Beseitigungder bei der Brenngasreinigung entstehenden lästigen Nebenprodukte.Although a step in the promising direction has been taken with this process, it is disadvantageous that its throughput is low in relation to the specified reactor dimensions and that because of the process conditions chosen, in particular for the gasification stage, the flexibility with regard to the production of fuel gas and steam is low. This method also does not solve the problems associated with the necessary fuel gas cleaning, in particular the problem of desulfurization and elimination of the annoying by-products that arise during the fuel gas cleaning.

Die DE A 27 29 764 betrifft ein Verfahren zur Vergasungvon kohlenstoffhaltigem Material mittels sauerstoffhaltiger Gase und Wasserdampf, bei dem der Vergasungsrückstand anschlie-ßend verbrannt und das Verbrennungsgas als zusätzliches Vergasungsmittel und Wärmeträger im Vergasungsreaktor einge-setzt wird. Sowohl Vergasung als auch Verbrennung erfolgen jeweils in der "klassischen Wirbelschicht", also bei einem Wirbelzustand, der verglichen mit den anmeldungsgemäß zur Anwendung kommenden "zirkulierenden Wirbelschichten" gänzlich verschieden ist. Das Verfahren sieht vor, die bei dermechanischen Gasreinigung (Stäube) und Gaskühlung (Wasser) anfallenden Nebenprodukte in die Verbrennungsstufe einzu-tragen. Detaillierte Angaben zur Entschwefelung der erzeugten Gase sind nicht vorhanden.DE A 27 29 764 relates to a process for the gasification of carbon-containing material by means of oxygen-containing gases and water vapor, in which the gasification residue is then burned and the combustion gas is used as an additional gasification agent and heat transfer medium in the gasification reactor. Both gasification and combustion take place in the "classic fluidized bed", ie in a fluidized state which is completely different compared to the "circulating fluidized beds" used in the application. The process envisages entering the by-products from mechanical gas cleaning (dust) and gas cooling (water) into the combustion stage. There is no detailed information on the desulfurization of the gases produced.

Für dieses Verfahren geiten im wesentliche, die bereits vor-stehend genannten Nachteile.The main drawbacks for this method are the disadvantages already mentioned above.

Die US A 4 026 679 befaßt sich mit der Erzeukung von Brenngas durch zweistufige Vergasung von kohlenstoffhaltigem Material unter Verwendung zweier über Kreuz miteinander ver-bundener expanierter Wirbelschichten. Die Entschwefelung des erzeugten Gases erfolgt zum überwiegenden Teil im Vergasungsreaktor selbst. Eine Verbrennung und damit Erzeugung von Prozeßwärme ist nicht vorgesehen. Aufgabe der Erfindung ist es, ein Verfahren zur gleichzeitigen Erzeugung von Brenngas und Prozeßwärme aus kohlenstoff- haltigen Materialien bereitzustellen, das die bekannten,insbesondere vorgenannten Nachteile nicht aufweist, eine hohe Flexibilität bei der Umwandlung des Energieinhaltes des Aus-gangsmaterials in Brenngas einerseits und Prozeßwärme andererseits besitzt und damit eine kurzfristige Anpassung an denjeweiligen Energieformbedarf ermöglicht.US Pat. No. 4,026,679 deals with the production of fuel gas by two-stage gasification of carbon-containing material using two expanded fluidized beds connected in a crosswise manner. The desulfurization of the gas produced takes place for the most part in the gasification reactor itself. A combustion and thus generation of process heat is not provided. The object of the invention is to provide a method for the simultaneous generation of fuel gas and process heat from carbon-containing materials which does not have the known, in particular the aforementioned disadvantages, high flexibility in converting the energy content of the starting material into fuel gas on the one hand and process heat on the other hand owns and thus enables a short-term adjustment to the respective energy form requirement.

Die Aufgabe wird gelöst, indem das Verfahren der eingangs genannten Art entsprechend der Erfindung derart ausgestaltet wird, daß sowohl die Vergasung als auch die Verbrennung in je einer separaten, zirkulierenden Wirbelschicht erfolgen und beide erhaltenen Gasströme separat gereinigt, gekühlt und entstaubt werden, wobei das in der Vergasungsstufe erzeugte Brenngas bei einer Temperatur im Bereich von 800 bis 1000° C i. Wirbelzustand mit Hilfe von CaS-bildenden Materialien von Schwefelverbindungen befreit wird und die Verbrennung der verbliebenen brennbaren Bestandteile bei einer Luftverhält-niszahl von λ≈ 1,05 bis 1,40 erfolgt.The object is achieved by designing the method of the type mentioned at the outset in accordance with the invention in such a way that both the gasification and the combustion take place in a separate, circulating fluidized bed and the two gas streams obtained are cleaned, cooled and dedusted separately, the in the gasification stage generated fuel gas at a temperature in the range of 800 to 1000 ° C i. Whirl state is freed of sulfur compounds with the aid of CaS-forming materials and the combustion of the remaining combustible constituents takes place at an air ratio of λ≈ 1.05 to 1.40.

Das erfindungsgemäße Verfahren ist für alle kohlenstoffhaltigen Materialien, die selbstgängig vergast und verbrannt werden können, anwendbar. Es eignet sich für Kohlen aller Art, ist jedoch insbesondere für Kohlen minderer Qualität, wie Kohlewaschberge, Schlammkohle, Kohle mit hohem Salzgehalt, attrak-tiv. Es sind jedoch auch Braunkohle und Ölschiefer einsetzbar.The method according to the invention can be used for all carbon-containing materials which can be gasified and burned independently. It is suitable for all types of coal, but is particularly attractive for coal of inferior quality, such as coal washing mountains, mud coal, coal with a high salt content. However, lignite and oil shale can also be used.

Das in der Vergasungs-und in der Verbrennungsstufe angewendete Prinzip der zirkulierenden Wirbelschicht zeichnet sich dadurch aus, daß im Unterschied zur "klassischen" Wirbelschicht, bei der eine dichte Phase durch einen deutlichen Dichtesprung von dem darüber befindlichen Gasraum getrennt ist Verteilungszustände ohne definierte Grenzschicht vorliegen. Ein Dichtesprung zwischen dichter Phase und darüber befindlichem Staubraum ist nicht existent; jedoch nimmt innerhalb des Reaktorsdie Feststoffkonzentration von unten nach oben ständig ab.The principle of the circulating fluidized bed used in the gasification and combustion stages It is characterized in that, in contrast to the "classic" fluidized bed, in which a dense phase is separated from the gas space above by a clear density jump, there are distribution states without a defined boundary layer. A leap in density between the dense phase and the dust space above it does not exist; however, the solids concentration within the reactor decreases continuously from bottom to top.

Bei Definition der Betriebsbedingungen über die Kennzahlen von Froude und Archimedes ergeben sich die Bereiche:

Figure imgb0001
mit
Figure imgb0002
bzw.
Figure imgb0003
wobei
Figure imgb0004
ist.When defining the operating conditions using the key figures from Froude and Archimedes, the following areas result:
Figure imgb0001
With
Figure imgb0002
respectively.
Figure imgb0003
in which
Figure imgb0004
is.

Es bedeuten:It means:

Figure imgb0005
Figure imgb0005

Demgegenüber kann die Entschwefelung des erzeugten Gases bei einem beliebigen Wirbelzustand, z.B. in einer Venturi-Wirbelschicht mit Feststoffaustrag in einen nachgeschalteten Abschei-der, erfolgen. Mit Vorteil kann jcdoch auch für die Entschwefelung eine zirkulierende Wirbelschicht eingesetzt werden.In contrast, the desulfurization of the gas produced can take place in any vortex state, e.g. in a Venturi fluidized bed with solids discharge in a downstream separator. However, a circulating fluidized bed can also advantageously be used for desulfurization.

Eine besonders vorteilhafte Ausgestaltung der Erfindungbesteht darin, bei der Vergasung 40 bis 60 Gew.-% des im Ausgangsmaterial enthaltenen Kohlenstoffes umzusetzen. Hierdurchläßt sich ein Brenngas mit besonders hohem Heizwert erzeugen. Außerdem kann auf den Einsatz von sonst wesentlich höheren Wasserdampfmengen, die in hinteren Verfahrensschritten wieder als an sich unerwünschtes Gaswasser anfallen, verzichtet werden.A particularly advantageous embodiment of the invention consists in converting 40 to 60% by weight of the carbon contained in the starting material into the gasification. In this way, a fuel gas with a particularly high calorific value can be generated. In addition, it is possible to dispense with the use of otherwise significantly higher amounts of water vapor, which in the subsequent process steps are again produced as gas water which is undesirable per se.

Sofern das kohlenstoffhaltige Material die für die Vergasungerforderliche Wasserdampfmenge nicht bereits selbst in Form von Feuchtigkeit aufweist, ist es erforderlich, für die Ver-gasungsreaktion Wasserdampf zuzusetzen. Dabei sollten Wasserdampf und das erforderliche sauerstoffhaltige Gas in unter-schiedlicher Höhe eingetragen werden. Eine zweckmäßige Ausgestaltung der Erfindung besteht darin, daß man in der Vergasungsstufe Wasserdampf,überwiegend in Form von Fluidisierungsgas,und sauerstoffhaltiges Gas, überwiegend in Form von Sekundärgas,zuführt. Diese Arbeitsweise schließt nicht aus, daßder Eintrag untergeordneter Wasserdampfmengen auch zusammen mit dem sauerstoffhaltigen Bekundärgas und der Eintrag von untergeordneten Mengen sauerstoffhaltiger Gase zusammen mit Wasserdampf als Fluidisierungsgas erfolgen kann.If the carbonaceous material does not already have the amount of water vapor required for gasification itself in the form of moisture, it is necessary to add water vapor for the gasification reaction. Water vapor and the required oxygen-containing gas should be entered at different levels. An expedient embodiment of the invention consists in that in the gasification stage water vapor, predominantly in the form of fluidizing gas, and oxygen-containing gas, predominantly in the form of secondary gas, are supplied. This procedure does not rule out that the entry of minor amounts of water vapor can also take place together with the oxygen-containing secondary gas and the entry of minor amounts of oxygen-containing gases together with water vapor as the fluidizing gas.

Weiterhin ist es vorteilhaft, in der Vergasungsstufe die Ver-weilzeit der Gase oberhalb der Eintrittsstelle des kohlenstoffhaltigen Materials gerechnet auf 1 bis 5 Sekundeneinzustellen. Diese Bedingung wird üblicherweise realisiert, indem man das kohlenstoffhaltige Material auf höherem Niveau in die Vergasungsstufe einträgt. Hierdurch entsteht einerseits ein an Schwelprodukten reicheres Gas mit entsprechendhöjerem Heizwert, andererseits ist gewährleistet, daß das Gas praktisch keine Kohlenwasserstoffe mit mehr als 6 C-Atomen aufweist.Furthermore, it is advantageous to set the residence time of the gases above the entry point of the carbon-containing material to 1 to 5 seconds in the gasification stage. This condition is usually realized by entering the carbonaceous material at a higher level in the gasification stage. On the one hand, this creates a gas that is richer in smoldering products and has a correspondingly higher calorific value, and on the other hand it ensures that the gas has practically no hydrocarbons with more than 6 carbon atoms.

