EP0061494B1 - Renforcement thermique - Google Patents

Renforcement thermique Download PDF

Info

Publication number
EP0061494B1
EP0061494B1 EP81902877A EP81902877A EP0061494B1 EP 0061494 B1 EP0061494 B1 EP 0061494B1 EP 81902877 A EP81902877 A EP 81902877A EP 81902877 A EP81902877 A EP 81902877A EP 0061494 B1 EP0061494 B1 EP 0061494B1
Authority
EP
European Patent Office
Prior art keywords
combustion
zone
fuel
liquid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81902877A
Other languages
German (de)
English (en)
Other versions
EP0061494A4 (fr
EP0061494A1 (fr
Inventor
Charles E. Burrill, Jr.
Martin E. Smirlock
Ira P. Krepchin
Brian J. Doherty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vencore Services and Solutions Inc
Original Assignee
Foster Miller Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/296,321 external-priority patent/US4456068A/en
Priority claimed from US06/296,322 external-priority patent/US4459101A/en
Application filed by Foster Miller Associates Inc filed Critical Foster Miller Associates Inc
Publication of EP0061494A1 publication Critical patent/EP0061494A1/fr
Publication of EP0061494A4 publication Critical patent/EP0061494A4/fr
Application granted granted Critical
Publication of EP0061494B1 publication Critical patent/EP0061494B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/02Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using burners

