EP0062043B1 - Method and machine for obtaining a quasi-isothermal transformation in gas compression or expansion processes - Google Patents

Method and machine for obtaining a quasi-isothermal transformation in gas compression or expansion processes Download PDF

Info

Publication number
EP0062043B1
EP0062043B1 EP81902670A EP81902670A EP0062043B1 EP 0062043 B1 EP0062043 B1 EP 0062043B1 EP 81902670 A EP81902670 A EP 81902670A EP 81902670 A EP81902670 A EP 81902670A EP 0062043 B1 EP0062043 B1 EP 0062043B1
Authority
EP
European Patent Office
Prior art keywords
exchanger
heat
working chamber
chamber
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81902670A
Other languages
German (de)
French (fr)
Other versions
EP0062043A1 (en
Inventor
Andrei Vasile Chrisoghilos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
L'INSTITUT NATIONAL DE MOTEURS THERMIQUES
Original Assignee
INST NAT MOTOARE TERMICE
L'Institut National de Moteurs Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INST NAT MOTOARE TERMICE, L'Institut National de Moteurs Thermiques filed Critical INST NAT MOTOARE TERMICE
Publication of EP0062043A1 publication Critical patent/EP0062043A1/en
Application granted granted Critical
Publication of EP0062043B1 publication Critical patent/EP0062043B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines

Definitions

  • the invention relates to a method and a machine which allow the carrying out of a quasi-isothermal compression or expansion process, that is to say a process in which the temperature of the working agent remains almost constant. by undergoing practically unimportant variations, throughout the duration of the compression or expansion process, in any thermodynamic cycle which contains such transformations.
  • the cooled heat exchangers are either connected to one another in succession, which causes the circulation of the fluid from the working chambers where the highest pressure prevails towards the working chambers where the lowest pressure prevails, which is equivalent to a lack of sealing, that is to say independent of each other, but insofar as there is n 'is expected that a single orifice between each of the exchangers and the working chamber, the fluid flow is carried out alternately in one direction and the other, that is to say in poor conditions.
  • the working chamber is in connection with several heat exchangers at the same time, it is then very difficult to control the evolution of the pressures and temperatures of the different fluid flows coming from the heat exchangers or directing there.
  • Stirling external combustion engines are also known, produced according to different constructive solutions in which after the compression phase the working agent is cooled in a heat exchanger, then passed through a regenerator and introduced into an expansion chamber heated (Stirling Engines by G. Walker).
  • External combustion engines of this type whatever their constructive solution, have the drawback of being able to allow only reduced compression ratios, which affects the overall efficiency of the engine.
  • the method in accordance with the invention, is applicable to any thermal machine which works with a variable-volume working chamber a and provides that this chamber is connected and disconnected successively and cyclically with two groups of heat exchangers. heat independent of volumes Va1, Va2, Va3 ... etc. namely a group of independent cooled exchangers, of identical construction A, and a group of independent heated exchangers of identical construction B.
  • Each independent cooled heat exchanger A, used in the compression isotherm, is formed by certain heat exchange units 1 which have a window b for the flow of the working agent coming from the exchanger A, towards the working chamber a, and a window c for the flow of the working agent coming from the working chamber a towards the heat exchanger A.
  • a heated heat exchanger B used in the isothermal expansion is formed by a heat exchange unit 2 provided with a window d for the flow of the heat agent from the working chamber a into the exchanger B, and a window e for the flow of the working agent from the exchanger B into the working chamber a.
  • the working chamber of variable volume a can be produced, without the example being limiting, in accordance with the block diagram of FIG. 1 on a rotary machine C, formed of a stator 3 and a rotor 4 in which the pallets slide. 5.
  • the rotary machine C has a suction connection 6, and a discharge connection 7, or a discharge connection 8.
  • the working chamber of variable volume a the parameters of which state initials are P o V o T o , will be connected successively in the compression phase with the heat exchangers A and in the expansion phase with the heat exchangers B via certain windows f, formed in the wall of bedroom.
  • the working agent state parameters of the first heat exchanger A are P ' 1 Va 1 T " 1 .
  • the duration of the connection between the variable volume chamber a and a heat exchanger A has two phases.
  • the first phase in which the working agent of the heat exchanger A flows towards the variable-volume working chamber a, through the window b of the exchanger A and the window f of the wall of the chamber, realizing with the working agent of the working chamber has a polytrope mixture whose state parameters are P z1 , V 0 + V a1 , T z1 , the working agent of the chamber yielding heat to the work agent from the heat exchanger.
  • window b is closed simultaneously with the opening of window c and the two volumes compress together, the gas now flowing from the chamber to the exchanger through windows f and c, carrying the heat pertaining to the mass which leaves the working chamber.
  • the working chamber a detaches from the cooled heat exchanger A, it is connected to the next cooled heat exchanger A, where the process is repeated exactly as at the first exchanger.
  • the working agent of the heat exchanger A disconnected from the working chamber a, evolves according to an isochoric curve by exchanging heat at constant volume throughout the duration of the waiting period, until 'it is connected to the next working chamber, which will find it at state parameters which can be considered identical with the initial parameters existing at the time of contact with the first chamber (P' 1 , V a1 , T " 1 ).
  • the values P i are finished if between the volumes of the working chamber (V;) and the volume of the independent exchanger (V ai ) the relationship is maintained: and one obtains the realization of the circulation in one direction of the working agent in the heat exchangers A and B, that is to say in the direction explained previously if between the same parameters exists the relation: for the quasi-isotherm of compression and for the quasi-isothermal of relaxation.
  • the intensification of the heat transfer up to the level required by an isothermal evolution of the gas of the working chamber, via the heat exchangers in accordance with the invention, is demonstrated by the relationships established, from a side by the influence of the exponent poly trope of common evolution m 1 of value close to the unit and on the other side, by the isochore exchange of the heat of the exchangers expressed by the factor ⁇ i ; which is less than one for the compression isotherm and more than one for the expansion isotherm.
  • FIGS. 2 and 3 show that the curve of the real transformations g for compression and h for relaxation are realized as a result of the addition of certain transformations sequential successive polytropes whose continuity points i are located above and below the theoretical isothermal curve j, for compression and 1 for expansion.
  • FIG. 3 are represented in temperature-entropy coordinates only the curves of the real transformations, that is to say the curve n for the compression and the curve o for the expansion.
  • the process for obtaining the quasi-isothermal transformation in the processes of compression or expansion of gases can be applied to any operating cycle of any thermal machine with working chamber of variable volume and with heat sources and with external heat sources such as: compressors, external combustion engines, heat pumps, refrigeration machines, etc.
  • the rotary external combustion engine in accordance with the present invention, consists of a rotary cylinder 9 in which slides a double-acting piston 10 provided with sealing segments 11.
  • the double-acting piston 10 is mounted halfway of its length using the bearings 12 on a crank pin p of a crankshaft 13 and for mounting reasons is formed of two halves r coupled, on the plane of separation of the bearings using the prisoners 14.
  • the crankshaft 13 rests with its bearing journals g in the side covers 15 and 16 by means of bearings 17 and 18 located on the same axis.
  • the rotary cylinder 9 rests on the side covers 15 and 16 using the bearings 19 and 20 which define an axis III-III perpendicular to the longitudinal axis of the cylinder, dividing it into two equal parts.
  • a toothed wheel 21 with external teeth which meshes in ratio of 1: 2 a toothed wheel with internal teeth 22, integral with the rotary cylinder 9.
  • a toothed wheel with internal teeth 22 integral with the rotary cylinder 9.
  • In the side walls of the rotary cylinder 6 are formed four holes f communicating two by two with each of the variable volume chambers a.
  • Solid with the body of the bearings of the rotary cylinder 9 are mounted two distribution discs 23, one on each side of the rotary cylinder 9.
  • the distribution discs 23 are each provided with two windows s from which galleries 24 which connect these windows to the windows f made in the wall of the rotary cylinder 9.
  • the distribution discs 23 together with the rotary cylinder 9 cause the windows s to pass in front of the radial windows t and u, formed in the fixed covers 15 and 16 and arranged on the same diameter as the windows s placed on the mobile distribution discs 23, t and u being sealed with respect to s.
  • the windows t are used for the connection of the variable-volume working chamber a to a heat exchanger A or B in the first phase by means of certain fittings 25 while the windows u are used for the connection of the same working chamber to a heat exchanger A or B in the second connection phase via the fittings 25.
  • the fitting 25 constitutes the outlet fitting and the fitting 26 the inlet fitting in a heat exchange unit 1 or 2 generally known and belonging to groups of heat exchangers A or B.
  • Each of the windows t and u is sealed on a trapezoidal contour with linear and expandable segments 27 mounted in generally known seats, made in the fixed covers 15 and 16. Still with linear and expandable segments, located continuously on contours blind trapezoids, arranged on the same diameter as the windows t and u, are also sealed the two spaces y located between the two groups of windows and u corresponding to the groups of exchangers A and B.
  • the outer covers 15 and 16 are made in the zone corresponding to the outer dead center of the piston 10 of the windows w, having the same shape and radial location as the windows t and u which are each linked with a suction connection 6. From similar to windows t and u, the windows w are sealed on a trapezoidal contour by the expandable linear segments 27.
  • the suction windows w can be closed, after the engine has arrived at nominal operating speed by n ' any external control, correlated in a generally known manner, to the engine operating parameters.
  • a rotary external combustion engine operates in the following manner. Under the action of the working gases, the double-acting piston 10, performs a translational movement in the cylinder 9, at the same time also imposing the rotation of the crankshaft 13 and the rotary cylinder 9, around the axis III-III with a rotation speed equal to half the rotation speed of the crankshaft.
  • the translational movement is purely harmonic, the maximum stroke of the piston being equal to four times the distance from the axis of the bearing journal p to the axis of the crankshaft 13, that is to say four times the eccentricity crankpin.
  • the gear of the toothed wheels 21 and 22 does not participate in the transmission of the engine torque to the crankshaft. Theoretically, the mechanism is completely determined without this gear.
  • the gear 21-22 doubles the piston-crankpin kinematic chain and has the practical role of facilitating the control of the rotation of the cylinder when the direction of the actuating forces enters under the friction cone, without participating in the transmission of the engine torque. .
  • the mission of the gear is therefore that of overcoming the friction forces in the rotational movement of the cylinder or of the moment of inertia, caused by the variation in the number of revolutions, assuming the only normal forces which could have appeared between the piston and the cylinder walls and which would have determined the rotation of the entire cylinder.
  • the rotary external combustion engine in accordance with the invention, operates according to a Carnot cycle composed of two quasi-isotherms g and h which are the result of the addition of certain successive polytrope sequential transformations whose continuity points 1 are above and below are theoretical isothermal curves i and 1 and two adiabatic curves x and y which can be easily obtained by external thermal insulation, generally known, of the cylinder in the area of the working chamber.
  • the Carnot cycle is carried out with a motor according to the invention, in that in the first part of the compression, the working chamber of variable volume has successively comes into contact with the cooled heat exchangers A on the path of the fittings 25 and 26, windows t and u side covers 15 and 16, window s on the distributor disk 23, galleries 24 and windows f located in the walls of the rotary cylinder 9, storing part of the agent working in these exchangers and by compressing in a quasi-isothermal manner, the rest of the working agent in accordance with the method described above.
  • variable volume chamber When the variable volume chamber has left the last cooled heat exchanger A, adiabatic compression of the working agent remaining in the chamber begins, until the piston bottom dead center.
  • the motor is provided with a corresponding thermal insulation, generally known.
  • variable-volume working chamber a is connected to the heated heat exchangers B, on the same path described previously, with which an exchange of working agent is obtained according to the method described , by determining the quasi-isothermal expansion of the agent remaining in the chamber.
  • the working agent therein relaxes adiabatically until the opening of the suction window w when the working chamber at volume variable a arrives in depression so that it will suck up a quantity of working agent equal to that which it stored in the two groups of heat exchangers A and B during the previous cycle and then the cycle is repeated successively and alternately for the two working chambers a.
  • the process of storing the working agent in the heat exchangers arrives, after a few dozen rotations of the crankshaft, in a stabilized state when the suction set is reduced to zero and the suction window w has to be closed. .
  • the engine works with the working agent in a closed circuit.
  • the mechanical work per cycle and the power of the motor increase proportionally with the increase in the suction pressure of the motor.
  • the aspiration of the working agent can be done directly from the atmosphere or from a closed tank, in which case, the state parameters of the working agent can differ in value from the atmospheric parameters.
  • the working agent can be any gas, gas mixture or heterogeneous gas-liquid mixture.
  • the cooling of the heat exchangers A can be done in a known manner with any cooling agent and the heating of the heat exchangers B can be done with any heat source, including geothermal water, solar source, nuclear power or fuel burner of any type.
  • thermal machine in accordance with the invention, operated as a compressor, it would be necessary to cancel, in comparison with the example presented, the group of heated heat exchangers B and the exhaust connection 7, keeping the group of exchangers heat A and the inlet connection 6 enlarged and a discharge connection 8 would be used.
  • a thermal machine, in accordance with the invention which would function as a compressor, could compress the gases in a single stage at relatively high ratios of compression by discharging the compressed gas at temperatures close to those of the ambient medium.
  • a compressor which would operate in accordance with the invention, due to the reduced temperature of the compression space, could use synthetic materials for the construction of the piston, segments, valves, etc. and would have a relatively simple construction, having a much reduced weight and dimensions as a result of the elimination of the intermediate compression stages.
  • thermal machine in accordance with the invention, operated as a heat pump or refrigeration machine, it would only be necessary to modify the arrangement of the two groups of heat exchangers so as to obtain the course of the cycle in the opposite direction to the case of functioning as an external combustion engine.
  • One group of heated heat exchangers B would be the hot source and constitute the part of the heat pump that heats
  • the other group of heat exchangers A would be the cold source and would constitute the part of the refrigerating machine. which cools.
  • the method and the machine for obtaining a quasi-isothermal transformation in the gas compression or expansion processes can be applied in any industrial field which supposes the need for isothermal compression or expansion , such as the chemical, refrigeration industry, etc. just like in any technical field which supposes the use of thermodynamic transformations to obtain mechanical energy, this one being able to be used in the field of transport, the production of electric energy or in other areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Method and machine allowing a quasi-isothermal compression or expansion process within any thermodynamic cycle containing such transformations. The method is implemented by the use of heat exchangers (A and B) independent from each other, and in each exchanger (A and B) the working agent circulates intermittently and in one single direction, and the exchangers (A and B) are successively and cyclically connected and disconnected with the variable volume of the working chamber (a).