Die Entschwefelung des Gases kann mit den üblichen Entschwe-felungsmitteln erfolgen. Eine bevorzugte Ausgestaltung besteht darin, die aus der Vergasungsstufe austretenden Gase ineinerzirkulierenden Wirbelschicht mittels Kalk oder Dolomit bzw. den entsprechenden gebrannten Produkten einer Teilchengröße dp 50 von 30 bis 200 tim zu entschwefeln und hierzu im Wirbelschichtreaktor eine mittlere Suspensionsdichte von 0,1 bis 10kg/m3, vorzugsweise 1 bis 5 kg/m3; und eine stündliche Feststoffumlaufrate, die mindestens das 5-fache des im Reaktorschacht befindlichen Feststoffgewichtes ausmacht, einzustellen. Diese Arbeitsweise zeichnet sich dadurch aus, daß die Entschwefelung bei hohen Oasdurchsätzen und bei sehr konstanterTemperatur durchgeführt werden kann. Die hohe Temperaturkonstanz wirkt sich für die Entschwefelung insofern positiv aus,als das Entschwefelungsmittel seine Aktivität und damit sein Aufnahmevermögen gegenüber Schwefel behält. Die hohe Feinkörnigkeit des Entschwefelungsmittels ergänzt diesen Vorteil, dadas Verhältnis von Oberfläche zu Volumen für die im wesentlichen durch die Diffusionsgeschwindigkeit bestimmte Bin-dungsgeschwindigkeit des Schwefels besonders günstig ist.The gas can be desulfurized using the usual desulfurization agents. A preferred embodiment consists of desulfurizing the gases emerging from the gasification stage in a circulating fluidized bed by means of lime or dolomite or the corresponding fired products with a particle size dp 50 of 30 to 200 tim, and for this purpose an average suspension density of 0.1 to 10 kg / m in the fluidized bed reactor 3 , preferably 1 to 5 kg / m 3; and to set an hourly solids circulation rate which is at least 5 times the solids weight in the reactor shaft. This procedure is characterized in that the desulfurization can be carried out at high Oas throughputs and at a very constant temperature. The high temperature stability has a positive effect on the desulfurization in that the desulfurizing agent retains its activity and thus its absorption capacity against sulfur. The high degree of granularity of the desulfurization agent complements this advantage, since the ratio of surface area to volume is particularly favorable for the binding rate of the sulfur, which is essentially determined by the rate of diffusion.

Die Dosierung des Entschwefelungsmittels sollte mindestens das 1,2-bis 2,0-fache des stöchiometrischen Bedarfs gemäß

Figure imgb0006
betragen. Dabei ist zu berücksichtigen, daß bei Verwendung von Dolomit oder gebranntem Dolomit praktisch nur die Kalziumkomponente mit den Schwefelverbindungen reagiert.The desulphurization agent dosage should be at least 1.2 to 2.0 times the stoichiometric requirement
Figure imgb0006
be. It should be noted that when using dolomite or burnt dolomite, practically only the calcium component reacts with the sulfur compounds.

Der Eintrag von Entschwefelungsmittel in den Wirbelschicht-reaktor erfolgt am zweckmäßigsten über eine oder mehrere Lanzen, z.B. durch pneumatisches Einblasen.The desulfurizing agent is most advantageously introduced into the fluidized bed reactor via one or more lances, e.g. by pneumatic blowing.

Besonders günstige Betriebsbedingungen werden erzielt, wenn man die Gasgeschwindigkeit bei der Entschwefelung auf 4 bis 8 m/sec (gerechnet als Leerrohrgeschwindigkeit) einstellt.Particularly favorable operating conditions are achieved if the gas speed during desulfurization is set to 4 to 8 m / sec (calculated as empty pipe speed).

Insbesondere wenn die Abgase der Vergasungsstufe mit hohen Temperaturen austreten, besteht eine bevorzugte Ausgestaltung der Erfindung darin, das gesamte auch für die Verbrennungs-stufe erforderliche Entschwefelungsmittel der Stufe der Gasentschwefelung zuzugeben. Auf diese Weise wird die zur Auf-heizung und gegebenenfalls zur Entsäuerung erforderliche Wärmeenergie dem Gas entzogen und damit der Verbrennungsstufe erhalten.In particular if the exhaust gases from the gasification stage exit at high temperatures, a preferred embodiment of the invention consists in adding all of the desulfurization agent also required for the combustion stage to the gas desulfurization stage. In this way, the thermal energy required for heating and possibly for deacidification is withdrawn from the gas and thus preserved in the combustion stage.

Die Verbrennung der in der Vergasungsstufe nicht umgesetztenbrennbaren Bestandteile erfolgt in einer weiteren zirkulierenden Wirbelschicht, wobei gleichzeitig auch die bei der Gas-reinigung angefallenen Nebenprodukte umweltfreundlich beseitigt werden. Die aus der Gasreinigungsstufe kommenden bela-denen Entschwefelungsmittel, insbesondere soweit sie in sulfidischer Form vorliegen, wie Kalziumsulfid, werden sulfatisiert und dabei in deponiefähige Verbindungen, wie Kalziumsulfat, überführt. Außerdem wird die beim Sulfatisierungsprozeß freiwerdende Reaktionswärme mit als Prozeßwärme gewonnen.Auch die weiteren Nebenprodukte, wie Staub aus der Gasentstaubung und Gaswasser, werden beseitigt.The combustion of the combustible constituents not converted in the gasification stage takes place in a further circulating fluidized bed, at the same time also eliminating the by-products obtained in gas cleaning in an environmentally friendly manner. The loaded desulphurization agents coming from the gas purification stage, in particular insofar as they are in sulfidic form, such as calcium sulfide, are sulfated and thereby converted into landfill-compatible compounds, such as calcium sulfate. In addition, the heat of reaction released in the sulfation process is also obtained as process heat, and the other by-products, such as dust from gas dedusting and gas water, are also removed.

Unter dem Begriff Prozeßwärme ist ein Wärmeträgermediumverstanden, dessen Energieinhalt in unterschiedlichster weise zur Durchführung von Prozessen ausgenutzt werden kann. Es kann sich dabei um Gas zur Beheizung oder sofern es sich um sauerstoffhaltige Gase handelt zum Betrieb von Verbrennungsvorrichtungen unterschiedlichster Bauart handeln. Besonders vorteilhaft ist die Erzeugung von Sattdampf oder überhitztem Dampf ebenfalls zur Beheizung, beispiels-weise von Reaktoren oder zum Antrieb von elektrischen Generatoren bzw. die Aufheizung von Wärmeträgersalzen, beispiels-weise zur Beheizung von Rohrreaktoren oder Autoklaven.The term process heat is a heat transfer medium, the energy content of which can be used in various ways to carry out processes. It can be gas for heating or, if it is an oxygen-containing gas, for the operation of combustion devices of various types. The generation of saturated steam or superheated steam is also particularly advantageous for heating, for example of reactors or for driving electrical generators, or for heating heat transfer salts, for example for heating tubular reactors or autoclaves.

In bevorzugter Ausgestaltung der Erfindung wird die Verbren-nung zweistufig mit in unterschiedlicher Höhe zugeführten sauerstoffhaltigen Gasen durchgeführt. Ihr Vorzug liegt in einer "weichen" Verbrennung, bei der lokale Überhitzungserscheinungen vermieden werden und eine NOo Bildung weitgehendzurückgedrängt wird. Bei der zweistufigen Verbrennung sollte die obere Zufuhrstelle für sauerstoffhaltiges Gas so weit über der unteren liegen, daß der Sauerstoffgehalt des an der unteren Btelle zugeführten Gases bereits weitgehend verzehrt ist.In a preferred embodiment of the invention, the combustion is in two stages with different levels supplied oxygen-containing gases performed. Their advantage lies in "soft" combustion, in which local overheating phenomena are avoided and NO o formation is largely suppressed. In the case of two-stage combustion, the upper supply point for oxygen-containing gas should be so far above the lower one that the oxygen content of the gas supplied at the lower part has already been largely consumed.

Ist als Prozeßwärme Dampf erwünscht, besteht eine vorteilhafte Ausführungsform der Erfindung darin, oberhalb der oberen Gaszuführung eine mittlere Suspensionsdichte von 15 bis 100 kg/m3durch Einstellung der Fluidisierungs-und Sekundärgasmengen zu schaffen und mindestens einen wesentlichen Teil der Verbrennungswärme mittels oberhalb der oberen Gaszuführung innerhalb des freien Reaktorraumes befindlicher Kühlflächen abzuführen.If steam is desired as process heat, an advantageous embodiment of the invention consists in creating an average suspension density of 15 to 100 kg / m3 above the upper gas supply by adjusting the amounts of fluidization and secondary gas and at least a substantial part of the heat of combustion by means of above the upper gas supply within the dissipate cooling surfaces in the free reactor space.

Eine derartige Arbeitsweise ist in der DE-AS 25 39 546 bzw. in der entsprechenden US-PS 4 165 717 näher beschrieben.Such a procedure is described in DE-AS 25 39 546 or in the corresponding US Pat. No. 4,165,717.

Die im Wirbelschichtreaktor oberhalb der Sekundärgaszuführung herrschenden Gasgeschwindigkeiten liegen bei Normaldruck im Regelfall über 5 m/s und können bis zu 15 m/s betragen und das Verhältnis von Durchmesser zu Höhe des Wirbelschichtreaktors sollte derart gewählt werden, daß Gasverweilzeiten von 0,5 bis 8,0 s, vorzugsweise 1 bis 4 s, erhalten werden.The gas velocities prevailing in the fluidized bed reactor above the secondary gas supply are generally above 5 m / s at normal pressure and can be up to 15 m / s and the ratio of diameter to height of the fluidized bed reactor should be chosen such that gas residence times of 0.5 to 8. 0 s, preferably 1 to 4 s, are obtained.