Definitions

  • This invention relates to processes and apparatus for thermal treatment of subterranean geologic formations for enhancing recovery of geologic resources.
  • Thermal treatment of subterranean geologic formations is frequently useful in enhancing the recovery of geologic resources.
  • some petroleum materials the so-called “heavy crudes”
  • have viscosity and gravity characteristics such that those materials do not flow readily through the porous earth formations, and hence their recovery is exceedingly difficult.
  • Recovery of such petroleum materials may be enhanced by flowing heating materials into the subterranean reservoir for viscosity reduction, mobility enhancement, and like purposes.
  • thermal treatment apparatus may be used to promote chemical reactions, to initiate in situ combustion or retorting and the like. While thermal treatment systems have been proposed for downhole use, their operation has not been entirely satisfactory, due in part to the nature of the remote, relatively inaccessible and frequently harsh environment. Simple and sturdy constructions as well as simple and reliable controls are desirable for effective operation. It is also frequently desirable that the system not introduce either particulate material or excess oxygen into the geologic formation being treated.
  • thermal treatment apparatus for downhole deployment that includes a combustion stage with structure for intensely hot wall operation that defines a fuel-oxidant mixture combustion and retention zone, and ignition zone structure immediately upstream from the combustion zone in which a mixture of atomized liquid fuel and oxidant is ignited; together with a liquid injection stage immediately downstream from the combustion zone through which the stream of essentially particulate free, high temperature combustion products flows from the combustion zone and into which liquid to be vaporized is sprayed.
  • the length of the chamber structure defining the hot wall combustion zone is preferably at least five times its width dimension and the zone is defined by a refractory wall whose surface is maintained at elevated temperature in excess of 1100°C in an arrangement in which the burning fuel-oxidant mixture is retained within the combustion zone until combustion is completed so that an essentially particulate free stream of combustion products is discharged from the combustion zone into the geologic formation to be treated.
  • the liquid injection stage preferably has an elongated chamber of dimensions similar to and axially aligned with the hot wall combustion zone chamber.
  • a thermal enhancement process in accordance with the invention for recovering hydrocarbon materials and the like from subterranean geologic formations includes the steps of positioning combustion chamber structure downhole adjacent the geologic formation to be treated, flowing an oxidant liquid fuel mixture at or below stoichiometric ratio into an ignition zone of the combustion chamber structure and igniting the mixture, flowing the burning mixture into a combustion zone defined by wall structure surface maintained at a temperature in excess of 1100°C retaining the burning oxidant-fuel mixture in the combustion zone sufficiently long to insure substantially complete combustion, and then discharging the resulting essentially particulate free, oxygen free product mixture into the subterranean formation to be treated.
  • the invention provides reduced risk of plugging and/or degrading the natural porosity of the formation into which the mixture is discharged.
  • the resulting stream of essentially particulate free combustion products is flowed through a vaporization zone while injecting water into the flowing combustion products stream, and a mixture of steam and combustion products including carbon dioxide is injected into an oil bearing formation for producing chemical and thermal stimulation interactions to enhance the speed and effectiveness of reservoir response.
  • the thermal treatment apparatus includes an elongated cylindrical body about fifteen centimeters in outer diameter which is disposed downhole in a conventional oil well casing.
  • a high temperature seal module is provided for deployment immediately above or below the thermal treatment apparatus for sealing the casing adjacent the geologic formation to be treated.
  • That high temperature seal module includes annular die structure and metal sealing rings which are hydraulically extruded through the dies into the annulus between packer and the well casing. Other types of high temperature packers can also be used.
  • the combustion and liquid injection stages are housed in axial alignment within a common elongated sleeve that fits within the well casing with an annular cooling jacket chamber that extends the length of both the combustion and liquid injection stages through which the liquid to be vaporized is flowed.
  • the combustion stage includes structure that defines a fuel injection zone with an atomizing nozzle that introduces a well atomized spray of fuel into the ignition zone in a coaxial sheath of air, and a refractory lined combustion chamber whose surface is maintained at an intensely hot temperature. Air flowed into the ignition zone through swirk passage structure establishes a forced vortex flow which maximizes aerodynamic shear and fuel-air mixing rates in a highly stirred zone with moderate temperature rise that provides stable ignition and enhanced fuel evaporation in the toroidal vortex.
  • the downstream boundary of the forced vortex ignition zone is defined by fixed flame stabilizer structure that includes convergent-divergent throat structure with an extensively and highly stirred reverse flow zone immediately downstream from the throat structure that maximizes the combustion rate in the upstream end of the hot wall combustion zone. Downstream from the reverse flow zone and continuing through the hot wall combustion zone is a region of free vortex plug flow in which combustion is completed.
  • the system provides flame stabilization in two separate but interconnected regions, a first region serving as an ignition zone and the second region providing a hot gas recirculation pattern that provides flame stability in a zone of high swirl and intensely back mixed flow which promotes efficient combustion.
  • the hot refractory wall surface maximizes combustion of any remaining unburned materials and the thermal lag of that surface provides a ready ignition source for relight and helps smooth out variations in heat release rate due to process fluctuations.
  • the tubular combustion chamber unit housed within the tubular coolant jacket assembly includes a monolithic tube of refractory material whose inner surface defines the combustion zone.
  • a metal reinforcing sleeve surrounds and extends the length of the refractory tube.
  • the inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another (less than one millimeter spacing) in standby or cool condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube preferably do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression so that it is not subjected to tension forces that would produce fracturing of the refractory material during combustion system start up and cool down sequences, as well as during normal operation.