Description

L'invention se réfère à un procédé et une machine qui permettent la réalisation d'un processus de compression ou de détente quasi-isotherme, c'est-à-dire un processus dans lequel la température de l'agent de travail reste presque constante en subissant des variations pratiquement sans importance, pendant toute la durée du processus de compression ou de détente, dans n'importe quel cycle thermodynamique qui contient de pareilles transformations.The invention relates to a method and a machine which allow the carrying out of a quasi-isothermal compression or expansion process, that is to say a process in which the temperature of the working agent remains almost constant. by undergoing practically unimportant variations, throughout the duration of the compression or expansion process, in any thermodynamic cycle which contains such transformations.

On connaît, notamment du brevet US No. 3 867 815, un procédé de ce type où dans le but de réaliser la condition théorique d'une transformation isotherme, c'est-à-dire le maintien de l'égalité entre le travail mécanique, reçu dans la phase de compression ou cédé dans la phase de détente, et la chaleur évacuée dans la phase de compression, ou respectivement la chaleur absorbée dans la phase de détente, la chambre de travail de volume variable d'un moteur est mise en liaison avec un échangeur de chaleur refroidi, composé d'une ou de plusieurs unités d'échange de chaleur, dans la phase de compression et avec un échangeur de chaleur chauffé dans la phase de détente. Ce procédé a l'inconvénient que le volume des échangeurs de chaleur s'additionne au volume de la chambre de volume variable, ce qui ne permet pas l'obtention de rapports de compression élevés. En outre, en raison du fait qu'on utilise un seul échangeur de chaleur chauffé, le maintien de l'égalité n'est pas assuré, à chaque moment, entre le travail mécanique reçu ou cédé et la chaleur évacuée ou absorbée respectivement, la courbe de la transformation s'écartant sensiblement de la courbe théorique isotherme, ce qui conduit à une détérioration du rendement du cycle dans son ensemble. Par ailleurs, selon les deux formes de réalisation prévues dans ce brevet (confère colonne 4, lignes 12 et 13), les échangeurs de chaleur refroidis sont soit reliés les uns aux autres en succession, ce qui provoque l'établissement d'une circulation du fluide depuis les chambres de travail où règne la pression la plus élevée vers les chambres de travail où règne la pression la plus faible, ce qui équivaut à un manque d'étanchéité, soit indépendants les uns des autres, mais dans la mesure où il n'est prévu qu'un seul orifice entre chacun des échangeurs et la chambre de travail, l'écoulement du fluide s'y effectue alternativement dans un sens et dans l'autre, c'est-à-dire dans de mauvaises conditions. Enfin, il peut se produire que la chambre de travail soit en liaison avec plusieurs échangeurs de chaleur à la fois, il est alors très difficile de maîtriser l'évolution des pressions et températures des différents écoulements de fluide provenant des échangeurs de chaleur ou s'y dirigeant.There is known, in particular from US Pat. No. 3,867,815, a process of this type where, in order to achieve the theoretical condition of an isothermal transformation, that is to say maintaining equality between mechanical work , received in the compression phase or given up in the expansion phase, and the heat evacuated in the compression phase, or respectively the heat absorbed in the expansion phase, the variable volume working chamber of an engine is brought into operation. connection with a cooled heat exchanger, composed of one or more heat exchange units, in the compression phase and with a heated heat exchanger in the expansion phase. This process has the disadvantage that the volume of the heat exchangers is added to the volume of the variable volume chamber, which does not allow obtaining high compression ratios. In addition, due to the fact that a single heated heat exchanger is used, the maintenance of equality is not ensured, at all times, between the mechanical work received or transferred and the heat discharged or absorbed respectively, the transformation curve deviating substantially from the theoretical isothermal curve, which leads to a deterioration in the efficiency of the cycle as a whole. Furthermore, according to the two embodiments provided for in this patent (see column 4, lines 12 and 13), the cooled heat exchangers are either connected to one another in succession, which causes the circulation of the fluid from the working chambers where the highest pressure prevails towards the working chambers where the lowest pressure prevails, which is equivalent to a lack of sealing, that is to say independent of each other, but insofar as there is n 'is expected that a single orifice between each of the exchangers and the working chamber, the fluid flow is carried out alternately in one direction and the other, that is to say in poor conditions. Finally, it can happen that the working chamber is in connection with several heat exchangers at the same time, it is then very difficult to control the evolution of the pressures and temperatures of the different fluid flows coming from the heat exchangers or directing there.