Als Fluidisierungsgas kann praktisch, jedes beliebige, die Beschaffenheit des Abgases nicht beeinträchtigende Gas eingesetzt werden. Es sind z.B. Inertgase, wie rückgeführtes Rauch-gas (Abgas), Stickstoff und Wasserdampf, geeignet. Im Hinblick auf die Intensivierung des Verbrennungsprozesses ist es jedoch vorteilhaft, bereits als Fluidisierungsgas sauerstoffhaltiges Gas zu verwenden. Es ergeben sich mithin folgende Möglichkeiten:

  • 1. Als Fluidisierungsgas Inertgas zu verwenden. Dann ist es unerläßlich, das sauerstoffhaltige Verbrennungsgas als Sekundärgas in mindestens zwei übereinanderliegenden Ebenen einzutragen.
  • 2. Als Fluidisierungsgas bereits sauerstoffhaltiges Gas zu verwenden. Dann genügt der Eintrag von Sekundärgas in einer Ebene. Selbstverständlich kann auch bei dieser Aus-führungsform noch eine Aufteilung des Sekundärgaseintrags in mehrere Ebenen erfolgen.
Any fluid which does not impair the nature of the exhaust gas can be used as the fluidizing gas. Inert gases such as recirculated flue gas (exhaust gas), nitrogen and water vapor are suitable, for example. With a view to intensifying the combustion process, however, it is advantageous to use oxygen-containing gas as the fluidizing gas. The following options are therefore available:
  • 1. Use inert gas as the fluidizing gas. Then it is essential to enter the oxygen-containing combustion gas as a secondary gas in at least two superimposed levels.
  • 2. To use oxygen-containing gas as the fluidizing gas. Then the entry of secondary gas in one level is sufficient. Of course, the secondary gas input can also be divided into several levels in this embodiment.

Innerhalb jeder Eintragsebene sind mehrere Zuführungsöffnungen für Sekundärgas vorteilhaft.A plurality of supply openings for secondary gas are advantageous within each entry level.

Der Vorteil dieser Arbeitsweise besteht insbesondere darin, daß in einfachster Weise eine Veränderung in der Gewinnung von Prozeßwärme durch Veränderung der Suspensionsdichte im ober-halb der Sekundärgaszuführung befindlichen Ofenraum des Wirbelschichtreaktors möglich ist.The advantage of this procedure is in particular that a change in the production of process heat is possible in the simplest way by changing the suspension density in the furnace space of the fluidized bed reactor located above the secondary gas supply.

Mit einem herrschenden Betriebszustand unter vorgegebenenFluidisierungsgas-und Sekundärgasvolumina und daraus resultierender bestimmter, mittlerer Buspensionsdichte ist ein be-stimmter Wärmeübergang verbunden. Der Wärmeübergang auf die Kühlflächen kann erhöht werden, indem durch Erhöhung der Fluidisierungsgasmenge und gegebenenfalls auch der Sekundärgasmenge die Suspensionsdichte erhöht wird. Mit dem erhöhten Wärmeübergang ist bei praktisch konstanter Verbrennungstem-peratur die Möglichkeit zur Abfuhr der bei erhöhter Verbrennungsleistung entstehenden Wärmemengen gegeben. Der aufgrundder höheren Verbrennungsleistung erforderliche erhöhte Sauerstoffbedarf ist hierbei durch die zur Erhöhung der Suspensionsdichte verwendeten höheren Fluidisierungsgas-und gegebenenfalls Sekundärgasmengen guasi automatisch vorhanden.A certain heat transfer is associated with a prevailing operating state under predetermined fluidizing gas and secondary gas volumes and the resultant specific average bus pension density. The heat transfer to the cooling surfaces can be increased by increasing the suspension density by increasing the amount of fluidizing gas and possibly also the amount of secondary gas. With the increased heat transfer at practically constant combustion temperature, it is possible to dissipate the amounts of heat generated with increased combustion output. The increased oxygen requirement required due to the higher combustion output is here virtually automatically present due to the higher fluidization gas and possibly secondary gas quantities used to increase the suspension density.

Analog läßt sich zur Anpassung an einen verringerten Prozeß-wärmebedarf die Verbrennungsleistung durch Verringerung der Suspensionsdichte im oberhalb der Sekundärgasleitung befind-lichen Ofenraum des Wirbelschichtreaktors regeln. Durch die Erniedrigung der Suspensionsdichte wird auch der Wärmeüber-gang verringert, so daß aus dem Wirbelschichtreaktor weniger Wärme abgeführt wird. Im wesentlichen ohne Temperaturänderung läßt sich dadurch die Verbrennungsleistung zurücknehmen.Similarly, to adapt to a reduced process heat requirement, the combustion output can be regulated by reducing the suspension density in the furnace space of the fluidized bed reactor located above the secondary gas line. By lowering the suspension density, the heat transfer is also reduced, so that less heat is removed from the fluidized bed reactor. The combustion performance can be reduced essentially without a change in temperature.

Der Eintrag des kohlenstoffhaltigen Materials erfolgt auch hier am zweckmäßigsten über eine oder mehrere Lanzen, z.B. durch pneumatisches Einblasen.The entry of the carbonaceous material is also most conveniently via one or more lances, e.g. by pneumatic blowing.

Eine weitere zweckmäßige,universelleranwendbare Ausgestal-tung des Verbrennungsprozesses besteht darin, oberhalb der oberen Gaszuführung eine mittlere Suspensionsdichte von 10 bis 40 kg/m3 durch Einstellung der FluidisierungsundSekundärgasmengen zu schaffen, heißen Feststoff derzirkulierenden Wirbelschicht zu entnehmen und im Wirbelzustand durch direkten und indirekten Wärmeaustausch zu kühlen und mindestens einen Teilstrom gekühlten Feststoffes in die zirkulierende Wirbelschicht zurückzuführen.Another expedient, more universally applicable design of the combustion process consists in creating an average suspension density of 10 to 40 kg / m 3 above the upper gas supply by adjusting the amounts of fluidization and secondary gas, removing hot solids from the circulating fluidized bed and in the fluidized state by direct and indirect heat exchange cool and return at least a partial flow of cooled solid into the circulating fluidized bed.

Diese Ausführungsform ist in der DE-OS 26 24 302 bzw. in der entsprechenden US-PS 4 111 158 näher erläutert.This embodiment is explained in DE-OS 26 24 302 or in the corresponding US-PS 4 111 158.

Bei dieser Ausgestaltung der Erfindung läßt sich die Tempera-turkonstanz praktisch ohne Änderung der im Wirbelschichtreaktor herrschenden Betriebszustände, also etwa ohne Verän-derung der Suspensionsdichte u.a., allein durch geregelte Rückführung des gekühlten Feststoffes erreichen. Je nach Ver-brennungsleistung und eingestellter Verbrennungstemperatur ist die Rezirkulationsrate mehr oder minder hoch. Die Verbrennungstemperaturen lassen sich von sehr niedrigen Temperaturen, die nahe oberhalb der Zündgrenze liegen, bis zu sehr hohenIn this embodiment of the invention, the temperature constancy can be achieved practically without changing the operating conditions prevailing in the fluidized bed reactor, that is to say without changing the suspension density, among other things, solely by controlled recycling of the cooled solid. Depending on the combustion performance and the set combustion temperature, the recirculation rate is more or less high. The combustion temperatures can range from very low temperatures, which are close above the ignition limit, to very high temperatures

Temperaturen, die etwa durch Erweichung der Verbrennungs-rückstände begrenzt sind, beliebig einstellen. Sie können etwa zwischen 450° C und 950° C liegen.Set temperatures as required, which are limited by softening the combustion residues. They can be between 450 ° C and 950 ° C.

Da die Entnahme der bei der Verbrennung des brennbaren Bestandteiles gebildeten Wärme überwiegend im feststoffseitig nachgeschalteten Wirbelschichtkühler erfolgt und ein Wärme-übergang auf im Wirbelschichtreaktor befindliche Kühlregister, der eine hinreichend hohe Suspensionsdichte zur Vor-aussetzung hat, von untergeordneter Bedeutung ist, ergibt sich als weiterer Vorteil dieses Verfahrens, daß die Suspensionsdichte im Bereich des Wirbelschichtreaktors oberhalb der Sekundärgaszuführung niedrig gehalten werden kann und mithin der Druckverlust im gesamten Wirbelschichtreaktor vergleichsweise gering ist. Statt dessen erfolgt der Wärmeentzug im Wirbelschichtkühler unter Bedingungen, die einen extrem hohen Wärme-übergang, etwa im Bereich von 400 bis 500 Watt/m2. °C, bewirken.Since the heat generated during the combustion of the combustible constituent is predominantly removed in the fluidized bed cooler connected downstream on the solids side, and a heat transfer to the cooling register located in the fluidized bed reactor, which has a sufficiently high suspension density as a prerequisite, is of secondary importance, which results in a further advantage this method that the suspension density in the area of the fluidized bed reactor above the secondary gas supply can be kept low and consequently the pressure loss in the entire fluidized bed reactor is comparatively low. Instead, the heat is extracted in the fluidized bed cooler under conditions that allow extremely high heat transfer, for example in the range of 400 to 500 watts / m 2 . ° C.

Die Verbrennungsüemperatur im Wirbelschichtreaktor wirdgeregelt, indem mindestens ein Teilstrom gekühlten Feststoffes aus dem Wirbelschichtkühler zurückgeführt wird. Bei-spielsweise kann der erforderliche Teilstrom gekühlten Feststoffes direkt in den Wirbelschichtreaktor eingetragen wer-den. Es kann zusätzlich auch das Abgas durch Eintrag gekühten Feststoffes, der beispielsweise einer pneumatischen För-derstrecke oder einer Schwebeaustauscherstufe aufgegeben wird, gekühlt werden, wobei der vom Abgas später wieder abge-trennte Feststoff dann in den Wirbelschichtkühler zurückgeleitet wird. Dadurch gelangt auch die Abgaswärme letztlichin den Wirbelschichtkühler. Besonders vorteilhaft ist es, gekühlten Feststoff als einen Teilstrom direkt und als einen weiteren indirekt nach Kühlung der Abgase in den Wirbelschichtreaktor einzutragen.The combustion temperature in the fluidized bed reactor is controlled by recycling at least a partial stream of cooled solid from the fluidized bed cooler. For example, the required partial flow of cooled solid can be fed directly into the fluidized bed reactor. In addition, the exhaust gas can also be cooled by introducing cooled solid matter, which is fed, for example, to a pneumatic conveyor line or a floating exchanger stage, the solid matter which is later separated off from the exhaust gas then being returned to the fluidized bed cooler. As a result, the exhaust gas heat ultimately ends up in the fluidized bed cooler. It is particularly advantageous to enter cooled solid as a partial stream directly and as another indirectly after cooling the exhaust gases in the fluidized bed reactor.

Auch bei dieser Ausgestaltung der Erfindung sind die Gas-verweilzeiten, Gasgeschwindigkeiten oberhalb der Sekundärgasleitung bei Normaldruck und Art der Fluidisierungs-bzw.Sekundärgaszuführung in Übereinstimmung mit den gleichen Parametern der zuvor behandelten Ausführungsform.In this embodiment of the invention, too, the gas residence times, gas velocities above the secondary gas line at normal pressure and type of fluidization or secondary gas supply are in agreement with the same parameters of the previously discussed embodiment.