  • Refractory bonding material between the reinforcing sleeve and the refractory tube provides a thermal transition region and the gradient of that region may be adjusted as desired, for example with the addition of thermally conductive particles in the bonding material.
  • a thermal adjusting coating also may be applied to the outer surface of the metal sleeve.
  • the coolant jacket assembly is an elongated cylindrical structure about 15 centimeters in outer diameter and about 11 centimeters in inner diameter.
  • the combustion chamber unit disposed within the coolant jacket assembly includes a tube of cast silicon carbide that defines a combustion chamber about 7 1/2 centimeters in diameter and about 92 centimeters in length.
  • a stainless steel reinforcing sleeve has an outer diameter of slightly less than 11.5 centimeters so that there is an annular space of about 0.25 millimeter between the outer surface of the liner unit and the inner surface of the coolant jacket assembly.
  • a transition region between the stainless steel sleeve and the silicon carbide tube is filled with an aluminum oxide bonding agent that has a substantially greater thermal gradient than either the silicon carbide tube or the stainless steel sleeve.
  • a thin coating of zirconia is provided on the outer surface of the metal reinforcing sleeve.
  • the burner system includes ignition zone structure at one end of the combustion chamber unit for flowing an ignited fuel-oxidant mixture into the combustion chamber unit and a liquid injection stage immediately downstream from the combustion chamber unit through which a stream of essentially particulate free high temperature combustion products flows and into which liquid from the coolant jacket assembly is sprayed for vaporization.
  • the system provides a burner system that is capable of operation for extended periods of time on an unsupervised basis in remote and inaccessible environments while maintaining stability and with minimal degradation, the refractory tube being maintained in compression without subjecting other system components to excessive stress.
  • the downstream elongated liquid injection stage includes a tubular sleeve that supports an array of axially and circumferentially spaced spray nozzles through which water is injected at a controlled rate to generate steam and/or to control the temperature of the discharged mixture of combustion products and vaporized liquid.
  • Liquid fuels are efficiently burned in downhole environments with processes and apparatus in accordance with the invention with complete combustion so that the resulting stream of combustion products is essentially particulate free.
  • the system is simple and sturdy in construction, is efficient and provides reliable operation over a range of operating conditions.
  • a downhole recovery system for burning a mixture of hydrogen and oxygen to produce steam, carbon dioxide and hydrogen.
  • the system in accordance with the invention in contrast, provides a system in which a mixture of atomized liquid fuel and air is completely combusted in an elongated hot wall combustion zone; together with a water injection stage immediately downstream from the combustion zone through which essentially particulate free high temperature combustion products flow and into which water is sprayed. The resulting mixture of steam and particulate free combustion products is injected into an (oil) formation.
  • the single drawing figure shows water injection ports upstream from the burner orifice so that water is injected directly against the burner housing.
  • this burner does not have an elongated hot wall combustion zone for the substantially complete combustion of the air fuel mixture.
  • Fig. 17 shows the water sprays directly impinging on the combustion process so that the process would tend to be quenched prior to complete combustion, which the resulting materials discharged through nozzle 49.
  • apparatus claim 1 and process claim 15 is directed to thermal enhancement of hydrocarbon material recovery from downhole geologic formations, and in the disclosed embodiment, an essentially particulate free mixture of steam and exhaust gases is generated at high pressure from liquid fuel oil for discharge into the geologic formation to be treated, with markedly reduced risk of plugging and/or degrading the natural porosity of the formation.
  • the burner apparatus that is the subject of claim 9 is useful in other applications as well as the downhole thermal enhancement system of claims 1 and 15, and includes a tubular combustion chamber housed within a tubular coolant jacket assembly in an arrangement which controls and limits radial expansion of the refractory combustion chamber liner such that the burner system can be operated at high temperatures (in the order of 1400°C, for example) without subjecting the combustion liner to excessive compression forces at its inner surface which would cause a spalling type of failure.
  • the inner surface of the combustion chamber unit is spaced from the inner surface of a coolant jacket assembly such that an air gap is provided in standby condition between the inner surface of the coolant jacket assembly and the outer surface of the combustion chamber unit.
  • Thermal expansion of the monolithic tube during burner apparatus operation causes the outer surface of the combustion chamber unit to engage the inner surface of the coolant jacket assembly such that the reinforcing sleeve and the containing action of the coolant jacket assembly maintains the refractory material in compression during burner apparatus operation.
  • the system shown in Fig. 1 includes an injection well 10 that extends downwardly from the surface 12 of the ground to an oil reservoir 14 or other similar subsurface geologic formation.
  • a producing well 16 extends upwardly from reservoir 14 to processing equipment that includes such apparatus as oil/water separation unit 20, and flotation separation unit 22.
  • Steam generator support equipment includes air compressor 24 and fuel tank 26. Supplies including liquid fuel (such as No. 2 fuel oil, No. 6 fuel oil, or preprocessed crude oil), air, and water are fed from the surface equipment through injection well 10 to thermal stimulation system 30 at the base of well 10.
  • Thermal stimulation products including steam and C0 2 produced by system 30 are released into reservoir 14, and stimulate flow of hydrocarbon materials from reservoir 14 through producing well 16 to surface treatment equipment 20, 22 for pumping to a refinery over lines 28.
  • That stimulation system is supported with a 17 3/4 centimeters diameter steel casing 32 by a tubing string 34 and includes a conventional packer body 36, a conventional slip assembly 38, a high temperature sealing module 40 and a steam generation unit 50.
  • the tubing string 34 includes jointed pipe sections 42 (air supply) and 44 (water supply); a small diameter continuous tubing fuel line 46, and a small diameter continuous tubing hydraulic fluid line 48 for the packer.
  • Tubing lines 46 and 48 are strung alongside the jointed pipe sections 42, 44 and restrained at regular intervals by tube clamps 52 that both support the continuous tubing lines 46, 48 and center the bundle within the casing 32.
  • Slip assembly 38 and seal module 40 are hydraulically set.
  • the high temperature seal module 40 includes a pair of dies through which metal sealing rings 54, 56 are hydraulically extruded into the annulus between packer 40 and the well casing 32.