On connaît également des moteurs Stirling à combustion externe, réalisés d'après des solutions constructives différentes dans lesquelles après la phase de compression l'agent de travail est refroidi dans un échangeur de chaleur, passé ensuite par un régénérateur et introduit dans une chambre de détente chauffée (Stirling Engines par G.Walker). Les moteurs à combustion externe de ce type,quelque soit leur solution constructive, présentent l'inconvénient de ne pouvoir permettre que des rapports de compression réduits, ce qui affecte le rendement global du moteur.Stirling external combustion engines are also known, produced according to different constructive solutions in which after the compression phase the working agent is cooled in a heat exchanger, then passed through a regenerator and introduced into an expansion chamber heated (Stirling Engines by G. Walker). External combustion engines of this type, whatever their constructive solution, have the drawback of being able to allow only reduced compression ratios, which affects the overall efficiency of the engine.

Pour pallier les inconvénients mentionnés ci-dessus, la présente invention propose un procédé exposé dans les revendications 1 à 5, ainsi qu'une machine thermique pour la mise en oeuvre de ce procédé, comme exposé dans les revendications 6 à 8, lesquels présentent les avantages suivants:

  • - réalisation de certaines transformations thermodynamiques aussi rapprochées que possible d'une transformation théorique isotherme;
  • - réalisation de certains rapports de compression ou de détente élevés;
  • - fonctionnement d'une machine thermique avec les rendements les plus élevés pour la même différence de température, parce qu'elle peut travailler suivant n'importe quel cycle, y compris le cycle Carnot;
  • - utilisation de toute source de chaleur, y compris les sources solaires ou géothermiques et de n'importe quel type de combustible gazeux, liquide ou solide;
  • - réduction de la consommation de combustible et de la pollution chimique et phonique;
  • - fonctionnement d'une machine thermique à des pressions et des températures réduites de l'agent de travail ce qui assure une réduction du régime des sollicitations et du niveau d'usure.
To overcome the drawbacks mentioned above, the present invention provides a process set out in claims 1 to 5, as well as a heat engine for carrying out this process, as set out in claims 6 to 8, which have the following advantages:
  • - realization of certain thermodynamic transformations as close as possible to an isothermal theoretical transformation;
  • - realization of certain high compression or expansion ratios;
  • - operation of a thermal machine with the highest yields for the same temperature difference, because it can work according to any cycle, including the Carnot cycle;
  • - use of any heat source, including solar or geothermal sources and any type of gaseous, liquid or solid fuel;
  • - reduction of fuel consumption and of chemical and sound pollution;
  • - operation of a thermal machine at reduced pressures and temperatures of the working agent which ensures a reduction in the stress regime and the level of wear.

On présente ci-dessous un exemple de réalisation de l'invention en liaison avec les figures 1 ...8 qui représentent:

  • - figure 1: schéma de principe du procédé de transformation quasi-isotherme dans les processus de compression ou de détente des gaz;
  • - figure 2: diagramme pression-volume des processus de compression et de détente quasi-isothermes;
  • - figure 3: diagramme température-entropie du processus de compression et de détente quasi-isotherme;
  • - figure 4: diagramme théorique pression-volume du cycle d'un moteur rotatif à combustion externe;
  • - figure 5: section longitudinale d'un moteur rotatif à combustion externe conformément à l'invention;
  • - figure 6: section transversale du moteur conformément au plan 1-1 de la figure 5;
  • - figure 7: le détail de l'étanchement des fenêtres t et u;
  • - figure 8: section transversale d'un moteur conformément au plan 11 -11 de la figure 5.
An exemplary embodiment of the invention is presented below in connection with FIGS. 1 ... 8 which represent:
  • - Figure 1: schematic diagram of the quasi-isothermal transformation process in the gas compression or expansion processes;
  • - Figure 2: pressure-volume diagram of the quasi-isothermal compression and expansion processes;
  • - Figure 3: temperature-entropy diagram of the compression process and quasi-isothermal expansion;
  • - Figure 4: theoretical pressure-volume diagram of the cycle of a rotary external combustion engine;
  • - Figure 5: longitudinal section of a rotary external combustion engine according to the invention;
  • - Figure 6: cross section of the engine according to plane 1-1 of Figure 5;
  • - Figure 7: the detail of the sealing of windows t and u;
  • - Figure 8: cross section of an engine according to plan 11-11 of Figure 5.

Le procédé, conformément à l'invention, est applicable à n'importe quelle machine thermique qui travaille avec une chambre de travail à volume variable a et prévoit que cette chambre soit connectée et déconnectée successivement et de façon cyclique avec deux groupes d'échangeurs de chaleur indépendants de volumes Va1, Va2, Va3 ... etc. à savoir un groupe d'échangeurs indépendants refroidis, de construction identique A, et un groupe d'échangeurs indépendants chauffés d'une construction identique B.The method, in accordance with the invention, is applicable to any thermal machine which works with a variable-volume working chamber a and provides that this chamber is connected and disconnected successively and cyclically with two groups of heat exchangers. heat independent of volumes Va1, Va2, Va3 ... etc. namely a group of independent cooled exchangers, of identical construction A, and a group of independent heated exchangers of identical construction B.

Chaque échangeur de chaleur indépendant refroidi A, utilisé dans l'isotherme de compression, est formé de certaines unités d'échange de chaleur 1 qui ont une fenêtre b pour l'écoulement de l'agent de travail venant de l'échangeur A, vers la chambre de travail a, et une fenêtre c pour l'écoulement de l'agent de travail venant de la chambre de travail a vers l'échangeur de chaleur A. De la même façon, un échangeur de chaleur chauffé B utilisé dans l'isotherme de détente, est formé d'une unité d'échange de chaleur 2 pourvue d'une fenêtre d pour l'écoulement de l'agent de chaleur de la chambre de travail a dans l'échangeur B, et une fenêtre e pour l'écoulement de l'agent de travail de l'échangeur B dans la chambre de travail a.Each independent cooled heat exchanger A, used in the compression isotherm, is formed by certain heat exchange units 1 which have a window b for the flow of the working agent coming from the exchanger A, towards the working chamber a, and a window c for the flow of the working agent coming from the working chamber a towards the heat exchanger A. In the same way, a heated heat exchanger B used in the isothermal expansion, is formed by a heat exchange unit 2 provided with a window d for the flow of the heat agent from the working chamber a into the exchanger B, and a window e for the flow of the working agent from the exchanger B into the working chamber a.

La chambre de travail de volume variable a peut être réalisée, sans que l'exemple soit limitatif, conformément au schéma de principe de la figure 1 sur une machine rotative C, formée d'un stator 3 et un rotor 4 dans lequel glissent les palettes 5. La machine rotative C présente un raccord d'aspiration 6, et un raccord d'évacuation 7, ou un raccord de refoulement 8. A la suite du mouvement du rotor 4, la chambre de travail de volume variable a, dont les paramètres initiaux d'état sont PoVoTo, sera connectée successivement en phase de compression avec les échangeurs de chaleur A et en phase de détente avec les échangeurs de chaleur B par l'intermédiaire de certaines fenêtres f, pratiquées dans la paroi de la chambre. Les paramètres d'état de l'agent de travail du premier échangeur de chaleur A sont P'1Va1T"1.The working chamber of variable volume a can be produced, without the example being limiting, in accordance with the block diagram of FIG. 1 on a rotary machine C, formed of a stator 3 and a rotor 4 in which the pallets slide. 5. The rotary machine C has a suction connection 6, and a discharge connection 7, or a discharge connection 8. Following the movement of the rotor 4, the working chamber of variable volume a, the parameters of which state initials are P o V o T o , will be connected successively in the compression phase with the heat exchangers A and in the expansion phase with the heat exchangers B via certain windows f, formed in the wall of bedroom. The working agent state parameters of the first heat exchanger A are P ' 1 Va 1 T " 1 .

La durée de la connexion entre la chambre de volume variable a et un échangeur de chaleur A comporte deux phases. Dans la première phase, dans laquelle l'agent de travail de l'échangeur de chaleur A coule vers la chambre de travail à volume variable a, par la fenêtre b de l'échangeur A et la fenêtre f de la paroi de la chambre, réalisant avec l'agent de travail de la chambre de travail a un mélange polytrope dont les paramètres d'état sont Pz1, V0+Va1, Tz1, l'agent de travail de la chambre cédant de la chaleur à l'agent de travail venu de l'échangeur.The duration of the connection between the variable volume chamber a and a heat exchanger A has two phases. In the first phase, in which the working agent of the heat exchanger A flows towards the variable-volume working chamber a, through the window b of the exchanger A and the window f of the wall of the chamber, realizing with the working agent of the working chamber has a polytrope mixture whose state parameters are P z1 , V 0 + V a1 , T z1 , the working agent of the chamber yielding heat to the work agent from the heat exchanger.