Die Rückkühlung des heißen Feststoffes des Wirbelschicht-reaktors sollte in einem Wirbelschichtkühler mit mehreren nacheinander durchflossenen Kühlkammern, in die miteinander verbundene Kühlregister eintauchen, im Gegenstrom zum Kühlmittel erfolgen. Hierdurch gelingt es, die Verbrennungswärmean eine vergleichsweise kleine Kühlmittelmenge zu binden.The recooling of the hot solid of the fluidized bed reactor should take place in a fluidized bed cooler with several cooling chambers flowing through one after the other, into which interconnected cooling registers are immersed, in countercurrent to the coolant. This enables the heat of combustion to be bound to a comparatively small amount of coolant.

Die Universalität der zuletzt genannten Ausgestaltung ist insbesondere dadurch gegeben, daß sich im Wirbelschichtkühler nahezu beliebige Wärmeträgermedien aufheizen lassen. Von beson-derer Bedeutung aus technischer Sicht ist die Erzeugung von Dampf unterschiedlichster Form und die Aufheizung von Warmeträgersalz.The universality of the last-mentioned embodiment is particularly given by the fact that almost any heat transfer media can be heated in the fluidized bed cooler. Of particular importance from a technical point of view is the generation of steam in various forms and the heating of heat transfer salt.

Die Flexibilität des erfindungsgemäßen Verfahrens kann wei-terhin erhöht werden, wenn in einer weiteren vorteilhaften Ausgestaltung der Erfindung der Verbrennungsstufe zusätzlich kohlenstoffhaltige Materialien aufgegeben werden. Diese Ausführungsform hat den Vorzug, daß ohne Einflußnahme auf dieBrenngaserzeugung in der Vergasungsstufe die Produktion von Prozeßwärme nach Belieben in der Verbrennungsstufe erhöht werden kann.The flexibility of the method according to the invention can be further increased if, in a further advantageous embodiment of the invention, the combustion stage is additionally fed with carbon-containing materials. This embodiment has the advantage that the production of process heat can be increased as desired in the combustion stage without influencing the combustion gas generation in the gasification stage.

Innerhalb des erfindungsgemäßen Verfahrens können als sau-erstoffhaltige Gase Luft oder mit Sauerstoff angereicherte Luft oder technisch reiner Sauerstoff eingesetzt werden. Insbesondere in der Vergasungsstufe empfiehlt sich die Verwendung eines möglichst sauerstoffreichen Gases. Schließlichkann innerhalb der Verbrennungsstufe eine Leistungssteigerung erzielt werden, indem die Verbrennung unter Druck,etwa bis 20 bar, durchgeführt wird.In the process according to the invention, air or oxygen-enriched air or technically pure oxygen can be used as the oxygen-containing gases. In the gasification stage in particular, the use of an oxygen-rich gas is recommended. Finally, an increase in performance can be achieved within the combustion stage by carrying out the combustion under pressure, up to about 20 bar.

Die bei der Durchführung des erfindungsgemäßen Verfahrens zur Anwendung kommenden Wirbelschichtreaktoren können von rechteckigem, guadratischem oder kreisförmigem Querschnitt sein. Der untere Bereich des Wirbelschichtreaktors kann auch konisch ausgebildet sein, was insbesondere bei großen Reaktorquerschnitten und damit hohen Gasdurchsätzen vorteilhaft ist.The fluidized bed reactors used in carrying out the method according to the invention can be of rectangular, square or circular cross section. The lower region of the fluidized bed reactor can also be conical, which is particularly advantageous in the case of large reactor cross sections and thus high gas throughputs.

Die Erfindung wird anhand der Figur, die ein Fließschema deserfindungsgemäßen Verfahrens darstellt, und der Ausführungsbeispiele beispielsweise und näher erläutert.The invention will be explained in more detail with reference to the figure, which represents a flow diagram of the method according to the invention, and the exemplary embodiments.

Kohlenstoffhaltiges Material wird der aus dem Wirbelschicht-reaktor 1, dem Zyklonabscheider 2 sowie der Rückführleitung 3 gebildeten zirkulierenden Wirbelschicht über Leitung 4 aufge-gebeh und dort durch Zugabe von Sauerstoff über Sekundärgasleitung 5 und Wasserdampf über Fluidisierungsgasleitung 6 ver-gast. Das erzeugte Gas wird in einem zweiten Zyklonabscheider7 entstaubt und in einen Venturi-Reaktor 8 eingetragen, der über Leitung 9 mit Entschwefelungsmittel versorgt wird. Das Entschwefelungsmittel wird zusammen mit dem Gas in einen Abhitzekessel 10 eingetragen, dort abgeschieden und über Lei-tung 11 abgeführt. Das Gas gelangt in einen Wäscher 12, in dem es von restlichem Staub befreit wird. Die Waschflüssig-keit wird hierbei über die Leitung I3,eine Filtereinrichtung 14 und eine weitere Leitung 15 umgepumpt. Schließlich gelangt das Gas zwecks Wasserabscheidung in einen Kondensator 16 und wird dann nach Durchgang durch ein Naß-Elektrofilter 17 über Leitung 44 abgeführt.Carbon-containing material is added to the circulating fluidized bed formed from the fluidized bed reactor 1, the cyclone separator 2 and the return line 3 via line 4 and gasified there by adding oxygen via secondary gas line 5 and water vapor via fluidizing gas line 6. The gas generated is dedusted in a second cyclone separator 7 and introduced into a Venturi reactor 8, which is supplied with desulfurizing agent via line 9. The desulfurization agent is introduced together with the gas into a waste heat boiler 10, separated there and discharged via line 11. The gas enters a scrubber 12, in which it is freed of residual dust. The washing liquid is pumped through line I3, a filter device 14 and a further line 15. Finally, the gas arrives in a condenser 16 for water separation and is then discharged via line 44 after passing through a wet electrostatic precipitator 17.

Der Vergasungsrückstand wird der zirkulierenden Wirbelschicht 1, 2, 3 über Leitung 18 entnommen, über einen Kühler 19 sowie Leitung 20 der der Verbrennung dienenden und aus Wirbel-schichtreaktor 21, Zyklonabscheider 22 und Rückführleitung 23 gebildeten zweiten zirkulierenden Wirbelschicht aufgegeben. über die Leitungen 24 bzw. 25 wird sauerstoffhaltiges Gas als Fluidisierungsgas bzw. als Sekundärgas zugeführt. über die Leitung 26 ist eine separate Zugabe von Brennstoff und über Leitung 27 von Entschwefelungsmittel möglich. Zusammen mit dem Vergasungsrückstand über Leitung 20 erfolgt auch die Aufgabe von Entschwefelungsmittel, Schlamm und Gaswasser., die über Leitungen 11 bzw. 42 bzw. 43 herangeführt werden. Das aus dem Abscheider 22 des Wirbelschichtreaktors 21 austretende Gas wird in einem weiteren Zyklonabscheider 29 von Staubbefreit und in einem Abhitzekessel 30 gekühlt. Weitere Asche wird im Abscheider 31 dem Abgas entzogen. Das Abgas wird schließlich über Leitung 32 abgeführt.The gasification residue is taken from the circulating fluidized bed 1, 2, 3 via line 18, via a cooler 19 and line 20 of the second circulating fluidized bed used for combustion and formed from a fluidized bed reactor 21, cyclone separator 22 and return line 23. Oxygen-containing gas is supplied via lines 24 and 25 as fluidizing gas and as secondary gas. A separate addition of fuel is possible via line 26 and of desulfurizing agent via line 27. Together with the gasification residue via line 20, desulphurization agents, sludge and gas water are also introduced, which are introduced via lines 11, 42 and 43, respectively. The gas emerging from the separator 22 of the fluidized bed reactor 21 is freed of dust in a further cyclone separator 29 and cooled in a waste heat boiler 30. Further ash is extracted from the exhaust gas in the separator 31. The exhaust gas is finally discharged via line 32.

Aus der Rückführleitung 23 wird mittels Leitung 33 ein Teil-strom von über Wirbelschichtreaktor 21, Abscheidezyklon 22 und Rückführleitung 23 zirkuliertem Feststoff entnommen undim Wirbelschichtkühler 34 gekühlt. Außerdem wird im Wirbelschichtkühler 34 auch der im Abscheidezyklon 29 und im Abhitzekes-sel 30 niedergeschkgene Staub über Leitungen 35, 36 bzw. 37 zugeführt. Als Kühlmittel dient ein Wärmeträgersalz, das im Gegenstrom durch den Wirbelschichtkühler 34 vermittels von Kühlregistern 38 hindurchgeführt wird. Das über Leitung 41 dem Wirbelschichtkühler 34 zugeführte und dort aufgeheizte sauer-stoffhaltige Fluidisierungsgas gelangt über Leitung 39 als Sekundärgas in den Wirbelschichtreaktor 21. Rückgekühlter Feststoff wird zur Aufnahme der Verbrennungswärme dem Wirbelschichtreaktor 21 über Leitung 40 zugeführt.A partial flow of solid circulated via fluidized bed reactor 21, separating cyclone 22 and return line 23 is withdrawn from return line 23 by means of line 33 and cooled in fluidized bed cooler 34. In addition, in the fluidized bed cooler 34, the dust which is deposited in the separating cyclone 29 and in the waste heat boiler 30 is fed via lines 35, 36 and 37, respectively. A heat transfer salt is used as the coolant, which is passed in countercurrent through the fluidized bed cooler 34 by means of cooling registers 38. The oxygen-containing fluidizing gas which is supplied to the fluidized bed cooler 34 via line 41 and heated there passes via line 39 as secondary gas into the fluidized bed reactor 21 Solid is fed to the fluidized bed reactor 21 via line 40 to absorb the heat of combustion.