  • hydraulic fluid from the surface (at 1050 kp/cm 2 ) first causes the slips to deploy and then extrudes the sealing rings 54, 56.
  • Further details of seal module 40 may be had with reference to copending PCT application Serial No. PCT/US81/00216 filed 23 Feb 1981, entitled PACKER which disclosure is incorporated herein by reference.
  • the assembly is retrieved in conventional manner by pulling upward on the tubing string 34, thus causing the slips to release and the sealing rings to loosen.
  • That generator unit is secured to flanged nipple 60 which is attached to the lower end of packer module 40.
  • the upper flange 62 of coupling 64 is secured to nipple 60 by bolts 66 which pass through bolt holes 68.
  • bolts 70 pass through bolt holes 72 in the lower flange 74 of adaptor 64 to secure the upper end of the steam generator unit 50 against flange 74.
  • That steam generator unit includes axially aligned combustion section 76 and vaporizer section 78.
  • Combustor section 76 includes a tubular refractory lined combustion chamber 80 that has a length of about ninety centimeters and an internal diameter of about 7 1/2 centimeters.
  • Vaporizer section 78 has an axially aligned tubular chamber 82 that is about 90 centimeters in length and has an inner diameter of about 11 1/2 centimeters.
  • a series of circumferentially extending arrays of jet nozzles 84 extends axially along the length of vaporizer chamber 82, the number of nozzles 84 in each circumferential array being greatest at the inlet end of vaporizer chamber 82 and decreasing towards outlet port 86.
  • adaptor coupling 64 As indicated in Figs. 4 and 5, a number of passages extend through adaptor coupling 64, including fuel passage 100, electronics passage 102, two air passages 104A and 104B, and four water passages 106.
  • Coupling 64 is bolted to nozzle housing 110, as indicated in Figs. 4 and 6, so that fuel passage 100 communicates with inclined groove 112 that extends to central chamber 114 in nozzle housing 110.
  • Chamber 114 has an internal threaded bore 116 and an outlet port 120 which is surrounded by conical surface 118 on which atomizing nozzle unit 122 is seated.
  • Nozzle unit 122 may be of the hollow cone type with a nominal spray angle of 75 degrees (measured at 40 psi), an orifice diameter of 1.6 millimeter and a core that imparts swirling motion to the liquid fuel.
  • Nozzle 122 is threaded into adaptor 124 which has a central through passage 126 and which in turn is threaded into the bore of central chamber 114, so that the conical outer surface of the nozzle 122 is firmly seated at port 120.
  • air passages 130A, 130B (which are aligned with corresponding passages 104A, 104B in adaptor 64) extend through nozzle housing 110 on either side of central chamber 114.
  • the lower ends of passages 130 terminate at an annular recess 132 (Figs. 4 and 7) at the lower periphery of housing 110.
  • Formed in the cylindrical wall of housing 110 above recess 132 are a stepped series of annular surfaces 134, 136, 138; and formed in the lower surface of nozzle housing 110 is a conical surface 140 that extends outwardly from port 120 to an annular ridge 142 in which are formed an array of eight slots 144.
  • outer sleeve 150 a stainless steel tube of .95 centimeter wall thickness, 200 centimeters in length, and 15 1/4 centimeters in diameter
  • inner combustor housing sleeve 152 a stainless steel tube of 0.6 centimeter wall thickness, 96 centimeters in length, and 12.7 centimeters in diameter
  • Four water supply passages 156 (Fig. 6) in nozzle housing 110 extend from passage 106 in adaptor 64 (to the upper end of annular passage 154 at points immediately below surface 136.
  • the upper end of sleeve 152 has a counterbore 158 in which flame stabilizer throat member 160 is received.
  • the planar upper surface 162 of throat 160 is seated on the planar end surface of ridge 142 and forms the lower boundary of air supply plenum 132.
  • Air supplied through passages 104A, 104B and 130A, 130B to annular plenum 132 flows inwardly through swirl channels 144 into an ignition zone 164 bounded on its upper side by conical nozzle holder surface 140 and on its lower side by conical surface 166 of flame stabilizer member 160.
  • Convergent surface 166 of throat member 160 extends to five centimeters diameter throat orifice 168 and divergent surface 170 defines an expansion transition to lined combustion chamber 80.
  • Flame and temperature sensors monitor ignition zone 164 and transmit signals over conductors that extend through passages 128 and 102.
  • a cast aluminum oxide (AI 2 0 3 ) refractory sleeve 172 Received within combustor housing sleeve 152 and seated on the lower surface of throat member 160 is a cast aluminum oxide (AI 2 0 3 ) refractory sleeve 172 of of 0.95 centimeter thickness, and an array of arcuate aluminum oxide (AI 2 0 3 ) refractory segments 174, each 0.95 centimeters in thickness and 120 degrees in angular extent.
  • the inner surfaces of arcuate segments 174 define the inner wall of combustion chamber 80 as indicated in Fig. 8.
  • Sleeve 172 and the array of arcuate segments 174 are secured within sleeve 152 by a transition ring 176 that is welded to lower end of sleeve 152.
  • Transition ring 176 has a cylindrical surface 178 of ten centimeters diameter and a lower surface 180 that diverges at an angle of 35 degrees to the system axis. Extending through ring 176 from annular passage 154 to surface 180 are an array of eight jet spray passages 182, each 0.76 millimeter in diameter.
  • vaporizer chamber sleeve 184 (a stainless steel tube of 0.63 centimeter wall thickness, 96 centimeters in length, and 12.7 centimeters in diameter) which defines vaporization zone 82.
  • a series of ten circumferential arrays 186 of jet nozzles 84 are secured in bores through the wall of sleeve 184, there being three circumferential arrays (186-1-3) of eight nozzles each (axially spaced about five centimeters apart) (Fig.
  • Each jet nozzle 84 is of the hollow cone type and has an 0.76 millimeter diameter orifice.
  • Spacer ring 188 is welded to the end surfaces of sleeves 150 and 184 and defines the lower end of annular water supply chamber 154. A cross-sectional view of vaporizer zone 82 is shown in Fig. 10.
  • Unit 50' has tubular coupling adaptor 64' welded to end plate 200.
  • the upper ends of outer sleeve 150' (a stainless steel tube of about 1 1/4 centimeter wall thickness, about fifteen centimeters in outer diameter, and 200 centimeters in length) and inner transition sleeve 202 (a stainless steel tube of about 0.6 centimeter wall thickness and about 12.5 centimeters in outer diameter) are also welded to end plate 200 so that an annular passage 204 is defined between those sleeves into which water is introduced from conduit 44'.
  • flange 206 of ignition zone member 208 is Carried by member 208 is adaptor 124' to which nozzle 122' is threadedly received and to which fuel oil is supplied through conduit 46'. Air flow through coupling adaptor 64' and port 210 in end plate 200 flows into the chamber 212. A portion of that air flows through passage 214 into the nozzle region for exit through orifice 120' in a coaxial sheath that surrounds the spray of atomized fuel droplets from nozzle 122' into the ignition zone 164'. Air also flows from chamber 212 through swirl passages 144' into the periphery of ignition zone 164'.