Entre les valeurs initiales d'état des deux gaz, il y a les relations:

Figure imgb0001
tandis que le mélange polytrope place ses paramètres d'état comme suit:
Figure imgb0002
Between the initial state values of the two gases, there are the relationships:
Figure imgb0001
while the polytrope blend places its state parameters as follows:
Figure imgb0002

Dans une seconde phase, la fenêtre b est fermée simultanément avec l'ouverture de la fenêtre c et les deux volumes se compriment ensemble, le gaz s'écoulant maintenant de la chambre vers l'échangeur par les fenêtres f et c, en emportant la chaleur afférente à la masse qui quitte la chambre de travail.In a second phase, window b is closed simultaneously with the opening of window c and the two volumes compress together, the gas now flowing from the chamber to the exchanger through windows f and c, carrying the heat pertaining to the mass which leaves the working chamber.

Dans le même temps, une partie de la chaleur de compression des gaz réunis de l'échangeur et de la chambre, est évacuée à l'extérieur par les parois de l'échangeur, la compression ayant un caractère sousadiabatique. Au moment du détachement de la chambre de travail du premier échangeur de chaleur refroidi A, lorsque l'orifice c s'est fermé, le gaz de la chambre de travail se trouvera dans l'état (P1, V1, T1) et celui du premier échangeur de chaleur refroidi A dans l'état (P1, Va1, T'1).At the same time, part of the heat of compression of the combined gases of the exchanger and the chamber is discharged outside through the walls of the exchanger, the compression having a subadiabatic character. When the working chamber of the first cooled heat exchanger A is detached, when the orifice c has closed, the gas in the working chamber will be in the state (P 1 , V 1 , T 1 ) and that of the first cooled heat exchanger A in the state (P 1 , V a1 , T ' 1 ).

Comparés avec les états initiaux, les paramètres d'état des deux gaz se trouvent dans les relations:

  • la chambre:
    Figure imgb0003
    et
  • l'échangeur:
    Figure imgb0004
Compared with the initial states, the state parameters of the two gases are found in the relationships:
  • bedroom:
    Figure imgb0003
    and
  • the exchanger:
    Figure imgb0004

Dès que la chambre de travail a se détache de l'échangeur de chaleur refroidi A, elle est connectée à l'échangeur de chaleur refroidi A suivant, où le processus se répète exactement comme au premier échangeur. L'agent de travail de l'échangeur de chaleur A, déconnecté de la chambre de travail a, évolue d'après une courbe isochore en échangeant de la chaleur sous volume constant pendant toute la durée de l'attente, jusqu'à ce qu'il soit connecté à la chambre de travail suivante, qui le trouvera à des paramètres d'état qui peuvent être considérés comme identiques avec les paramètres initiaux existant au moment du contact avec la première chambre (P'1, Va1, T"1).As soon as the working chamber a detaches from the cooled heat exchanger A, it is connected to the next cooled heat exchanger A, where the process is repeated exactly as at the first exchanger. The working agent of the heat exchanger A, disconnected from the working chamber a, evolves according to an isochoric curve by exchanging heat at constant volume throughout the duration of the waiting period, until 'it is connected to the next working chamber, which will find it at state parameters which can be considered identical with the initial parameters existing at the time of contact with the first chamber (P' 1 , V a1 , T " 1 ).

Après avoir parcouru tous les échangeurs de chaleurs au nombre de k, la chambre de travail a passera successivement par les états: (Po, Vo, To); (Pi, V1, T1) ..., (Pk, Vk, Tk) avec les relations suivantes entres les paramètres d'état:

Figure imgb0005
c'est-à-dire:
Figure imgb0006
tandis que le mélange polytrope aura les états successifs:

  • (Pz1, V0+Va1, Tz1); (Pz2, V1+Va2, Tz2) ... (Pzk, Vk-1 +Vzk, Tzk) avec les relations:
    Figure imgb0007
After having traversed all the heat exchangers with the number of k, the working chamber a will pass successively through the states: (P o , V o , T o ); (P i , V 1 , T 1 ) ..., (P k , V k , T k ) with the following relationships between the state parameters:
Figure imgb0005
that is to say:
Figure imgb0006
while the polytrope mixture will have successive states:
  • (P z1 , V 0 + V a1 , T z1 ); (P z2 , V 1 + V a2 , T z2 ) ... (P zk , V k-1 + V zk , T zk ) with the relations:
    Figure imgb0007

Celles-ci sont justement les conditions d'une évolution quasi-isotherme du gaz de la chambre de travail, c'est-à-dire une variation alternative réduite d'un côté et de l'autre d'une courbe isotherme.These are precisely the conditions for a quasi-isothermal evolution of the gas in the working chamber, that is to say a reduced alternative variation on one side and on the other of an isothermal curve.

En même temps, les échangeurs de chaleur passeront chacun alternativement, par deux états:

Figure imgb0008
tandis que entre les paramètres d'état, nous avons les relations:
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
At the same time, the heat exchangers will each pass alternately, through two states:
Figure imgb0008
while between the state parameters, we have the relationships:
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012

Nous soulignons le fait essentiel que le remplissage des échangeurs avec l'agent de travail aux paramètres de fonctionnement et leur reproduction à chaque cycle, se fait automatiquement par le déroulement du cycle même dans lequel l'agent de travail est aspiré par le raccord d'aspiration 6, en stockant par degrés, dans chaque échangeur l'agent de travail à des paramètres stabilisés, reproductibles à chaque cycle. La succession des phénomènes d'aspiration, de mélange polytrope, d'évolution commune des volumes réunis et de refroidissement isochore des échangeurs, tendent tous ensemble vers un équilibre stable du système, par une variation monotone des paramètres d'état du gaz dans la chambre de travail de même que dans les échangeurs de chaleur, vers des limites stables, auto-reproductibles à chaque cycle, limites dont les valeurs seront atteintes pratiquement après quelques dizaines de cycles à partir du commencement du fonctionnement de la machine.We underline the essential fact that the filling of the exchangers with the working agent to the operating parameters and their reproduction at each cycle, is done automatically by the course of the same cycle in which the working agent is sucked by the connection of suction 6, by storing by degrees, in each exchanger the working agent at stabilized parameters, reproducible at each cycle. The succession of the phenomena of aspiration, polytrope mixing, common evolution of the combined volumes and isochoric cooling of the exchangers, all tend together towards a stable equilibrium of the system, by a monotonous variation of the state parameters of the gas in the chamber. as in heat exchangers, towards stable limits, self-reproducible at each cycle, limits whose values will be reached practically after a few tens of cycles from the start of the operation of the machine.

Ce que nous venons d'exposer ci-dessus a été établi à la suite d'une recherche mathématique des phénomènes, dont nous présentons seulement les résultats finals. Ainsi, les limites vers lesquelles tendent les pressions p; de la chambre de travail quand elle se détache de chacun des échangeurs sont données par les équations:

Figure imgb0013
dans lesquelles, en dehors des notations déjà définies plus haut, on a utilisé encore:

  • m1, l'exponent polytrope du mélange des deux gaz;
  • mz, l'exponent polytrope de l'évolution commune d gaz de la chambre et de l'échangeur;
    Figure imgb0014
    le facteur de l'évolution isochore du gaz de l'échangeur numéro i pendant le temps d'attente entre les contacts successifs avec deux chambres de travail.
What we have just exposed above was established following a mathematical research of the phenomena, of which we only present the final results. Thus, the limits towards which the pressures tend p; of the working chamber when it detaches from each of the exchangers are given by the equations:
Figure imgb0013
in which, apart from the notations already defined above, we have also used:
  • m 1 , the polytropic exponent of the mixture of the two gases;
  • m z , the polytropic exponent of the common evolution of gas in the chamber and the exchanger;
    Figure imgb0014
    the factor of the isochoric evolution of the gas of the exchanger number i during the waiting time between the successive contacts with two working chambers.

Si on considère que le gaz de la chambre de travail à volume variable se mélange de façon isotherme avec le gaz de l'échangeur de chaleur refroidi, hypothèse qui ne s'écarte pas sensiblement de la réalité, c'est-à-dire m1 = 1, les équations ci-dessus peuvent être résolues littéralement, en obtenant pour les valeurs stabilisées des pressions Pi, les relations:

Figure imgb0015
Figure imgb0016
Figure imgb0017
If we consider that the gas in the variable volume working chamber isothermally mixed with the gas from the cooled heat exchanger, an assumption which does not differ significantly from reality, i.e. m 1 = 1, the above equations can be solved literally, obtaining for the stabilized values of the pressures P i , the relations:
Figure imgb0015
Figure imgb0016
Figure imgb0017

Les valeurs Pi sont finies si entre les volumes de la chambre de travail (V;) et le volume de l'échangeur indépendant (Vai) se maintient le relation:

Figure imgb0018
et on obtient la réalisation de la circulation dans un seul sens de l'agent de travail dans les échangeurs de chaleur A et B, c'est-à-dire dans le sens explicité auparavant si entre les mêmes paramètres existe la relation:
Figure imgb0019
pour la quasi-isotherme de compression et
Figure imgb0020
pour la quasi-isotherme de détente.The values P i are finished if between the volumes of the working chamber (V;) and the volume of the independent exchanger (V ai ) the relationship is maintained:
Figure imgb0018
and one obtains the realization of the circulation in one direction of the working agent in the heat exchangers A and B, that is to say in the direction explained previously if between the same parameters exists the relation:
Figure imgb0019
for the quasi-isotherm of compression and
Figure imgb0020
for the quasi-isothermal of relaxation.

Les choses se déroulent de façon semblable également dans le processus de détente, le groupe B d'échangeurs de chaleur assurant que le phénomène soit décrit par les mêmes équations que plus haut.Things take place in a similar way also in the expansion process, group B of heat exchangers ensuring that the phenomenon is described by the same equations as above.