Beispiel 1example 1 Zum Einsatz gelangte eine Kohle mitA coal came into use

  • 20 Gew.-% Ascheanteil und20% by weight of ash and
  • 8 Gew.-% Feuchte.8% by weight moisture.
Ihr Heizwert betrug 25,1 MJ/kg (Mega-Joule)Its calorific value was 25.1 MJ / kg (mega joules)

3300kg der vorstehend genannten Kohle wurde stündlich dem Wirbelschichtreaktor 1 über Leitung 4 aufgegeben. Gleichzeitigwurden 913 Nm3 sauerstoffhaltiges Gas mit 95 Vol.-% 02 über Leitung 5 und 280 kg Dampf von 400°C über Leitung 6 eingetragen. Aufgrund der gewählten Betriebsbedingungen stellte sich im Wirbelschichtreaktor eine Temperatur von 1020° C und eine mittlere Suspensionsdichte (oberhalb der Leitung 5 gemessen) von 200 kg/m3 Reaktorvolumen ein. Das im Zyklonabscheider 2 vom Feststoff weitgehend befreite Gas von 1020° Cwurde im Zyklonabscheider 7 weiter entstaubt und in eine Venturi-Wirbelschicht 9 eingetragen, die außerdem einen Zusatz von 238 kg/h Kalk (CaC03-Gehalt 95 Gew.-%) erhielt. Das entschwefelte Gas trat zusammen mit dem beladenen Entschwefe- lungsmittel mit einer Temperatur von 920° C aus und wurde in den Abhitzekessel 10 eingetragen. Im Abhitzekessel 10 wurden 155 kg/h beladenes Entschwefelungsmittel erhalten, außerdem Sattdampf von 45 bar in einer Menge von 1,75 t/h erzeugt. Das entstaubte und abgekühlte Gas gelangte dann in den Wäscher 12, in dem es mit über Leitung 13, Filtereinrichtung 14 und Leitung 15 umgepumpter Waschflüssigkeit gereinigt wurde. Es wurde dann in den Kondensator 16 überführt, indem es durch indirekte Kühlung auf 35° C abgkühlt wurde. Nach Durchgang durch ein Naß-Elektrofilter 17 wurden über Leitung 44 3940Nm3 /h Brenn-gas abgeführt. Der Heizwert des erzeugten Brenngases betrug 10,6 MJ/Nm3.3300kg of the aforementioned coal was fed to the fluidized bed reactor 1 via line 4 every hour. At the same time, 913 Nm 3 of oxygen-containing gas with 95% by volume 02 were introduced via line 5 and 280 kg of steam of 400 ° C via line 6. Due to the selected operating conditions, a temperature of 1020 ° C. and an average suspension density (measured above line 5) of 200 kg / m 3 reactor volume were established in the fluidized bed reactor. The gas of 1020 ° C largely freed of solids in the cyclone separator 2 was further dedusted in the cyclone separator 7 and introduced into a Venturi fluidized bed 9, which also received an addition of 238 kg / h of lime (CaC0 3 content 95% by weight). The desulfurized gas together with the loaded desulfurizing agent emerged at a temperature of 920 ° C. and was introduced into the waste heat boiler 10. 155 kg / h of loaded desulfurizing agent were obtained in the waste heat boiler 10, and saturated steam of 45 bar was also produced in an amount of 1.75 t / h. The dedusted and cooled gas then reached the scrubber 12, in which it was cleaned with washing liquid pumped over line 13, filter device 14 and line 15. It was then transferred to the condenser 16 by being cooled to 35 ° C by indirect cooling. After passing through a wet electrostatic precipitator 17, 3940 Nm 3 / h of fuel gas were removed via line 44. The calorific value of the fuel gas generated was 10.6 MJ / Nm 3 .

Über Leitung 18 wurde der der Vergasung dienenden zirkulie-renden Wirbelschicht Vergasungsrückstand entnommen und zusammen mit dem über Leitung 11 abgeführten beladenen Entschwefe-lungsmittel sowie über Leitung 43 ausgetragenen Filterrückstand über Leitung 20 dem Wirbelschichtreaktor 21 aufgegeben.Die gesamte Aufgabemenge betrug 1869 kg/h. Dem Wirbelschichtreaktor 21 wurden weiterhin über die Fluidisierungsgasleitung 24 3400 Nm3 Luft und über Sekundärgasleitung 25 4900Nm3 /h Luft zugeführt. Eine weitere Sekundärgaszuführung in Form von im Wirbelschichtkühler 34 aufgeheizter Lufterfolgte über Leitung 39 in einer Menge von 1900Nm3 /h. Der letztgenannte Luftstrom besaß eine Temperatur von 500° C. Im Wirbelschichtreaktor stellte sich eine Verbrennungstemperatur von 850° C und oberhalb der obersten Sekundärgasleitungeine mittlere Suspensionsdichte von 30 kg/m3 ein. Das Abgas des Wirbelschichtreaktors wurde im nachgeschalteten Rückführzyklon 22 von den mit ausgetragenen Feststoffen befreit, imnachgeschalteten Zyklonabscheider 29 entstaubt und schließlich in den Abhitzekessel 30 eingetragen. Im Abhitzekessel 30erfolgte eine Absenkung der Temperatur der Abgase von 850° C auf 140° C. Dabei wurden 3,6 t/h überhitzter Dampf von 45 bar und 480° C erzeugt. Das Gas wurde anschließend in den Abscheider 31 eingeleitet und dort von weiterer Asche befreit. Schließlich wurde es mit einer Temperatur von 140° C über Leitung 32 dem Kamin zugeführt. Im Abscheider 30 fielen 660 kg/h Asche und zusätzlich 247 kg/h sulfatisiertes Ent-schwefelungsmittel an. Die Aschemenge von 660 kg/h entspricht dabei der gesamten Ascheproduktion in der Verbrennungsstufe.The gasification circulating fluidized bed of gasification residue was removed via line 18 and fed to the fluidized bed reactor 21 via line 20 together with the loaded desulphurizing agent discharged via line 11 and the filter residue discharged via line 43. The total feed rate was 1869 kg / h. The fluidized bed reactor 21 was also supplied with 34 3400 Nm 3 of air via the fluidizing gas line 24 and 25 4900 Nm 3 / h of air via the secondary gas line. Another secondary gas supply in the form of air heated in the fluidized bed cooler 34 was carried out via line 39 in an amount of 1900 Nm 3 / h. The latter air flow was at a temperature of 500 ° C. In the fluidized bed reactor, the combustion temperature was 850 ° C and above the top secondary gas line an average suspension density of 30 kg / m 3 . The exhaust gas from the fluidized bed reactor was freed from the solids discharged in the downstream recycle cyclone 22, dusted in the downstream cyclone separator 29 and finally introduced into the waste heat boiler 30. In the waste heat boiler 30, the temperature of the exhaust gases was reduced from 850 ° C. to 140 ° C. 3.6 t / h of superheated steam of 45 bar and 480 ° C. were generated. The gas was then introduced into the separator 31 and freed from further ash there. Finally, it was fed to the chimney at a temperature of 140 ° C. via line 32. In the separator 30, 660 kg / h of ash and an additional 247 kg / h of sulfated desulfurizing agent were obtained. The ash quantity of 660 kg / h corresponds to the total ash production in the combustion stage.

Von dem in der zirkulierenden Wirbelschicht 21, 22, 23 im Kreislauf gefahrenen Feststoff wurden über Leitung 33 45 t/h Feststoff in den Wirbelschichtkühler 34 eingetragen und dort im Gegenstrom zu einem Wärmeträgersalz, das mit 350° C in einer Menge von 185 t/h zugeführt wurde, gekühlt. Das Wärme-trägersalz heizte sich dabei auf 420° C auf. Die im Kühler 34 auf 400° C abgekühlte Asche wurde über Leitung 40 zur Aufnahme der Verbrennungswärme in den Wirbelschichtreaktor 21 zurückgeführt. Der Wirbelschichtkühler 34, der vier getrennte Kühlkammern aufweist, wurde seinerseits mit 1900Nm3 /h Luft fluidisiert, die sich auf 500° C Mischtemperatur aufheizte. Sie wurdewie bereits oben erwähnt über Leitung 39 dem Wirbelschicht-reaktor 21 als Sekundärgas zugeführt. Bei dem vorstehend genannten Beispiel teilte sich die nutz-bar/gemachte Energie wie folgt auf:

Figure imgb0007
Of the solid circulated in the circulating fluidized bed 21, 22, 23, 45 t / h of solid were introduced into the fluidized bed cooler 34 via line 33 and there in countercurrent to a heat transfer salt which was at 350 ° C. in an amount of 185 t / h was fed, cooled. The heat transfer salt heated up to 420 ° C. The ashes cooled in the cooler 34 to 400 ° C. were returned to the fluidized bed reactor 21 via line 40 to absorb the heat of combustion. The fluidized bed cooler 34, which has four separate cooling chambers, was in turn fluidized with 1900 Nm 3 / h of air, which heated up to a mixing temperature of 500 ° C. As already mentioned above, it was fed via line 39 to the fluidized bed reactor 21 as a secondary gas. In the above example, the usable / made energy is divided as follows:
Figure imgb0007

Beispiel 2Example 2 Zum Einsatz gelangte wiederum eine Kohle mitA coal was used again

  • 20 Gew.-% Ascheanteil und
  • 8 Gew.-% Feuchte,

deren Heizwert 25,1 MJ/kg betrug. 3300 kg der vorstehend genannten Kohle wurde stündlich dem Wirbelschichtreaktor 1 über Leitung 4 aufgegeben. Gleichzeitig wurden 776Nm3 sauerstoffhaltiges Gas mit 95 Vol.-0,'o 02 über Leitung 5 und 132 kg Dampf von 400° G über Leitung 6 eingetragen. Aufgrund der gewählten Betriebsbedingungen stellte sich im Wirbelschichtreaktor 1 eine Temperatur von 1000° C und eine mittlere Suspensionsdichte (oberhalb der Leitung 5 gemessen) von 200 kg/m3 Reaktorvolumen ein. Das im Zyklonabscheider 2 vom Feststoff weitgehend befreite Gas von 1000° C wurde im Zyklonabscheider 7 weiter entstaubt und in eine Venturi-Wirbelschicht 9 eingetragen, die außer-dem einen Zusatz von 236 kg/h Kalk (CaC03-Gehalt 95 Gew.-%) erhielt. Das entschwefelte Gas trat zusammen mit dem bela-denen Entschwefelungsmittel mit einer Temperatur von 900° C aus und wurde in den Abhitzekessel 10 eingetragen. Im Abhitzekessel 10 wurden 155 kg/h beladenes Entschwefelungsmittel erhalten, außerdem Sattdampf von 45 bar in einer Menge von 1,52 t/h erzeugt. Das entstaubte und abgekühlte Gas gelangte dann in den Wäscher 12, in dem es mit über Leitung 13, Filtereinrichtung 14 und Leitung 15 umgepumpter Waschflüssigkeit gereinigt wurde. Es wurde dann in den Kondensator 16 überführt, indem es durch indirekte Kühlung auf5° C abgekühlt wurde. Nach Durchgang durch ein Naß-Elektrofilter 17 wurden über Leitung 44 3400Nm3 /h Brenngas abge-MJ/Nm3.
  • 20% by weight of ash and
  • 8% by weight moisture,

whose calorific value was 25.1 MJ / kg. 3300 kg of the above-mentioned coal was fed to the fluidized bed reactor 1 via line 4 every hour. At the same time, 776Nm 3 of oxygen-containing gas with 95 vol. 0, 0 or 0 2 were introduced via line 5 and 132 kg of steam of 400 ° G via line 6. Due to the selected operating conditions, a temperature of 1000 ° C. and an average suspension density (measured above line 5) of 200 kg / m 3 reactor volume were established in the fluidized bed reactor 1. The gas of 1000 ° C. largely freed of solids in the cyclone separator 2 was further dedusted in the cyclone separator 7 and introduced into a Venturi fluidized bed 9, which also added 236 kg / h of lime (CaC0 3 content 95% by weight ) received. The desulfurized gas, together with the loaded desulfurization agent, emerged at a temperature of 900 ° C. and was introduced into the waste heat boiler 10. 155 kg / h of loaded desulphurising agent were obtained in the waste heat boiler 10, and saturated steam of 45 bar was also produced in an amount of 1.52 t / h. The dedusted and cooled gas then reached the scrubber 12, in which it was cleaned with washing liquid pumped over line 13, filter device 14 and line 15. It was then transferred to condenser 16 by cooling to 5 ° C by indirect cooling. After passing through a wet electrostatic precipitator 17, 3400 Nm 3 / h of fuel gas were discharged via line 44-MJ / Nm 3 .