  • Ignition zone member has a convergent surface 166' to a five centimeter diameter throat orifice 168' and a lower divergent surface 170'. Signals from temperature sensor 216 are transmitted over conductor 218 to surface located monitoring equipment. Welded to the lower side of flange 206 is the upper end of sleeve 152' (a stainless steel tube of about 0.63 centimeter wall thickness, 96 centimeters in length, and 12.7 centimeters in outer diameter). A helical channel 154', 7.6 centimeters in width and 0.15 centimeter deep is formed in its outer surface and provides with 0.63 centimeter wide helical ridge 220 a helical coolant flow path.
  • sleeve 152' a stainless steel tube of about 0.63 centimeter wall thickness, 96 centimeters in length, and 12.7 centimeters in outer diameter.
  • a helical channel 154', 7.6 centimeters in width and 0.15 centimeter deep is formed
  • Outer sleeve 150' is press or shrunk fitted over inner sleeve 152', and water flows from conduit 44' through a passage in end plate 200 to the annular passage 204 between sleeves 150' and 202 and through the helical path defined between the sleeves 150' and 152' along the length of the combustion zone 80'.
  • transition ring 176' Welded to the lower end of sleeve 152' is transition ring 176', and seated on transition ring 176' is support ring 222. Housed within sleeve 152' and supported on support ring 222 is a refractory wall assembly 224 whose upper end 226 extends into the recess defined by outer surface 228 of ignition zone member 208.
  • Assembly 224 includes stainless steel sleeve 230 (a tube of about 0.32 centimeter wall thickness and an outer diameter of about 11 centimeters) with a sprayed zirconia coating 232 on its outer surface; an inner sleeve 234 of cast high purity silicon carbide that has an inner surface 236 of 7.6 centimeters diameter and a 1 1/4 centimeter wall thickness; and an intermediate region 238 (about 0.32 centimeter in thickness) filled with cast aluminum oxide cement.
  • stainless steel sleeve 230 a tube of about 0.32 centimeter wall thickness and an outer diameter of about 11 centimeters
  • an inner sleeve 234 of cast high purity silicon carbide that has an inner surface 236 of 7.6 centimeters diameter and a 1 1/4 centimeter wall thickness
  • an intermediate region 238 (about 0.32 centimeter in thickness) filled with cast aluminum oxide cement.
  • sleeves 230 and 234 are concentrically located within a mold, and the refractory cement mixture (2200 parts Alumdun, 340 parts Melment plasticizer and 200 parts water) is poured into the space 238 while the mold is being vibrated so that the cement mixture fills the entire space.
  • the assembly is dried at room temperature for 24 hours and then fired: 80°C for six hours; the temperature then increased at the rate of 24°C per hour to 496°C and held for four hours; and then cooled at a rate of 38°C per hour to room temperature.
  • the cement securely bonds sleeves 230 and 234 together.
  • the outer surface of sleeve 230 has a zirconia coating 232 (0.12 millimeter thickness) to provide an outer diameter of assembly 224 of about 11.38 centimeters.
  • Assembly 102 is then inserted into water jacket sleeve, there being an annular gap (see Fig. 14) of about 0.25 millimeter between the outer surface 122 of the liner unit and the inner surface 124 of the coolant jacket structure at ambient temperature.
  • transition ring 176' Welded to the lower surface of transition ring 176' is sleeve 184' (a length of about 84 centimeters) that carries an array of spray nozzles 84'. Spacer ring 188' is welded to the lower ends of sleeves 150' and 184' and defines the lower end of annular water chamber 154', as well as outlet port 86'.
  • steam generation system 30 is secured to tubing string 34 and lowered into the bore hole casing 32.
  • packer slips 38 and seal 40 are hydraulically set, as indicated above, to provide a sealed pressure zone in communication with reservoir 14 in which system 30 is disposed.
  • Liquid fuel is then flowed through line 46 (46') to nozzle 122 (122') for atomization and spraying into ignition zone 164 (164') as indicated in Fig. 15.
  • Simultaneously air is supplied in stoichiometric ratio through passages 104 and 130 (port 210) to annular plenum 132 (chamber 212) and flows through swirl passages 144 (144') into ignition zone 164 (164') to form a forced vortex flow 250, and through port 214 into nozzle chamber for flow through orifice 120 (120') in a sheath 252 about the jet 254 of atomized fuel droplets from nozzle 122 (122').
  • Fuel ignition is by means of hypergolic liquid (for example, triethylborane) flowed through fuel line 46 (46') in advance of the liquid fuel.
  • the hypergolic liquid ignites in ignition zone 164 (164') in the presence of the sheath and swirl air flows and ignites the fuel-air mixture.
  • the temperature of surface 236 of the monolithic silicon carbide tube 234 increases, producing both axial and radial expansion of liner unit 224 until outer surface 240 of liner unit 224 seats against inner surface 242 of the coolant jacket assembly.
  • the expanding silicon carbide is in compression and those compressive forces are stabilized at about one-half the safe compression stress of tube 234 by the containing action of the coolant jacket assembly.
  • the combustion process temperature in zone 80' is in the order of 2040°C and the temperature of surface 236 of the silicon carbide liner is in the order of 1425°C.
  • a coolant flow rate of thirty liters per minute is employed maintaining the temperature of the inner surface 242 of the water jacket in the order of 205°C or less.
  • a thermal gradient diagrammatically indicated in Fig. 14, is established across the liner components, the thermal gradient for coating material 232 being about twice that of bonding material 238, so that major temperature drops are taken across the aluminum oxide bonding material 238 and the thin zirconia layer 232.
  • silicon carbide sleeve 234 remains in compression as the system cools down so that it is not subjected to tension forces which would produce fracturing of the refractory material.
  • This liner unit provides a physically stable combustion chamber surface 236 that provides an elongated high temperature wall combustion zone 80' in which stoichiometric air-fuel mixtures are completely burned so that the combustion product streams from combustion zone 80' are essentially particulate free and oxygen free and that may be repeatedly cycled through burner operation (start up and cool down) cycles.
  • the water flow through coolant jacket passage 154 limits the temperature rise of the refractory liner assembly with the thermal gradient being adjusted by material selection including those of coating 232 and bonding agent 238.
  • the coolant water discharged from the combustion chamber coolant jacket flows into the vaporization zone channel and is sprayed in jets 260 through nozzles 84 into stream of combustion products in vaporization zone 82 (Figs. 10 and 15) and flashed to steam with the resulting mixture of steam and combustion products being discharged through outlet port 86 (86') for flow into the oil reservoir 14.
  • a range of characteristics of this steam generator system are set out in the following table:
  • the system delivers 80 percent quality steam at reservoir pressures of up to 210 kg/cm 2 in quantities of up to 223 000 kg per day.