L'intensification du transfert de chaleur jusqu'au niveau requis par une évolution isotherme du gaz de la chambre de travail, par l'intermédiaire des échangeurs de chaleur conformément à l'invention, est mise en évidence par les relations établies,d'un côté par l'influence de l'exponent polytrope d'évolution commun m1 de valeur voisine à l'unité et de l'autre côté, par l'échange isochore de la chaleur des échangeurs exprimé par le facteur βi; qui est inférieur à l'unité pour l'isotherme de compression et supérieur à l'unité pour l'isotherme de détente.The intensification of the heat transfer up to the level required by an isothermal evolution of the gas of the working chamber, via the heat exchangers in accordance with the invention, is demonstrated by the relationships established, from a side by the influence of the exponent poly trope of common evolution m 1 of value close to the unit and on the other side, by the isochore exchange of the heat of the exchangers expressed by the factor β i ; which is less than one for the compression isotherm and more than one for the expansion isotherm.

Les diagrammes qualitatifs des processus de compression ou de détente quasi-isothermes, représentés dans les figures 2 et 3 montrent que la courbe de la transformations réelle g pour la compression et h pour la détente se réalisent comme une résultante de l'addition de certaines transformations séquentielles polytropes successives dont les points de continuité i sont situés au-dessus et au-dessous de la courbe isotherme théorique j, pour la compression et 1 pour la détente. Sur la figure 3 sont représentées en coordonnées température-entropie seulement les courbes des transformations réelles, c'est-à-dire la courbe n pour la compression et la courbe o pour la détente.The qualitative diagrams of the quasi-isothermal compression or expansion processes, represented in FIGS. 2 and 3 show that the curve of the real transformations g for compression and h for relaxation are realized as a result of the addition of certain transformations sequential successive polytropes whose continuity points i are located above and below the theoretical isothermal curve j, for compression and 1 for expansion. In FIG. 3 are represented in temperature-entropy coordinates only the curves of the real transformations, that is to say the curve n for the compression and the curve o for the expansion.

Du diagramme représenté sur la figure 2 résulte que le travail mécanique négatif dans la quasi-isotherme réelle de compression g et le travail mécanique positif dans la quasi-isotherme réelle de détente h sont comparables avec ceux de certaines transformations isothermes théoriques i et .lFrom the diagram represented in FIG. 2, it follows that the negative mechanical work in the real quasi-isotherm of compression g and the positive mechanical work in the real quasi-isotherm of relaxation h are comparable with those of certain theoretical isothermal transformations i and .l

Le procédé pour l'obtention de la transformation quasi-isotherme dans les processus de compression ou de détente des gaz peut être appliqué à n'importe quel cycle de fonctionnement de n'importe quelle machine thermique à chambre de travail de volume variable et avec des sources de chaleur et avec des sources de chaleur à l'extérieur telles que: compresseurs, moteurs à combustion externe, pompes de chaleur, machines frigorifiques, etc.The process for obtaining the quasi-isothermal transformation in the processes of compression or expansion of gases can be applied to any operating cycle of any thermal machine with working chamber of variable volume and with heat sources and with external heat sources such as: compressors, external combustion engines, heat pumps, refrigeration machines, etc.

Par la suite, on présente une façon de réaliser une machine thermique, qui fonctionne conformément au procédé, comme un moteur à combustion externe.Next, a way of making a thermal machine, which operates according to the method, is presented, such as an external combustion engine.

Le moteur rotatif à combustion externe, conformément à la présente invention, se compose d'un cylindre rotatif 9 dans lequel glisse un piston à double effet 10 muni de segments d'étanchement 11. Le piston à double effet 10 est monté à mi- chemin de sa longueur à l'aide des coussinets 12 sur un tourillon maneton p d'un vilebrequin 13 et pour des raisons de montage est formé de deux moitiés r accouplées, sur le plan de séparation des coussinets à l'aide des prisonniers 14. Le vilebrequin 13 repose avec ses tourillons paliers g dans les couvercles latéraux 15 et 16 au moyen des roulements 17 et 18 situés sur le même axe. Le cylindre rotatif 9 repose sur les couvercles latéraux 15 et 16 à l'aide des roulements 19 et 20 qui définissent un axe III-III perpendiculaire à l'axe longitudinal du cylindre, le divisant en deux parties égales. Solidaire sur le vilebrequin 13 est montée une roue dentée 21 à denture extérieure qui engrène en rapport de 1:2 une roue dentée à denture intérieure 22, solidaire avec le cylindre rotatif 9. Dans les parois latérales du cylindre rotatif 6 sont pratiqués quatre orifices f communiquant deux par deux avec chacune des chambres à volume variable a. Solidaire avec le corps des paliers du cylindre rotatif 9 sont montés deux disques de distribution 23, un de chaque côté du cylindre rotatif 9. Les disques de distribution 23 sont prévus chacun avec deux fenêtres s d'où partent des galeries 24 qui relient ces fenêtres aux fenêtres f pratiquées dans la paroi du cylindre rotatif 9. En tournant, les disques de distribution 23 ensemble avec le cylindre rotatif 9 font passer les fenêtres s devant les fenêtres radiales t et u, pratiquées dans les couvercles fixes 15 et 16 et disposées sur le même diamètre que les fenêtres s placées sur les disques mobiles de distribution 23, t et u étant étanchées par rapport à s.The rotary external combustion engine, in accordance with the present invention, consists of a rotary cylinder 9 in which slides a double-acting piston 10 provided with sealing segments 11. The double-acting piston 10 is mounted halfway of its length using the bearings 12 on a crank pin p of a crankshaft 13 and for mounting reasons is formed of two halves r coupled, on the plane of separation of the bearings using the prisoners 14. The crankshaft 13 rests with its bearing journals g in the side covers 15 and 16 by means of bearings 17 and 18 located on the same axis. The rotary cylinder 9 rests on the side covers 15 and 16 using the bearings 19 and 20 which define an axis III-III perpendicular to the longitudinal axis of the cylinder, dividing it into two equal parts. Attached to the crankshaft 13 is mounted a toothed wheel 21 with external teeth which meshes in ratio of 1: 2 a toothed wheel with internal teeth 22, integral with the rotary cylinder 9. In the side walls of the rotary cylinder 6 are formed four holes f communicating two by two with each of the variable volume chambers a. Solid with the body of the bearings of the rotary cylinder 9 are mounted two distribution discs 23, one on each side of the rotary cylinder 9. The distribution discs 23 are each provided with two windows s from which galleries 24 which connect these windows to the windows f made in the wall of the rotary cylinder 9. By turning, the distribution discs 23 together with the rotary cylinder 9 cause the windows s to pass in front of the radial windows t and u, formed in the fixed covers 15 and 16 and arranged on the same diameter as the windows s placed on the mobile distribution discs 23, t and u being sealed with respect to s.

Les fenêtres t servent à la connexion de la chambre de travail à volume variable a à un échangeur de chaleur A ou B en première phase par l'intermédiaire de certains raccords 25 tandis que les fenêtres u servent à la connexion de la même chambre de travail à un échangeur de chaleur A ou B dans la seconde phase de connexion par l'intermédiaire des raccords 25. Le raccord 25 constitue le raccord de sortie et le raccord 26 le raccord d'entrée dans une unité d'échange de chaleur 1 ou 2 généralement connue et appartenant aux groupes d'échangeurs de chaleur A ou B.The windows t are used for the connection of the variable-volume working chamber a to a heat exchanger A or B in the first phase by means of certain fittings 25 while the windows u are used for the connection of the same working chamber to a heat exchanger A or B in the second connection phase via the fittings 25. The fitting 25 constitutes the outlet fitting and the fitting 26 the inlet fitting in a heat exchange unit 1 or 2 generally known and belonging to groups of heat exchangers A or B.

Chacune des fenêtres t et u est étanchée sur un contour trapézoïdal avec des segments linéaires et expansibles 27 montés dans des sièges généralement connus, pratiqués dans les couvercles fixes 15 et 16. Toujours avec des segments linéaires et expansibles, situés de façon continue sur des contours trapézoïdaux aveugles, disposés sur le même diamètre que les fenêtres t et u, sont étanchés aussi les deux espaces y situés entre les deux groupes de fenêtres et u correspondants aux groupes d'échangeurs A et B.Each of the windows t and u is sealed on a trapezoidal contour with linear and expandable segments 27 mounted in generally known seats, made in the fixed covers 15 and 16. Still with linear and expandable segments, located continuously on contours blind trapezoids, arranged on the same diameter as the windows t and u, are also sealed the two spaces y located between the two groups of windows and u corresponding to the groups of exchangers A and B.

Sur les couvercles extérieurs 15 et 16 sont pratiquées dans la zone correspondant au point mort extérieur du piston 10 des fenêtres w, ayant une même forme et emplacement radial que les fenêtres t et u qui sont liées chacune avec un raccord d'aspiration 6. De façon similaire aux fenêtres t et u, les fenêtres w sont étanchées sur un contour trapézoïdal par les segments linéaires expansibles 27. La fermeture des fenêtres d'aspiration w peut se faire, après l'arrivée du moteur au régime nominal de fonctionnement par n'importe quelle commande extérieure, mise en corrélation d'une manière généralement connue, avec les paramètres de fonctionnement du moteur.On the outer covers 15 and 16 are made in the zone corresponding to the outer dead center of the piston 10 of the windows w, having the same shape and radial location as the windows t and u which are each linked with a suction connection 6. From similar to windows t and u, the windows w are sealed on a trapezoidal contour by the expandable linear segments 27. The suction windows w can be closed, after the engine has arrived at nominal operating speed by n ' any external control, correlated in a generally known manner, to the engine operating parameters.