Über Leitung 18 wurde der der Vergasung dienenden zirkulie-renden Wirbelschicht Vergasungsrückstand entnommen und zusammen mit dem über Leitung 11 abgeführten beladenen Entschwefe-lungsmittel sowie über Leitung 43 ausgetragenen Filterrückstand über Leitung 20 dem Wirbelschichtreaktor 21 aufgegeben.Die gesamte Aufgabemenge betrug 2068 kg/h. Dem Wirbelschichtreaktor 21 wurden weiterhin über die Fluidisierungsgasleitung 24 3075Nm3 /h Luft ung über Sekundärgasleitung 25 7325Nm3 /h Luft zugeführt. Eine weitere Sekundärgaszuführung in Form von im Wirbelschichtkühler 34 aufgeheizter Lufterfolgte über Leitung 39 in einer Menge von 1900Nm3 /h. Der letztgenannte Luftstrom besaß eine Temperatur von 500 °C Im Wirbelschichtreaktor stellte sich eine Verbrennungstemperatur von 850° C und oberhalb der obersten Sekundärgasleitungeine mittlere Suspensionsdichte von 30 kg/m3 ein. Das Abgas des Wirbelschichtreaktors wurde im nachgeschalteten Rückführzyklon 22 von den mit ausgetragenen Feststoffen befreit, imnachgeschalteten Zyklonabscheider 29 entstaubt und schließlich in den Abhitzekessel 30 eingetragen. Im Abhitzekessel 30erfolgte eine Absenkung der Temperatur der Abgase von 850° C auf 140° C. Dabei wurden 4,4 t/h überhitzter Dampf von 45 bar und 480° C erzeugt. Das Gas wurde anschließend in den Abscheider 31 eingeleitet und dort von weiterer Asche befreit. Schließlich wurde es mit einer Temperatur von 140° C über Leitung 32 dem Kamin zugeführt. Im Abscheider 30 fielen 660 kg/h Asche und zuzätzlich 247 kg/h sulfatisiertes Ent-schwefelungsmittel an. Die Aschemenge von 660 kg/h entspricht dabei der gesamten Ascheproduktion in der Verbrennungsstufe.The gasification circulating fluidized bed of gasification residue was removed via line 18 and fed to the fluidized bed reactor 21 via line 20 together with the loaded desulphurizing agent discharged via line 11 and the filter residue discharged via line 43. The total feed rate was 2068 kg / h. The fluidized bed reactor 21 was further supplied with air via the fluidizing gas line 24 3075Nm 3 / h air and secondary gas line 25 7325Nm 3 / h. Another secondary gas supply in the form of air heated in the fluidized bed cooler 34 was carried out via line 39 in an amount of 1900 Nm 3 / h. The latter air flow was at a temperature of 500 ° C. In the fluidized bed reactor, the combustion temperature was 850 ° C and above the uppermost secondary gas line an average suspension density of 30 kg / m 3 . The exhaust gas from the fluidized bed reactor was freed from the solids discharged in the downstream recycle cyclone 22, dusted in the downstream cyclone separator 29 and finally introduced into the waste heat boiler 30. In the waste heat boiler 30, the temperature of the exhaust gases was reduced from 850 ° C. to 140 ° C. 4.4 t / h of superheated steam of 45 bar and 480 ° C. were generated. The gas was then introduced into the separator 31 and freed from further ash there. Finally, it was fed to the chimney at a temperature of 140 ° C. via line 32. In the separator 30, 660 kg / h of ash and an additional 247 kg / h of sulfated desulfurizing agent were obtained. The ash quantity of 660 kg / h corresponds to the total ash production in the combustion stage.

Von dem in der zirkulierenden Wirbelschicht 21, 22, 23 im Kreislauf gefahrenen Feststoff wurden über Leitung 33 54 t/h Feststoff in den Wirbelschichtkühler 34 eingetragen und dort im Gegenstrom zu einem Wärmeträgersalz. das mit 350° C in einer Menge von 223 t/h zugeführt wurde, gekühlt.Of the solid circulating in the circulating fluidized bed 21, 22, 23, 54 t / h of solid were introduced into the fluidized bed cooler 34 via line 33 and there in countercurrent to a heat transfer salt. which was fed at 350 ° C in an amount of 223 t / h, cooled.

Das Wärmeträgersalz heizte sich dabei auf 420° C auf. Die im Kühler 34 auf 400° C abgekühlte Asche wurde über Leitung 40 zur Aufnahme der Verbrennungswärme in den Wirbelschicht-reaktor 21 zurückgeführt. Der Wirbelschichtkühler 34, der vier getrennte Kühlkammern aufweist, wurde seinerseits mit 1900Nm3 /h Luft fluidisiert, die sich auf 500° C Mischtemperatur aufheizte. Sie wurde wie bereits oben erwähnt über Leitung 39 dem Wirbelschichtreaktor 21 als Sekundärgas zugeführt.Die nach diesem Beispiel nutzbar gemachte Energieteilte sich wie folgt auf:.

Figure imgb0008
The heat transfer salt heated up to 420 ° C. The ashes cooled in the cooler 34 to 400 ° C. were returned to the fluidized bed reactor 21 via line 40 to absorb the heat of combustion. The fluidized bed cooler 34, which has four separate cooling chambers, was in turn fluidized with 1900 Nm 3 / h of air, which heated up to a mixing temperature of 500 ° C. As already mentioned above, it was fed via line 39 to the fluidized bed reactor 21 as secondary gas. The energy parts which were used according to this example were divided as follows:
Figure imgb0008

Beispiel 3Example 3

Das Beispiel 2 wurde insofern variiert, als ohne Verände-rung innerhalb der Vergasungsstufe die Energiegewinnung in der Verbrennungsstufe durch zusätzliche Kohleverbrennung erhöht wurde.Example 2 was varied insofar as the energy generation in the combustion stage was increased by additional coal combustion without any change within the gasification stage.

Hierzu wurden im Wirbelschichtreaktor 21 über Leitung 26 zusätzlich 500 kg/h Kohle (der eingangs genannten Eeschaffenheit) sowie über Leitung 27 35 kg/h Kalkstein (95 Gew.-%CaC03) zugegeben. Die durch die Leitung 24 zuzuführende Fluidisierungsluftmenge war auf 4100Nm3 /h und die durch Leitung 25 zuzuführende Sekundärluftmenge auf 10 300Nm3 /h erhöht worden. Durch die gegenüber Beispiel 2 veränderte Arbeitsweise wurden im Abhitzekessel 30 5,7 t/h Dampf von 45 bar und 480° C erzeugt und im Kühler 34 302 t/h Wärmeträgersalz von 350 auf 420 C aufgeheizt. Hierzu war die über den Wirbel-schichtkühler 34 geführte Feststoffmenge auf 73 t/h zu erhöhen. Es fielen 760 kg/h Asche und 284 kg/h sulfatisier-tes Entschwefelungsmittel an. Bezogen auf die gesamte zugegebene Kohlemenge teilte sich die nutzbar gemachte Energie wie folgt auf.:

Figure imgb0009
For this purpose, an additional 500 kg / h of coal (of the type mentioned at the outset) and 35 kg / h of limestone (95% by weight CaC0 3 ) were added via line 26 in the fluidized bed reactor 21. The amount of fluidizing air to be supplied through line 24 had been increased to 4100 Nm 3 / h and the amount of secondary air to be supplied through line 25 had been increased to 10 300 Nm 3 / h. As a result of the modified procedure compared to Example 2, 30 5.7 t / h of steam of 45 bar and 480 ° C. were generated in the waste heat boiler and 34 302 t / h of heat transfer salt from 350 to 420 ° C. were heated in the cooler. For this purpose, the one led over the fluidized bed cooler 34 Increase the amount of solids to 73 t / h. 760 kg / h of ash and 284 kg / h of sulfated desulfurizing agent were obtained. Based on the total amount of coal added, the harnessed energy was divided as follows:
Figure imgb0009

Claims (11)

1. A process of sinultaneously producing fuelgas and process heat from carbonaceous materials by agasification in a first fluidized bed and a subsequent conbustion in a second fluidized bed of the combustible constituents left after the gasification, wherein the gasifi-cation is carried out at a pressure of up to 5 bars and atemperature of 800 to 11000 C by a treatment with oxygencontaining gases in the presence of steam and 40 to 80% of the carbon contained in the starting material are thus re-acted and the gasification residue together with the byproducts which have becone available in the purification ofthe gas is fed to another fluidized bed characterized in that the gasification and combuation are effected in respective separate circulating fluidized beds, both gas streams obtained are separately purified, cooled and freed from dust, the fuel gas produced in the gasification stage is freed from sulfur compounds in a turbulent state by means of CaS-forming materials at a temperature in the range from 800 to 1000° C, and the combustion of the remaining combustible constituents is effected with an air ratio number of k = 1.05 to 1.40.
2. A process according to claim 1, characterized in that 40 to 60 % by weight of the carbon contained in the starting material are reacted in the gasifying stage.
3. A process according to claims 1 and 2, charactarized in that the gasifying stage (1, 2, 3) is fad with steam mainly in the form of fluidizing gas (6) and with oxygen-containing gas mainly in the form of secondary gas (5).
4. A procass according to claims 1, and 3, charactarized in that a residance time of 1 to 5 seconds of the gas is maintained in the gasifying stage (1, 2, 3) above the inlet (4) for the carbonaceous material.
5. A process according to any of claims 1 to 4, charactarized in that the gases leaving the gasifying stage (1, 2, 3) are desulfurized in a circulating fluidized bed by a treatment with lime or dolomite or the corresponding calcined products having a particle diameter of dp50 - 30 to 200 um and for this purpose the fluidized bed reactor is operated to maintain therein a suspension having a mean solids density of 0.1 to 10 kg/m3, preferably 1 to 5 kg/m3, and to circulate solids at such a rate that the weight of the solids circulated through the circulating fluidized bed per hour is at least 5 times the weight of the solids contained in the reactor shaft.
6. A process according to any of claims 1 to 5, characterized in that a gas velocity of 4 to 8 meters per second (calculated as empty-pipe valocity) is maintained during the desulfurization.
7. A process according to any of claims 1 to 6, charactarized in that all desulfurizing agent, including that required for the combustion stage, is fed to the gas-dasulfurizing stage.
8. A process according to any of claims 1 to 7, charactarizad in that the combustion is effected in two stages with the aid of oxygen-containing gases fed at diffarant lavels.
9. A process according to claim 8, characterized in that the rates of fluidizing and secondary gases are controlled to maintain a suspension having a mean solids dansity of 15 to 100 kg/m3 above the upper gas inlet and at least a substantial part of the heat genarated by the combustion is dissipated through cooling surfaces provided within the free space of the reactor above the upper gas inlet.
10. A process according to claim 8, charactarized in that the rates of fluidizing gas (24) and secondary gas (25) are controlled to maintain above the upper gas inlet (25) a mean solids density of the suspension of 10 to 40 kg/m3 hot solids are withdrawn from the circulating fluidized bed (21, 22, 23) and are cooled by direct and indirect heat exchange in a turbulent state (34), and at least one partial stream of cooled solids is recycled (40) to the circulating fluidized bed (21, 22, 23).
11. A process according to any of claims 1 to 10, characterized in that additional carbonaceous materials are fed to the combustion stage.
EP82200261A 1981-04-07 1982-03-02 Process for the simultaneous production of fuel gas and thermal energy from carbonaceous materials Expired EP0062363B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82200261T ATE17866T1 (en) 1981-04-07 1982-03-02 PROCESS FOR SIMULTANEOUS GENERATION OF FUEL GAS AND PROCESS HEAT FROM CARBON CONTAINING MATERIALS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3113993 1981-04-07
DE3113993A DE3113993A1 (en) 1981-04-07 1981-04-07 METHOD FOR THE SIMULTANEOUS PRODUCTION OF COMBUSTION GAS AND PROCESS HEAT FROM CARBON-MATERIAL MATERIALS