Claims (21)

1. Appareil de traitement thermique pour excavations ou forages souterrains, comprenant
-une structure (76) d'étape de combustion présentant une structure (164) à zone d'inflammation dans laquelle un mélange combustible-comburant est enflammé,
-des moyens de pulvérisation (84) pour pulvériser un liquide,
caractérisé par le fait que
-ledit mélange combustible-comburant renferme un combustible liquide,
-ladite structure (76) d'étape de combustion présente une structure (76) à bone de combustion aval d'une longueur suffisante pour assurer la combustion sensiblement complète dudit mélange combustible-comburant;
-une structure (78) d'étape d'injection de liquide est prévue en aval de ladite structure d'étape de combustion, par l'intermédiaire de laquelle des produits de combustion à haute température circulent à partir de ladite structure (76) d'étape de combustion; et
-lesdits moyens de pulvérisation (84) pulvérisent un liquide devant être vaporisé dans ladite structure (78) d'étape d'injection de liquide de telle sorte que des produits de combustion et du liquide vaporisé soient décharges dans la formation souterraine (14) devant être traitée.
2. Appareil selon la revendication 1,
caractérisé par le fait que
-ladite structure (76) d'étape de combustion présente une chambre allongée (80) de zone de combustion ayant une longueur représentant au moins cinq fois sa dimension en largeur de section transversale, et
-ladite structure (78) d'étape d'injection de liquide présente une chambre tubulaire allongée (82) de dimension similaire, alignée axialement avec ladite chambre (80) de zone de combustion.
3. Appareil selon la revendication 1 ou 2,
caractérisé par le fait que
-ledit moyens de pulvérisation comprennent une rangée de buses pulvérisatrices (84) implantées dans la paroi de ladite chambre (82) de zone de vaporisation pour pulvériser un liquide dans ladite chambre (82) de zone de vaporisation, en vue d'une interaction avec le flux de produits de combustion provenant de ladite chambre (8) de zone de combustion.
4. Appareil selon l'une quelconque des revendications précédentes,
caractérusé par
-une structure d'étanchement (36) adjacente à ladite structure (76) d'étape de combustion, pour entrer en contact de manière étanche avec la paroi enveloppante du puits (10) dans lequel ledit appareil est installé, et
-une structure présentant des passages traversants pour délivrer un combustible, un comburant et un liquide à des parties constitutives situées en aval de ladite structure d'étanchement (36).
5. Appareil selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
-ladite structure (76) d'étape de combustion comprend une garniture (172) en un matériau réfractaire, et un passage annulaire (154) de circulation de liquide entourant ladite garniture (172) de la chambre de combustion.
6. Appareil selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
-ladite structure (164) à zone d'inflammation comprend une buse d'atomisation (122) pour pulvériser un cône de combustible liquide atomisé dans ladite zone d'inflammation, et une structure (144) d'écoulement tourbillonnaire pour introduire un comburant gazeux dans ladite zone d'inflammation (164), en vue d'un mélange avec le combustible.
7. Appareil selon la revendication 6,
caractérisé par le fait que
-ladite structure à zone d'inflammation présente une structure d'éranglement à stabilisateur de flamme (60) du type convergent-divergent en aval de ladite buse d'atomisation (122).
8. Appareil selon l'une quelconque des revendications précédentes,
caractérisé par
-un manchon allongé commun (152) dans lequel ladite structure (76) d'étape de combustion et ladite structure (164) d'étape d'injection de liquide sont logées en alignement axial, avec un passage annulaire (154) s'étendant sur la longueur des deux structures précitées (76, 164) pour délivrer un liquide auxdits moyens de pulvérisation (84), et présentant un diamètre externe plus petit que le diamètre interne du puits dans lequel ledit appareil doit être déployé.
9. Appareil selon l'une quelconque des revendications précédentes,
caractérisé par le fait que
-ladite structure d'étape de combustion comprend un dispositif à gaines tubulaires de refroidissement (150', 202), une unité (224) à chambre tubulaire de combustion disposée à l'intérieur dudit dispositif à gaines de refroidissement (150', 202), présentant une tube monobloc (234) en un matériau réfractaire muni d'une surface interne (236) qui délimite une zone de combustion, un manchon de renforcement (230) entourant ledit tube (234) et s'étendant sur sa longueur, dont la surface externe (240) est espacée (figure 4) de moins d'un millimètre de la surface interne (242) dudit dispositif à gaines de refroidissement (150', 202) en condition d'attente, assurant une durée de séjour suffisante pour mener à terme la combustion dudit mélange combustible-comburant à l'intérieur de ladite unité (224) à chambre de combustion, de telle sorte que le flux de produits de combustion décharge à partir de l'extrémité de ladite unité (224) à chambre de combustion, à distance de ladite structure (164') à zone d'inflammation, soit sensiblement exempt de particules.
10. Appareil selon la revendication 9,
caractérisé par le fait que
-le matériau et les paramètres dimensionnels de ladite unité (224) à chambre de combustion sont tels que ledit matériau réfractaire (224) soit soumis à compression d'un bout à l'autre du fonctionnement du système, englobant à la fois les séquences de démarrage et de refroidissement.
11. Appareil selon la revendication 9 ou 10, caractérisé par le fait que
-ladite unité (224) à chambre de combustion présente un matériau (238) reliant ledit manchon (230) audit tube réfractaire (234), qui possède un gradient thermique notablement plus grand que le gradient thermique dudit matériau réfractaire, ou dudit manchon de renforcement (230).
12. Appareil selon l'une quelconque des revendications 11,
caractérisé par le fait que
-le matériau dudit tube réfractaire (234) est un composé de silicium.
13. Appareil selon l'une quelconque des revendications 9-12,
caractérisé par le fait que
-ledit manchon de renforcement (230) présente un revêtement d'isolation thermique (232) sur sa surface externe.
14. Appareil selon l'une quelconque des revendications 9-13,
caractérisé par le fait que
-ledit manchon de renforcement (230) est en alliage métallique à haute température,
-ledit tube monobloc (234) est en carbure de silicium coulé, et
-ledit matériau de liaison (238) renferme de l'oxyde d'aluminium.
15. Procédé pour extraire des hydrocarbures et substances analogues de formations géologiques souterraines,
comprenant les étapes consistant à
-positionner une structure à chambre de combustion au fond du forage au voisinage immédiat de la formation géologique souterraine devant être traitée,
-faire circuler un comburant et une combustible au fond du forage vers ladite structure à chambre de combustion, caractérisé par le fait
-qu'un mélange combustible-comburant renfermant un combustible liquide en une proportion égale ou inférieure à la valeur stoechiométrique est enflammé dans ladite structure placée au fond du forage, et
-que le mélange comburant-combustible en combustion est mis en circulation, à travers ladite structure à chambre de combustion, à vitesse telle que le mélange en combustion soit retenu dans ladite chambre jusqu'à ce que la combustion soit sensiblement achevée, et de flux de produits de combustion résultant, substantiellement exempt de particules et d'oxygène, soit mis en circulation à partir de ladite chambre de combustion, de manière à affluer dans la formation géologique souterraine devant être traitée.
16. Procédé selon la revendication 15,
caractérisé par le fait que
-la paroi de ladite structure à chambre de combustion qui délimite la zone de combustion est maintenue, lors dudit processus de combustion, à une température excédant 1100°C.
17. Procédé selon la revendication 15 ou 16,
caractérisé par la présence
-d'une zone à flux de comburant tourbillonnaire forcé dans ladite zone d'inflammation et
-d'une zone à flux inverse fortement agité en aval de ladite zone à tourbillon forcé, à l'extrémité supérieure de ladite chambre de combustion, afin d'augmenter le taux de combustion.
18. Procédé selon l'une quelconque des revendications 17,
caractérisé par
-une mise en circulation dudit flux de produits de combustion résultant, à travers une zone de vaporisation,
-avec injection simultanée de liquide dans le flux de produits de combustion en circulation, de telle sorte qu'un mélange résultant, de produits de combustion et de liquide vaporisé, soit déchargé dans la formation souterraine devant être traitée.
19. Procédé selon l'une quelconque des revendications 15 à 18,
caractérisé par le fait que
-ledit comburant est de l'air,
-ledit combustible est du fioul et
-ledit liquide est de l'eau.
20. Procédé selon la revendication 19,
caractérisé par le fait que
-ledit mélange air-combustible est brûle, dans ladite zone de combustion, sous une pression d'au moins environ 35 kp/cm2 et avec un taux de brûlage d'au moins environ 2,6 GJ.
21. Procédé selon l'une quelconque des revendications 18 à 20,
caractérisé par le fait que
-ladite zone de combustion présente une longueur d'au moins cinq fois sa dimension en largeur de section transversale, et
-ladite zone de vaporisation est alignée axialement avec ladite zone de combustion.
EP81902877A 1980-10-07 1981-10-05 Renforcement thermique Expired EP0061494B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US19482080A 1980-10-07 1980-10-07
US06/296,321 US4456068A (en) 1980-10-07 1981-08-28 Process and apparatus for thermal enhancement
US06/296,322 US4459101A (en) 1981-08-28 1981-08-28 Burner systems
US296321 1981-08-28
US296322 1981-08-28
US194820 1988-05-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP86105864A Division EP0200195A3 (fr) 1980-10-07 1981-10-05 Renforcement thermique
EP86105864.2 Division-Into 1986-04-30