Un moteur rotatif à combustion externe, conformément à l'invention, fonctionne de la manière suivante. Sous l'action des gaz de travail, le piston à double effet 10, exécute un mouvement de translation dans le cylindre 9, imposant en même temps aussi la rotation du vilebrequin 13 et du cylindre rotatif 9, autour de l'axe III-III avec une vitesse de rotation égale à la moitié de la vitesse de rotation du vilebrequin. Le mouvement de translation est purement harmonique, la course maximale du piston étant égale à quatre fois la distance de l'axe du tourillon palier p à l'axe du vilebrequin 13, c'est-à-dire quatre fois l'excentricité du maneton. La totalité des forces d'inertie ont comme résultat une force radiale, en phase avec la position du vilebrequin, qui peut être équilibrée avec des contrepoids fixes sur le vilebrequin, d'une manière généralement connue. Aucune des forces d'inertie et de pression qui agissent sur le piston ne donnent des composantes normales entre le piston et les parois du cylindre.A rotary external combustion engine according to the invention operates in the following manner. Under the action of the working gases, the double-acting piston 10, performs a translational movement in the cylinder 9, at the same time also imposing the rotation of the crankshaft 13 and the rotary cylinder 9, around the axis III-III with a rotation speed equal to half the rotation speed of the crankshaft. The translational movement is purely harmonic, the maximum stroke of the piston being equal to four times the distance from the axis of the bearing journal p to the axis of the crankshaft 13, that is to say four times the eccentricity crankpin. All of the inertial forces result in a radial force, in phase with the position of the crankshaft, which can be balanced with fixed counterweights on the crankshaft, in a generally known manner. None of the inertia and pressure forces acting on the piston give normal components between the piston and the walls of the cylinder.

L'engrenage des roues dentées 21 et 22 ne participe pas à la transmission du couple moteur au vilebrequin. Théoriquement, le mécanisme est complètement déterminé sans cet engrenage. L'engrenage 21-22 double la chaîne cinématique piston-maneton et a le rôle pratique de faciliter la commande de la rotation du cylindre lorsque la direction des forces d'actionnement entrerait sous le cône de friction, sans participer à la transmission du couple moteur. La mission de l'engrenage est par conséquent celle de surmonter les forces de friction dans le mouvement de rotation du cylindre ou du couple d'inertie, provoqué par la variation du nombre de tours, assumant les seules forces normales qui auraient pû apparaître entre le piston et les parois du cylindre et qui auraient déterminé la rotation de l'ensemble du cylindre. Par l'introduction de l'engrenage, le contact entre le piston et les parois du cylindre rotatif se réduit seulement à la pression de contact des segments nécessaires à l'étanchement. Le système de graissage des composants du moteur est généralement connu.The gear of the toothed wheels 21 and 22 does not participate in the transmission of the engine torque to the crankshaft. Theoretically, the mechanism is completely determined without this gear. The gear 21-22 doubles the piston-crankpin kinematic chain and has the practical role of facilitating the control of the rotation of the cylinder when the direction of the actuating forces enters under the friction cone, without participating in the transmission of the engine torque. . The mission of the gear is therefore that of overcoming the friction forces in the rotational movement of the cylinder or of the moment of inertia, caused by the variation in the number of revolutions, assuming the only normal forces which could have appeared between the piston and the cylinder walls and which would have determined the rotation of the entire cylinder. By the introduction of the gear, the contact between the piston and the walls of the rotary cylinder is reduced only to the contact pressure of the segments necessary for sealing. The lubrication system for engine components is generally known.

Le moteur rotatif à combustion externe, conformément à l'invention, fonctionne d'après un cycle Carnot composé de deux quasi-isothermes g et h qui sont des résultantes de l'addition de certaines transformations séquentielles polytropes successives dont les points de continuité 1 se trouvent au-dessus et au-dessous des courbes isothermes théoriques i et 1 et deux courbes adiabatiques x et y qui peuvent être facilement obtenues par un isolement thermique extérieur, généralement connu, du cylindre dans la zone de la chambre de travail.The rotary external combustion engine, in accordance with the invention, operates according to a Carnot cycle composed of two quasi-isotherms g and h which are the result of the addition of certain successive polytrope sequential transformations whose continuity points 1 are above and below are theoretical isothermal curves i and 1 and two adiabatic curves x and y which can be easily obtained by external thermal insulation, generally known, of the cylinder in the area of the working chamber.

Le cycle Carnot se réalise avec un moteur conformément à l'invention, par le fait que dans la première partie de la compression, la chambre de travail de volume variable a entre successivement en contact avec les échangeurs de chaleur refroidis A sur le trajet des raccords 25 et 26, des fenêtres t et u des couvercles latéraux 15 et 16, de la fenêtre s sur le disque distributeur 23, des galeries 24 et des fenêtres f situées dans les parois du cylindre rotatif 9, en stockant une partie de l'agent de travail dans ces échangeurs et en comprimant de façon quasi-isotherme, le reste de l'agent de travail conformément au procédé décrit plus haut.The Carnot cycle is carried out with a motor according to the invention, in that in the first part of the compression, the working chamber of variable volume has successively comes into contact with the cooled heat exchangers A on the path of the fittings 25 and 26, windows t and u side covers 15 and 16, window s on the distributor disk 23, galleries 24 and windows f located in the walls of the rotary cylinder 9, storing part of the agent working in these exchangers and by compressing in a quasi-isothermal manner, the rest of the working agent in accordance with the method described above.

Au moment où la chambre à volume variable a quitte le dernier échangeur de chaleur refroidi A, commence la compression adiabatique de l'agent de travail resté dans la chambre, jusqu'au point mort inférieur du piston. En ce but, le moteur est pourvu d'une isolation thermique correspondante, généralement connue.When the variable volume chamber has left the last cooled heat exchanger A, adiabatic compression of the working agent remaining in the chamber begins, until the piston bottom dead center. For this purpose, the motor is provided with a corresponding thermal insulation, generally known.

Aussitôt que le piston est arrivé au point mort inférieur, la chambre de travail à volume variable a est connectée aux échangeurs de chaleur chauffés B, sur le même trajet décrit antérieurement, avec lequel on obtient un échange d'agent de travail conformément au procédé décrit, en déterminant la détente de manière quasi-isotherme de l'agent restant dans la chambre. Après que la chambre ait quitté le dernier échangeur de chaleur B, l'agent de travail qui s'y trouve se détend de façon adiabatique jusqu'au moment de l'ouverture de la fenêtre d'aspiration w lorsque la chambre de travail à volume variable a arrive en dépression de sorte qu'elle va aspirer une quantité d'agent de travail égale à celle qu'elle a stocké dans les deux groupes d'échangeurs de chaleur A et B pendant le cycle antérieur et ensuite le cycle se répète successivement et alternativement pour les deux chambres de travail a. Le processus de stockage de l'agent de travail dans les échangeurs de chaleur arrive, après quelques dizaines de rotations du vilebrequin, à un état de stabilisation lorsque le nécessaire d'aspiration se réduit à zéro et la fenêtre d'aspiration w doit être fermée. Après avoir fermé la fenêtre w, le moteur travaille avec l'agent de travail en circuit fermé. Le travail mécanique par cycle et la puissance du moteur augmentent proporitonnellement avec l'accroissement de la pression d'aspiration du moteur.As soon as the piston has reached the bottom dead center, the variable-volume working chamber a is connected to the heated heat exchangers B, on the same path described previously, with which an exchange of working agent is obtained according to the method described , by determining the quasi-isothermal expansion of the agent remaining in the chamber. After the chamber has left the last heat exchanger B, the working agent therein relaxes adiabatically until the opening of the suction window w when the working chamber at volume variable a arrives in depression so that it will suck up a quantity of working agent equal to that which it stored in the two groups of heat exchangers A and B during the previous cycle and then the cycle is repeated successively and alternately for the two working chambers a. The process of storing the working agent in the heat exchangers arrives, after a few dozen rotations of the crankshaft, in a stabilized state when the suction set is reduced to zero and the suction window w has to be closed. . After closing the window w, the engine works with the working agent in a closed circuit. The mechanical work per cycle and the power of the motor increase proportionally with the increase in the suction pressure of the motor.

L'aspiration de l'agent de travail peut se faire directement de l'atmosphère ou d'un réservoir fermé, dans quel cas, les paramètres d'état de l'agent de travail peuvent différer en valeur des paramètres atmosphériques. L'agent de travail peut être n'importe quel gaz, mélange de gaz ou mélange hétérogène gaz-liquide. Le refroidissement des échangeurs de chaleur A peut se faire d'une façon connue avec n'importe quel agent de refroidissement et le chauffage des échangeurs de chaleur B peut se faire avec n'importe quelle source de chaleur, y compris l'eau géothermale, la source solaire, l'énergie nucléaire ou brûleur de combustible de n'importe quel type.The aspiration of the working agent can be done directly from the atmosphere or from a closed tank, in which case, the state parameters of the working agent can differ in value from the atmospheric parameters. The working agent can be any gas, gas mixture or heterogeneous gas-liquid mixture. The cooling of the heat exchangers A can be done in a known manner with any cooling agent and the heating of the heat exchangers B can be done with any heat source, including geothermal water, solar source, nuclear power or fuel burner of any type.