Publications (2)

Publication Number Publication Date
EP0062363A1 EP0062363A1 (en) 1982-10-13
EP0062363B1 true EP0062363B1 (en) 1986-02-05

Family

ID=6129565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200261A Expired EP0062363B1 (en) 1981-04-07 1982-03-02 Process for the simultaneous production of fuel gas and thermal energy from carbonaceous materials

Country Status (19)

Country Link
US (1) US4444568A (en)
EP (1) EP0062363B1 (en)
JP (1) JPS57179290A (en)
AR (1) AR227714A1 (en)
AT (1) ATE17866T1 (en)
AU (1) AU545446B2 (en)
BR (1) BR8201974A (en)
CA (1) CA1179846A (en)
CS (1) CS250214B2 (en)
DE (2) DE3113993A1 (en)
ES (1) ES8306785A1 (en)
FI (1) FI73724C (en)
GR (1) GR75461B (en)
IE (1) IE52546B1 (en)
IN (1) IN152949B (en)
MX (1) MX159901A (en)
NO (1) NO155545C (en)
NZ (1) NZ199930A (en)
ZA (1) ZA822345B (en)

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117199A (en) * 1982-04-26 2000-09-12 Foster Wheeler Energia Oy Method and apparatus for gasifying solid carbonaceous material
DE3300867A1 (en) * 1983-01-13 1984-07-19 Mannesmann AG, 4000 Düsseldorf METHOD FOR PRODUCING STEEL BY MELTING IRON SPONGE IN THE ARC FURNACE
DE3310220A1 (en) * 1983-03-22 1984-09-27 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR GASIFYING SOLID FUELS IN THE HIKING BED AND IN THE FLUID BED
DE3428782A1 (en) * 1984-08-04 1986-02-13 Metallgesellschaft Ag, 6000 Frankfurt METHOD FOR PRODUCING IRON SPONGE
DE3439600A1 (en) * 1984-10-30 1986-05-07 Carbon Gas Technologie GmbH, 4030 Ratingen Process for generating low-sulphur gas from finely ground carbonaceous solids
US4676177A (en) * 1985-10-09 1987-06-30 A. Ahlstrom Corporation Method of generating energy from low-grade alkaline fuels
EP0220342A1 (en) * 1985-11-01 1987-05-06 Metallgesellschaft Ag Process for treating an aqueous condensate
EP0227196B1 (en) * 1985-12-27 1990-08-08 Shell Internationale Researchmaatschappij B.V. Oxidation of flyash
DE3612888A1 (en) * 1986-04-17 1987-10-29 Metallgesellschaft Ag COMBINED GAS / STEAM TURBINE PROCESS
AT392079B (en) * 1988-03-11 1991-01-25 Voest Alpine Ind Anlagen METHOD FOR THE PRESSURE GASIFICATION OF COAL FOR THE OPERATION OF A POWER PLANT
US4880439A (en) * 1988-05-05 1989-11-14 Texaco Inc. High temperature desulfurization of synthesis gas
DE3929926A1 (en) * 1989-09-08 1991-03-21 Metallgesellschaft Ag METHOD FOR THE TREATMENT OF GASES FROM THE GASIFICATION OF SOLID, FINE-COMBINED FUELS
DE69100679T2 (en) * 1990-07-23 1994-04-28 Mitsubishi Heavy Ind Ltd Gasifying combustion method and gasifying energy production method.
FR2669099B1 (en) * 1990-11-13 1994-03-18 Stein Industrie METHOD AND DEVICE FOR COMBUSTING DIVIDED CARBON MATERIALS.
US5403366A (en) * 1993-06-17 1995-04-04 Texaco Inc. Partial oxidation process for producing a stream of hot purified gas
US5375408A (en) * 1993-07-06 1994-12-27 Foster Wheeler Development Corporation Combined-cycle power generation system using a coal-fired gasifier
CA2127394A1 (en) * 1993-07-12 1995-01-13 William Martin Campbell Transport gasifier
US5447702A (en) * 1993-07-12 1995-09-05 The M. W. Kellogg Company Fluid bed desulfurization
WO1996006147A1 (en) * 1994-08-23 1996-02-29 Foster Wheeler Energia Oy Method of operating a fluidized bed reactor system, and system
CH690790A5 (en) * 1995-01-10 2001-01-15 Von Roll Umwelttechnik Ag A process for the thermal treatment of waste material.
DE19503438A1 (en) * 1995-02-03 1996-08-08 Metallgesellschaft Ag Process for gasifying combustible material in the circulating fluidized bed
FI110266B (en) * 1999-01-25 2002-12-31 Valtion Teknillinen A method for gasifying a carbonaceous fuel in a fluidized bed gasifier
ES2183662B1 (en) * 1999-05-14 2003-12-16 Kemestrie Inc GASIFICATION REACTION CONTAINER AND CORRESPONDING PROCEDURE
AU4737400A (en) * 1999-05-14 2000-12-05 Kemestrie Inc. Process and apparatus for gasification of refuse
ES2190689B1 (en) * 2000-03-15 2004-10-16 Luis M. Santi De Azcoitia Y Villanueva PROCEDURE FOR OBTAINING FUEL GAS FROM FUEL MATERIALS.
US20050084434A1 (en) * 2003-10-20 2005-04-21 Enviroserve Associates, L.L.C. Scrubbing systems and methods for coal fired combustion units
DE102004030370B3 (en) * 2004-06-23 2005-12-15 Kirchner, Hans Walter, Dipl.-Ing. Cooling and cleaning system for biogas plant has two heat exchangers connected in series to cool hot gas and condense out tar before gas goes to cooled metallic fabric filter
FI120162B (en) * 2005-02-17 2009-07-15 Foster Wheeler Energia Oy Vertebrate boiler plant and method for combustion of sulfur-containing fuel in a vertebrate boiler plant
US8114176B2 (en) * 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
AU2006201957B2 (en) * 2006-05-10 2008-06-05 Outotec Oyj Process and plant for producing char and fuel gas
US7922782B2 (en) * 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
KR101138096B1 (en) * 2007-08-02 2012-04-25 그레이트포인트 에너지, 인크. Catalyst-loaded coal compositions, methods of making and use
US20090090055A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
US20090090056A1 (en) * 2007-10-09 2009-04-09 Greatpoint Energy, Inc. Compositions for Catalytic Gasification of a Petroleum Coke
US9371487B2 (en) 2007-12-12 2016-06-21 Outotec Oyj Process and plant for producing char and fuel gas
WO2009086372A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Carbonaceous fuels and processes for making and using them
US7897126B2 (en) * 2007-12-28 2011-03-01 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US20090165380A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Petroleum Coke Compositions for Catalytic Gasification
US8123827B2 (en) * 2007-12-28 2012-02-28 Greatpoint Energy, Inc. Processes for making syngas-derived products
AU2008345189B2 (en) * 2007-12-28 2011-09-22 Greatpoint Energy, Inc. Petroleum coke compositions for catalytic gasification
WO2009086366A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Processes for making synthesis gas and syngas-derived products
WO2009086363A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Coal compositions for catalytic gasification and process for its preparation
US20090165383A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Catalytic Gasification Process with Recovery of Alkali Metal from Char
WO2009086408A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Continuous process for converting carbonaceous feedstock into gaseous products
CN101910375B (en) * 2007-12-28 2014-11-05 格雷特波因特能源公司 Steam generating slurry gasifier for the catalytic gasification of a carbonaceous feedstock
US7901644B2 (en) * 2007-12-28 2011-03-08 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US20090165382A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Catalytic Gasification Process with Recovery of Alkali Metal from Char
WO2009111331A2 (en) * 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US8349039B2 (en) * 2008-02-29 2013-01-08 Greatpoint Energy, Inc. Carbonaceous fines recycle
US20090217582A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Processes for Making Adsorbents and Processes for Removing Contaminants from Fluids Using Them
US8286901B2 (en) * 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US20090217575A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Biomass Char Compositions for Catalytic Gasification
US8114177B2 (en) * 2008-02-29 2012-02-14 Greatpoint Energy, Inc. Co-feed of biomass as source of makeup catalysts for catalytic coal gasification
WO2009111345A2 (en) * 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
WO2009111332A2 (en) * 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US7926750B2 (en) * 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US20090220406A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Selective Removal and Recovery of Acid Gases from Gasification Products
US8297542B2 (en) * 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
US8192716B2 (en) * 2008-04-01 2012-06-05 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
CA2718295C (en) * 2008-04-01 2013-06-18 Greatpoint Energy, Inc. Processes for the separation of methane from a gas stream
CN102076829B (en) * 2008-06-27 2013-08-28 格雷特波因特能源公司 Four-train catalytic gasification systems
WO2009158580A2 (en) * 2008-06-27 2009-12-30 Greatpoint Energy, Inc. Four-train catalytic gasification systems
WO2009158579A2 (en) * 2008-06-27 2009-12-30 Greatpoint Energy, Inc. Three-train catalytic gasification systems
US20090324461A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Four-Train Catalytic Gasification Systems
WO2009158583A2 (en) * 2008-06-27 2009-12-30 Greatpoint Energy, Inc. Four-train catalytic gasification systems
WO2010033848A2 (en) * 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
CA2735137C (en) 2008-09-19 2013-05-21 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
CN102159683B (en) 2008-09-19 2014-10-01 格雷特波因特能源公司 Processes for gasification of carbonaceous feedstock
US8502007B2 (en) * 2008-09-19 2013-08-06 Greatpoint Energy, Inc. Char methanation catalyst and its use in gasification processes
CN102197117B (en) 2008-10-23 2014-12-24 格雷特波因特能源公司 Processes for gasification of a carbonaceous feedstock
CN102272267A (en) 2008-12-30 2011-12-07 格雷特波因特能源公司 Processes for preparing a catalyzed carbonaceous particulate
CN102272268B (en) * 2008-12-30 2014-07-23 格雷特波因特能源公司 Processes for preparing a catalyzed coal particulate
US8268899B2 (en) * 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8728182B2 (en) * 2009-05-13 2014-05-20 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
WO2010132549A2 (en) 2009-05-13 2010-11-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
WO2010141629A1 (en) * 2009-06-02 2010-12-09 Thermochem Recovery International, Inc. Gasifier having integrated fuel cell power generation system
WO2011017630A1 (en) * 2009-08-06 2011-02-10 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
US8479834B2 (en) * 2009-10-19 2013-07-09 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
CA2773718C (en) * 2009-10-19 2014-05-13 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
CN102639435A (en) * 2009-12-17 2012-08-15 格雷特波因特能源公司 Integrated enhanced oil recovery process
CN102652205A (en) * 2009-12-17 2012-08-29 格雷特波因特能源公司 Integrated enhanced oil recovery process injecting nitrogen
CN102754266B (en) 2010-02-23 2015-09-02 格雷特波因特能源公司 integrated hydrogenation methanation fuel cell power generation
US8652696B2 (en) * 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8557878B2 (en) 2010-04-26 2013-10-15 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with vanadium recovery
US20110265697A1 (en) * 2010-04-29 2011-11-03 Foster Wheeler North America Corp. Circulating Fluidized Bed Combustor and a Method of Operating a Circulating Fluidized Bed Combustor
JP5559428B2 (en) 2010-05-28 2014-07-23 グレイトポイント・エナジー・インコーポレイテッド Conversion of liquid heavy hydrocarbon feedstock to gaseous products
KR101424941B1 (en) 2010-08-18 2014-08-01 그레이트포인트 에너지, 인크. Hydromethanation of carbonaceous feedstock
US9353322B2 (en) 2010-11-01 2016-05-31 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
CA2827916C (en) 2011-02-23 2016-06-21 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with nickel recovery
FI124422B (en) 2011-03-14 2014-08-29 Valmet Power Oy Method for ash treatment and ash treatment plant
DE102011100490A1 (en) 2011-05-04 2012-11-08 Outotec Oyj Process and plant for the production and further treatment of fuel gas
US9127221B2 (en) 2011-06-03 2015-09-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
WO2012168945A1 (en) * 2011-06-10 2012-12-13 Bharat Petroleum Corporation Limited Process for co-gasification of two or more carbonaceous feedstocks and apparatus thereof
CN103974897A (en) 2011-10-06 2014-08-06 格雷特波因特能源公司 Hydromethanation of a carbonaceous feedstock
US20140065559A1 (en) * 2012-09-06 2014-03-06 Alstom Technology Ltd. Pressurized oxy-combustion power boiler and power plant and method of operating the same
KR101576781B1 (en) 2012-10-01 2015-12-10 그레이트포인트 에너지, 인크. Agglomerated particulate low-rank coal feedstock and uses thereof
KR101534461B1 (en) 2012-10-01 2015-07-06 그레이트포인트 에너지, 인크. Agglomerated particulate low-rank coal feedstock and uses thereof
WO2014055365A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
KR101646890B1 (en) 2012-10-01 2016-08-12 그레이트포인트 에너지, 인크. Agglomerated particulate low-rank coal feedstock and uses thereof
FI125951B (en) * 2012-12-20 2016-04-29 Amec Foster Wheeler En Oy Method for controlling a gasifier with circulating fluidized bed
CN103742899B (en) * 2014-01-23 2016-05-04 上海锅炉厂有限公司 A kind of circulating fluid bed burning in oxygen enrichment polygenerations systeme and technique
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
FR3130944B1 (en) * 2021-12-17 2023-12-15 Ifp Energies Now LOOP COMBUSTION INSTALLATION AND METHOD COMPRISING A CYCLONIC AIR REACTOR