Publications (3)

Publication Number Publication Date
EP0061494A1 EP0061494A1 (fr) 1982-10-06
EP0061494A4 EP0061494A4 (fr) 1984-09-28
EP0061494B1 true EP0061494B1 (fr) 1988-01-20

Family

ID=27393371

Family Applications (2)

Application Number Title Priority Date Filing Date
EP81902877A Expired EP0061494B1 (fr) 1980-10-07 1981-10-05 Renforcement thermique
EP86105864A Withdrawn EP0200195A3 (fr) 1980-10-07 1981-10-05 Renforcement thermique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP86105864A Withdrawn EP0200195A3 (fr) 1980-10-07 1981-10-05 Renforcement thermique

Country Status (6)

Country Link
EP (2) EP0061494B1 (fr)
JP (1) JPS57501537A (fr)
DE (1) DE3176623D1 (fr)
FR (1) FR2491542A1 (fr)
NO (1) NO821883L (fr)
WO (1) WO1982001214A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3710697A (en) * 1997-07-01 1999-01-25 Alexandr Petrovich Linetsky Method for exploiting gas and oil fields and for increasing gas and crude oil output
GB2475812B (en) * 2005-08-17 2011-08-24 Halliburton Energy Serv Inc Communicated fluids with a heated-fluid generation system
CA2690105C (fr) * 2009-01-16 2014-08-19 Resource Innovations Inc. Appareillage et methode de production de vapeur de fond et d'extraction petroliere amelioree
DE102013000303A1 (de) 2013-01-10 2014-07-10 Linde Aktiengesellschaft Verfahren zur Erzeugung eines Wasserdampf-Gas-Gemischs und zur Enhanced Oil Recovery sowie hierfür eingerichtete Vorrichtung
US10273790B2 (en) 2014-01-14 2019-04-30 Precision Combustion, Inc. System and method of producing oil
CN104785392B (zh) * 2015-03-26 2018-03-06 成都来宝石油设备有限公司 气藏开采用压力喷嘴
CA2972203C (fr) 2017-06-29 2018-07-17 Exxonmobil Upstream Research Company Solvant de chasse destine aux procedes ameliores de recuperation
CA2974712C (fr) 2017-07-27 2018-09-25 Imperial Oil Resources Limited Methodes ameliorees de recuperation d'hydrocarbures visqueux d'une formation souterraine comme etape qui suit des procedes de recuperation thermique
CA2978157C (fr) 2017-08-31 2018-10-16 Exxonmobil Upstream Research Company Methodes de recuperation thermique servant a recuperer des hydrocarbures visqueux d'une formation souterraine
CA2983541C (fr) 2017-10-24 2019-01-22 Exxonmobil Upstream Research Company Systemes et methodes de surveillance et controle dynamiques de niveau de liquide