L'exemple présenté concernant la réalisation d'une machine thermique, conformément à l'invention n'est pas limitatif. Si une machine thermique, conformément à l'invention, fonctionnait comme un compresseur, il faudrait annuler en comparaison avec l'exemple présenté le groupe d'échangeurs de chaleur chauffés B et le raccord d'évacuation 7, en gardant le groupe d'échangeurs de chaleur A et le raccord d'admission 6 élargi et on utiliserait un raccord de refoulement 8. Une machine thermique, conformément à l'invention, qui fonctionnerait comme un compresseur, pourrait comprimer dans un seul étage les gaz à des rapports relativement élevés de compression en refoulant le gaz comprimé à des températures voisines de celles du milieu ambiant. Un compresseur qui fonctionnerait conformément à l'invention, dû à la température réduite de l'espace de compression, pourrait utiliser des matériaux synthétiques pour la construction du piston, des segments, des soupapes, etc. et aurait une construction relativement simple, ayant un poids et des dimensions beaucoup plus réduites comme suite à l'élimination des étages intermédiaires de compression.The example presented concerning the production of a thermal machine, in accordance with the invention is not limiting. If a thermal machine, in accordance with the invention, operated as a compressor, it would be necessary to cancel, in comparison with the example presented, the group of heated heat exchangers B and the exhaust connection 7, keeping the group of exchangers heat A and the inlet connection 6 enlarged and a discharge connection 8 would be used. A thermal machine, in accordance with the invention, which would function as a compressor, could compress the gases in a single stage at relatively high ratios of compression by discharging the compressed gas at temperatures close to those of the ambient medium. A compressor which would operate in accordance with the invention, due to the reduced temperature of the compression space, could use synthetic materials for the construction of the piston, segments, valves, etc. and would have a relatively simple construction, having a much reduced weight and dimensions as a result of the elimination of the intermediate compression stages.

Si la machine thermique, conformément à l'invention, fonctionnait comme pompe de chaleur ou machine frigorifique, il faudrait modifier seulement la disposition des deux groupes d'échangeurs de chaleur de façon à obtenir le déroulement du cycle en sens inverse par rapport au cas de fonctionnement comme moteur à combustion externe. Un groupe d'échangeurs de chaleur chauffés B serait la source chaude et constituerait la partie de la pompe de chaleur qui chauffe, tandis que l'autre groupe d'échangeurs de chaleur A, serait la source froide et constituerait la partie de la machine frigorifique qui refroidit.If the thermal machine, in accordance with the invention, operated as a heat pump or refrigeration machine, it would only be necessary to modify the arrangement of the two groups of heat exchangers so as to obtain the course of the cycle in the opposite direction to the case of functioning as an external combustion engine. One group of heated heat exchangers B would be the hot source and constitute the part of the heat pump that heats, while the other group of heat exchangers A would be the cold source and would constitute the part of the refrigerating machine. which cools.

Possibilités d'exploitation industrielle.Industrial exploitation possibilities.

Le procédé et la machine pour l'obtention d'une transformation quasi-isotherme dans les processus de compression ou de détente des gaz peut être appliqué dans n'importe quel domaine industriel qui suppose la nécessité d'une compression ou d'une détente isotherme, tels que l'industrie chimique, frigorifique, etc. tout comme dans n'importe quel domaine technique qui suppose l'utilisation des transformations thermodynamiques pour l'obtention d'énergie mécanique, celle-ci pouvant être utilisée dans le domaine des transports, de la production d'énergie électrique ou dans d'autres domaines.The method and the machine for obtaining a quasi-isothermal transformation in the gas compression or expansion processes can be applied in any industrial field which supposes the need for isothermal compression or expansion , such as the chemical, refrigeration industry, etc. just like in any technical field which supposes the use of thermodynamic transformations to obtain mechanical energy, this one being able to be used in the field of transport, the production of electric energy or in other areas.

Références bibliographiques:Bibliographic references:

  • 1. Brevet U.S.A. 3 867 8151. U.S.A. Patent 3,867,815
  • 2. Brevet U.S.A. 4 023 3662. U.S.A. Patent 4,023,366
  • 3. Brevet français 2 221 9643. French patent 2,221,964
  • 4. Stirling engines par G. Walker Clarendon press, Oxford 1980.4. Stirling engines by G. Walker Clarendon press, Oxford 1980.

Claims (8)

1. Method for achieving quasi-isothermal transformation in the process for the compression or expansion of gases in a working chamber (a) having a variable volume, in which heatexchang- ers (A, B) are used which are independent of each other, and assembled in groups, which are successively connected then disconnected in a cyclic manner to the working chamber (a), characterised in that with the aim of maintaining a compression or expansion ratio which is as high as possible in the said chamber, one uses two groups of heat exchangers which are respectively cooled (A) and heated (B), each exchanger having two separate orifices, one for the outlet of fluid (b, e) towards the chamber and the other for the inlet of fluid (c, d) from the chamber and in that the said chamber is connected in succession to the exchangers of one group (A) during the compression isotherm then in succession to the exchangers of the other group (B) during the expansion isotherm, this connection taking place with a single exchanger at one and the same time and according to a process having two stages, namely: in the compression isotherm, in the first stage, the working chamber is connected to the outlet orifice (b) of a cooled exchanger (A) which carries along a flow of gas from the exchanger towards the working chamber (a) until the pressures in the two volumes are equalised, the mixing process being polytropic, the gas from the chamber transferring the heat to the gas coming from the exchanger, and, in the second stage, the working chamber is connected to the inlet orifice (c) of the said exchanger (A), which carries along a flow of gas from the working chamber towards the exchanger thus transferring its proper heat, the total mass of compressed gas transferring the heat through the exchanger (A); whereas in the expansion isotherm, in the first stage, the working chamber is connected to the inlet orifice (d) of a heated exchanger (B), which carries along a flow of gas from the said chamber towards the said exchanger, until equalisation of the pressures of the two volumes, the gas of the exchanger transferring the heat to the gas arriving from the chamber by polytropic mixing and a second stage in which the chamber is connected to the outlet orifice (e) of the exchanger (B) which causes the flow of gas thus transferring its proper heat while the total mass of expanded gas receives the heat through the heat exchanger (B); the successive connection of the independent heat exchangers (A and B) to the working chamber (a) taking place in such a way that the time during which there is no connection between the chamber and an exchanger ensures isochoric evolution of the gas from each exchanger and the heat is transferred towards the outside in the compression isotherm or received from the outside in the expansion isotherm.
2. Method for achieving certain quasi-isothermal transformations, according to Claim 1, characterised in that with the aim of achieving a thermodynamic evolution as close as possible to an isotherm, the curve of the transformation produced by the successive connection and disconnection of the working chamber of variable volume (a) to the independent heat exchangers (A and B) is obtained as a resultant of the addition of certain successive polytropic sequential transformations, their points of continuity (i) being situated above and below the theoretical isothermal curve, so that the negative mechanical work in the compression quasi-isotherm (g) and the positive. mechanical work in the expansion quasi-isotherm (h) are comparable with those of certain theoretical isothermal transformations (j and I).
3. Method for achieving certain isothermal transformations, according to Claim 1, characterised in that with the aim of ensuring a circulation of the working agent inside an independent heat exchanger, in a single direction, the pressures of the working agent of the exchangers are ensured by the working chamber of variable volume (a), itself by an autostorage method until one reaches in each exchanger, after a series of cycles, a stabilised value of the pressure necessary and which is auto-repeatable for each cycle.
4. Method for achieving a quasi-isothermal transformation in processes for compression and/or expansion of gases, according to Claim 3, characterised in that with the aim of achieving the circulation of the working fluid in a single direction and of ensuring that one reaches certain stabilised values of the pressures in the additional heat exchangers (Vai) which are given such dimensions that they are able together with the variable volumes (Vi-1) of the working chamber (a) in contact with an exchanger (A or B) or order «i» and with the variable volumes (V;) when the working chamber (a) is detached from the heat exchangers (A or B) of order «i» to verify the relationships:
Figure imgb0029
Figure imgb0030
for the compression quasi-isotherm and:
Figure imgb0031
Figure imgb0032
for the expansion quasi-isotherm.
5. Method for achieving certain quasi-isothermal transformations according to Claim 3, characterised in that a section of the working fluid forced back from a heat exchanger (A, B) through an outlet orifice (b, e) mixes in a polytropic manner with all the fluid of the working chamber (a) and consequently participates with the latter in the thermodynamic transformations taking place, whereas another section of fluid, of equal quantity to the former, forced back into a heat exchanger (A, B, through an inlet orifice (c, d) of the working chamber (a), travels completely through the exchanger (A, B) situated between the inlet orifice (c, d) and the outlet orifice (b, e) undergoing, in the same way as the working agent of the exchanger, isochoric transformations with a heat loss for the heat exchanger (A) in the compression stage or a heat gain for the heat exchanger (B) in the expansion stage, before returning, after a certain number of cycles in the working chamber (a) through the outlet orifices (b, e).
6. Thermal machine which carries out the method of one of Claims 1 to 5, formed by a rotary cylinder, in which a double-acting piston moves, characterised by the fact that it comprises a group of heat exchangers (A) cooled independently for the compression stage and a group of heat exchangers (B) heated independently for the expansion stage, the successive connection and disconnection between each independent exchanger and a working chamber of variable volume (a) of the thermal machine being carried out through the intermediary of windows (f) provided in the walls of a rotary cylinder (9), of galleries (24) of windows (s) provided in certain distribution discs (23), of windows (t and u) situated on the fixed covers (15 and 16) on the frame of the motor and arranged radially and made tight on a trapezoidal contour by expandable linear segments (27) and certain couplings (25 and 26) which constitute the actual outlet and inlet couplings in an independent heat exchanger (A and B).
7. Thermal machine according to Claim 6, characterised in that each exchanger may be connected to a working chamber of variable volume (a) through the intermediary of two windows (t and u) made tight on a trapezoidal contour, a window (t) ensuring the connection for the implementation of the first stage of quasi-isothermal transformation, whereas the second window (u) ensures the connection for the implementation of the second stage of the processive quasi-isothermal transformation.
8. Thermal machine according to Claim 7, characterised by the fact that certain spaces (v), situated between the two groups of windows (t and u) corresponding to the groups of exchangers (A and B) are made tight by linear expandable segments (27) situated in a continuous manner on blind contours of trapezoidal shape having the same radial positioning as the groups of connecting windows (t, u).
EP81902670A 1980-10-08 1981-09-07 Method and machine for obtaining a quasi-isothermal transformation in gas compression or expansion processes Expired EP0062043B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RO102311 1980-10-08
RO81102311A RO77965A2 (en) 1980-10-08 1980-10-08 METHOD AND MACHINE FOR OBTAINING QUASIISOTERMIC TRANSFORMATION IN QUASI-ISOTHERMAL COMPRESSION PROCESSES IN PROCESSES OF COMPRESSION OR EXPANSION OF GAS ION OR EXPANSION

Publications (2)

Publication Number Publication Date
EP0062043A1 EP0062043A1 (en) 1982-10-13
EP0062043B1 true EP0062043B1 (en) 1985-08-14

Family

ID=20109043

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81902670A Expired EP0062043B1 (en) 1980-10-08 1981-09-07 Method and machine for obtaining a quasi-isothermal transformation in gas compression or expansion processes

Country Status (7)

Country Link
US (1) US4502284A (en)
EP (1) EP0062043B1 (en)
JP (1) JPS57501789A (en)
BR (1) BR8108832A (en)
RO (1) RO77965A2 (en)
SU (1) SU1386038A3 (en)
WO (1) WO1982001220A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325671A (en) * 1992-09-11 1994-07-05 Boehling Daniel E Rotary heat engine
US5454426A (en) * 1993-09-20 1995-10-03 Moseley; Thomas S. Thermal sweep insulation system for minimizing entropy increase of an associated adiabatic enthalpizer
US7186101B2 (en) * 1998-07-31 2007-03-06 The Texas A&M University System Gerotor apparatus for a quasi-isothermal Brayton cycle Engine
ES2260371T3 (en) 1998-07-31 2006-11-01 THE TEXAS A & M UNIVERSITY SYSTEM ENGINE.
US6427453B1 (en) * 1998-07-31 2002-08-06 The Texas A&M University System Vapor-compression evaporative air conditioning systems and components
US7726959B2 (en) * 1998-07-31 2010-06-01 The Texas A&M University Gerotor apparatus for a quasi-isothermal Brayton cycle engine
BR0307457A (en) * 2002-02-05 2005-05-10 Texas A & M Univ Sys Power generator for a quasi-isothermal brayton cycle motor
US7663283B2 (en) * 2003-02-05 2010-02-16 The Texas A & M University System Electric machine having a high-torque switched reluctance motor
ITMI20031226A1 (en) * 2003-06-18 2004-12-19 Riccardo Altamura EXOTHERMAL VOLUMETRIC VARIATION ROTARY MOTOR
CA2554277A1 (en) * 2004-01-23 2005-08-11 Starrotor Corporation Gerotor apparatus for a quasi-isothermal brayton cycle engine
BRPI0518276A2 (en) * 2004-10-22 2008-11-11 Texas A & M Univ Sys generator unit for a quasi-isothermal brayton cycle motor
FR2891582A1 (en) * 2005-10-03 2007-04-06 Jacques Busseuil Rotating cylinder and piston mechanism for forming e.g. ventilator, has pistons rotating around crank pins of central axle and cylindrical support of end plates, respectively, with half angular speed during rotation of axle
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US7958731B2 (en) * 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7832207B2 (en) * 2008-04-09 2010-11-16 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US20100307156A1 (en) * 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
WO2009152141A2 (en) 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
WO2011056855A1 (en) 2009-11-03 2011-05-12 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8794941B2 (en) 2010-08-30 2014-08-05 Oscomp Systems Inc. Compressor with liquid injection cooling
US9267504B2 (en) 2010-08-30 2016-02-23 Hicor Technologies, Inc. Compressor with liquid injection cooling
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
CN103930654A (en) 2011-05-17 2014-07-16 瑟斯特克斯有限公司 Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
JP5628118B2 (en) * 2011-09-13 2014-11-19 テクノデザイン株式会社 Vane rotary type heating and cooling equipment
US20130091836A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8683797B1 (en) 2012-03-10 2014-04-01 John Donald Jacoby Closed cycle heat engine with confined working fluid
US11753988B2 (en) 2018-11-30 2023-09-12 David L. Stenz Internal combustion engine configured for use with solid or slow burning fuels, and methods of operating or implementing same
FR3113422A1 (en) * 2020-08-15 2022-02-18 Roger Lahille Closed thermodynamic cycles of steady-state motors resembling the Ericsson and Joule cycles.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1134781A (en) * 1955-06-20 1957-04-17 Volumetric rotary machine with fluid circulation
US3169375A (en) * 1963-01-10 1965-02-16 Lucas J Velthuis Rotary engines or pumps
DE1933287A1 (en) * 1968-07-03 1970-09-10 Avermaete Gilbert Rotary machine
BE789541A (en) * 1970-11-04 1973-01-15 Barrett George M LOW POLLUTION THERMAL ENGINE
US3698184A (en) * 1970-11-04 1972-10-17 George M Barrett Low pollution heat engine
CH597512A5 (en) * 1974-03-18 1978-04-14 Posnansky Mario
US4009573A (en) * 1974-12-02 1977-03-01 Transpower Corporation Rotary hot gas regenerative engine

Also Published As

Publication number Publication date
BR8108832A (en) 1982-08-24
SU1386038A3 (en) 1988-03-30
RO77965B1 (en) 1983-08-30
JPS57501789A (en) 1982-10-07
RO77965A2 (en) 1983-09-26
US4502284A (en) 1985-03-05
WO1982001220A1 (en) 1982-04-15
EP0062043A1 (en) 1982-10-13

Similar Documents

Publication Publication Date Title
EP0062043B1 (en) Method and machine for obtaining a quasi-isothermal transformation in gas compression or expansion processes
US6216462B1 (en) High efficiency, air bottoming engine
US4825827A (en) Shaft power generator
US4086881A (en) Rotary engine
RU2528796C2 (en) Internal combustion engine: six-stroke rotary engine with spinning gates, separate rotor different-purpose sections, invariable volume combustion chambers arranged in working rotors
US5335497A (en) Rotary Stirling cycle engine
EP2227628A2 (en) Thermodynamic machine, particularly of the carnot and/or stirling type
JPH0674721B2 (en) Machine with integrated piston and cylinder-wall section
EP0118432A1 (en) Internal combustion engine having a spherical chamber
US20060120910A1 (en) Non-eccentric devices
CA1203693A (en) Process and apparatus for compressing and expanding gases under quasi-isothermal conditions
JP2589521B2 (en) Thermal energy utilization equipment
RU2044164C1 (en) Vibration-rotor engine-compressor
BE1011918A3 (en) Heat conversion method and installation for embodiment of same
US5638776A (en) Internal combustion engine
WO2004079194A2 (en) Hydraulic pump and hydraulic system comprising said pump
US20050260092A1 (en) Turbostatic compressor, pump, turbine and hydraulic motor and method of its operation
WO2002057606A9 (en) Rotary crank-rod mechanism
RU2359137C2 (en) Internal combustion engine and method of ice fuel combustion
FR3033000B1 (en) MACHINE FOR COMPRESSING AND RELAXING A FLUID AND USE THEREOF IN A THERMAL ENERGY RECOVERY SYSTEM
FR3113422A1 (en) Closed thermodynamic cycles of steady-state motors resembling the Ericsson and Joule cycles.
RU2037636C1 (en) External combustion engine
WO1993007374A1 (en) Rotary stirling cycle engine
FR2730274A1 (en) Rotary piston external combustion petrol or Diesel engine
FR2883036A1 (en) Rotating heat engine e.g. petrol engine, has rotor rotating in stator, where stator has air inlet orifice, exhaust gas evacuation orifice, and explosion chamber for explosion of air-petrol mixture which leads to rotating movement of rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL SE

17P Request for examination filed

Effective date: 19820818

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHRISOGHILOS, ANDREI VASILE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'INSTITUT NATIONAL DE MOTEURS TERMIQUES

AK Designated contracting states

Designated state(s): DE FR GB NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'INSTITUT NATIONAL DE MOTEURS THERMIQUES

REF Corresponds to:

Ref document number: 3171813

Country of ref document: DE

Date of ref document: 19850919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910916

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920902

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920916

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920925

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920930

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930907

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81902670.9

Effective date: 19930406