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2588075A (en) * 1945-12-18 1952-03-04 Standard Oil Dev Co Method for gasifying carbonaceous fuels
GB665077A (en) * 1949-01-03 1952-01-16 Standard Oil Dev Co Improvements in or relating to the production of water gas
US3807090A (en) * 1970-12-02 1974-04-30 Exxon Research Engineering Co Purifications of fuels
GB1542862A (en) * 1975-02-14 1979-03-28 Exxon Research Engineering Co Combustion or part-combustion in fluidized beds
SE7503313L (en) * 1975-03-21 1976-09-22 Stora Kopparbergs Bergslags Ab KIT FOR CONVERSION OF CARBON MATERIAL CONTAINING SULFUR TO MAIN SULFUR-FREE FLAMMABLE GAS AND DEVICE FOR IMPLEMENTING THE KIT
US4165717A (en) * 1975-09-05 1979-08-28 Metallgesellschaft Aktiengesellschaft Process for burning carbonaceous materials
US4069304A (en) * 1975-12-31 1978-01-17 Trw Hydrogen production by catalytic coal gasification
DE2624302C2 (en) * 1976-05-31 1987-04-23 Metallgesellschaft Ag, 6000 Frankfurt Methods for carrying out exothermic processes
JPS5354202A (en) * 1976-10-27 1978-05-17 Ube Ind Ltd Gasification of coal or its mixture with heavy liquid hydrocarbon influidized beds and gasifying furnaces
DE2729764A1 (en) * 1977-07-01 1979-01-04 Davy Bamag Gmbh Gasification of solid fuels - with combustion of the ash in oxygen and recycling of the hot gas produced
JPS5851989B2 (en) * 1977-11-01 1983-11-19 工業技術院長 Coal gasification method
DE2836175A1 (en) * 1978-08-18 1980-02-28 Metallgesellschaft Ag METHOD FOR GASIFYING SOLID, FINE-GRAIN FUELS

Also Published As

Publication number Publication date
MX159901A (en) 1989-09-29
US4444568A (en) 1984-04-24
IE820796L (en) 1982-10-07
CS250214B2 (en) 1987-04-16
JPH0466919B2 (en) 1992-10-26
DE3268909D1 (en) 1986-03-20
AU545446B2 (en) 1985-07-11
CA1179846A (en) 1984-12-27
NO155545C (en) 1987-04-15
IE52546B1 (en) 1987-12-09
BR8201974A (en) 1983-03-15
ATE17866T1 (en) 1986-02-15
ZA822345B (en) 1983-11-30
NO821072L (en) 1982-10-08
NZ199930A (en) 1985-07-31
ES511221A0 (en) 1983-06-01
AU8238982A (en) 1982-10-14
FI821104A0 (en) 1982-03-30
DE3113993A1 (en) 1982-11-11
FI73724B (en) 1987-07-31
FI73724C (en) 1987-11-09
FI821104L (en) 1982-10-08
GR75461B (en) 1984-07-20
AR227714A1 (en) 1982-11-30
JPS57179290A (en) 1982-11-04
ES8306785A1 (en) 1983-06-01
NO155545B (en) 1987-01-05
IN152949B (en) 1984-05-05
EP0062363A1 (en) 1982-10-13

Similar Documents

Publication Publication Date Title
EP0062363B1 (en) Process for the simultaneous production of fuel gas and thermal energy from carbonaceous materials
DE2624302C2 (en) Methods for carrying out exothermic processes
EP0206066B1 (en) Circulating fluid-bed combustion device
EP0249255B1 (en) Combined steam-gas turbine cycle
DE3874548T2 (en) COMBUSTION OF ALKALI CONTAINING FUELS.
EP0118931B1 (en) Afterburning and cleaning proces of off-gases
DE69303821T2 (en) METHOD AND DEVICE FOR THE GASIFICATION OF BLACK LYE IN A CIRCULATING FLUID BED
DE2539546B2 (en) Process for incinerating carbonaceous materials
DE3101291A1 (en) METHOD FOR PRODUCING IRON SPONGE WITH A FLUIDBED CARBON GASIFICATION
DE2741285B2 (en) Process for the treatment of materials in a fluidized bed reactor
DE3322159A1 (en) METHOD FOR SEPARATING POLLUTANTS FROM EXHAUST GAS
EP0304111B1 (en) Method of carrying out exothermic processes
DE3880253T2 (en) RAW GAS CLEANING.
DE69415579T2 (en) Method and device for cleaning hot fuel gases
DE69100679T2 (en) Gasifying combustion method and gasifying energy production method.
DE3123809A1 (en) "METHOD FOR GASIFYING COAL WITH CONTROL OF THE SULFUR DIOXIDE CONTENT"
DE69521248T2 (en) Combined power plant with a pressure reactor with a circulating fluidized bed
EP0410118B1 (en) Combined cycle process
EP3580312B1 (en) Preparation of synthesegas from carbonated substances by means of a combined cocurrent-contercurrent process
DE3220229A1 (en) METHOD FOR PRODUCING A GAS FLOW RICH IN HYDROGEN AND CARBON MONOXIDE FROM COAL
DE3015232C2 (en) Combustion device for burning sulphurous fuel
DE2129231A1 (en) Process for separating sulfur dioxide from the flue gases from the combustion of fuels containing sulfur
AT392079B (en) METHOD FOR THE PRESSURE GASIFICATION OF COAL FOR THE OPERATION OF A POWER PLANT
EP0725127B1 (en) Process for gasification of a material containing combustible substances in a circulating fluidized bed
DE3044989C2 (en) Process for dry coke cooling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19830225

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 17866

Country of ref document: AT

Date of ref document: 19860215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3268909

Country of ref document: DE

Date of ref document: 19860320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860331

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940420

Year of fee payment: 13

EAL Se: european patent in force in sweden

Ref document number: 82200261.4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010214

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010226

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010305

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010309

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010313

Year of fee payment: 20

Ref country code: DE

Payment date: 20010313

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20020302 *METALLGESELLSCHAFT A.G.

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020302

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020303

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020301

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20020302

EUG Se: european patent has lapsed

Ref document number: 82200261.4