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734578A (en) * 1956-02-14 Walter
US1803282A (en) * 1928-10-15 1931-04-28 Doherty Res Co High-temperature electric heating furnace
US2210854A (en) * 1938-04-08 1940-08-06 Philadelphia & Reading Coal & Heating apparatus
FR963507A (fr) * 1947-03-21 1950-07-17
US2916535A (en) * 1948-05-01 1959-12-08 Westinghouse Electric Corp Ultra-high-temperature furnace
US2584606A (en) * 1948-07-02 1952-02-05 Edmund S Merriam Thermal drive method for recovery of oil
US2712351A (en) * 1949-02-23 1955-07-05 Union Carbide & Carbon Corp Method of operating an internal combustion blowtorch
US2706382A (en) * 1949-07-09 1955-04-19 Carborundum Co Devices for confinement and release of high velocity, hot gases
US2658332A (en) * 1951-03-21 1953-11-10 Carborundum Co Fluid cooled, refractory, ceramic lined rocket structure
US2770097A (en) * 1952-02-14 1956-11-13 William C Walker Cooling systems for engines that utilize heat
FR1097553A (fr) * 1953-04-22 1955-07-07 Gewerk Keramchemie Garnissage réfractaire, calorifuge et résistant à la corrosion, pour chaudières, récipients et autres appareils
US2897649A (en) * 1956-07-03 1959-08-04 Reddy Robert Igniter
US3254721A (en) * 1963-12-20 1966-06-07 Gulf Research Development Co Down-hole fluid fuel burner
US3321922A (en) * 1964-10-29 1967-05-30 Jr William T Latto Small rocket engine
US3338286A (en) * 1966-09-12 1967-08-29 Pan American Petroleum Corp Heat shield for bottom hole igniter
US3410347A (en) * 1967-01-26 1968-11-12 George R Garrison Heater apparatus for use in wells
US3456721A (en) * 1967-12-19 1969-07-22 Phillips Petroleum Co Downhole-burner apparatus
GB1240009A (en) * 1968-07-27 1971-07-21 Leyland Gas Turbines Ltd Flame tube
GB1254452A (en) * 1968-09-16 1971-11-24 British Petroleum Co Geological formation heating
US3595316A (en) * 1969-05-19 1971-07-27 Walter A Myrick Aggregate process for petroleum production
US3669079A (en) * 1970-08-06 1972-06-13 Robert B Black Water heater
US3724447A (en) * 1971-10-27 1973-04-03 Aluminum Co Of America Immersion heater
US3918255A (en) * 1973-07-06 1975-11-11 Westinghouse Electric Corp Ceramic-lined combustion chamber and means for support of a liner with combustion air penetrations
US3916047A (en) * 1973-08-21 1975-10-28 Raymond J Niesen Coated steel form for use in a coreless induction furnace
US3982591A (en) * 1974-12-20 1976-09-28 World Energy Systems Downhole recovery system
US4007001A (en) * 1975-04-14 1977-02-08 Phillips Petroleum Company Combustors and methods of operating same
US4078613A (en) * 1975-08-07 1978-03-14 World Energy Systems Downhole recovery system
US4079784A (en) * 1976-03-22 1978-03-21 Texaco Inc. Method for in situ combustion for enhanced thermal recovery of hydrocarbons from a well and ignition system therefor
MX145676A (es) * 1976-09-27 1982-03-19 World Energy System Mejoras en sistema que incluye un generador de gas de pozos de sondeo para la recuperacion de petroleo
DE2808690C2 (de) * 1978-03-01 1983-11-17 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Einrichtung zur Erzeugung von Heißdampf für die Gewinnung von Erdöl
GB2020403A (en) * 1978-04-19 1979-11-14 Heenan Environmental Systems Combustion furnace and method of operating same

Also Published As

Publication number Publication date
FR2491542A1 (fr) 1982-04-09
EP0061494A4 (fr) 1984-09-28
DE3176623D1 (en) 1988-02-25
NO821883L (no) 1982-06-04
EP0200195A3 (fr) 1987-02-04
WO1982001214A1 (fr) 1982-04-15
EP0061494A1 (fr) 1982-10-06
JPS57501537A (fr) 1982-08-26
EP0200195A2 (fr) 1986-11-05

Similar Documents

Publication Publication Date Title
US4456068A (en) Process and apparatus for thermal enhancement
US4366860A (en) Downhole steam injector
US5055030A (en) Method for the recovery of hydrocarbons
EP0088376B1 (fr) Procédé et appareil pour l'extraction d'hydrocarbures
RU2513737C2 (ru) Способ и устройство для скважинного газогенератора
US4463803A (en) Downhole vapor generator and method of operation
US4648835A (en) Steam generator having a high pressure combustor with controlled thermal and mechanical stresses and utilizing pyrophoric ignition
EP0061494B1 (fr) Renforcement thermique
US4380267A (en) Downhole steam generator having a downhole oxidant compressor
US8950471B2 (en) Method of operation of a downhole gas generator with multiple combustion chambers
US4459101A (en) Burner systems
CA1064385A (fr) Chambre de combustion, et methode et appareil destines a produire un jet de vapeur thermique
US5857323A (en) Rocket engine burner with porous metal injector for throttling over a large thrust range
US20110036095A1 (en) Thermal vapor stream apparatus and method
US5163511A (en) Method and apparatus for ignition of downhole gas generator
US20070042306A1 (en) Apparatus for igniting combustible mediums
CA3147521C (fr) Outil generateur de vapeur
US20230383942A1 (en) Steam generator tool
NO160539B (no) Brennerapparat.
CA1220685A (fr) Generateur de vapeur a chambre de combustion sous haute pression avec mise a feu pyrophore, et concue pour resister aux contraintes thermiques et mecaniques
RU2024733C1 (ru) Способ разрушения металла в скважине
Donaldson et al. Downhole steam injector.[Patent application]
JPS60246991A (ja) 坑底蒸気発生装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820525

AK Designated contracting states

Designated state(s): DE FR GB NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3176623

Country of ref document: DE

Date of ref document: 19880225

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900501

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST