EP0061339A2 - Composition combustible et méthode de sa préparation - Google Patents

Composition combustible et méthode de sa préparation Download PDF

Info

Publication number
EP0061339A2
EP0061339A2 EP82301473A EP82301473A EP0061339A2 EP 0061339 A2 EP0061339 A2 EP 0061339A2 EP 82301473 A EP82301473 A EP 82301473A EP 82301473 A EP82301473 A EP 82301473A EP 0061339 A2 EP0061339 A2 EP 0061339A2
Authority
EP
European Patent Office
Prior art keywords
char
coal
liquid
particulate
fuel composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82301473A
Other languages
German (de)
English (en)
Other versions
EP0061339A3 (en
EP0061339B1 (fr
Inventor
Edmond Gerald Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT82301473T priority Critical patent/ATE20905T1/de
Publication of EP0061339A2 publication Critical patent/EP0061339A2/fr
Publication of EP0061339A3 publication Critical patent/EP0061339A3/en
Application granted granted Critical
Publication of EP0061339B1 publication Critical patent/EP0061339B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/322Coal-oil suspensions

Definitions

  • This invention relates to a fuel composition and to a method of manufacturing a fuel composition.
  • the invention may have specific application in making carbonaceous fuel supplies, such as coal, which are located in remote areas available to populous areas. More particularly, this invention relates to transportable fuel compositions, and to methods of making such compositions.
  • coal from whatever source contains various pollutants which heretofore have been difficult or impossible to remove. The nature and amount of these depends upon the geographical area from which the coal is mined. Ash, sulfur, and nitrogen comprise the most objectionable of these pollutants.
  • hydrocarbon containing fuels including synfuels
  • hydrocarbon containing fuels are likewise valuable as feedstock for the manufacture of chemical synthetics including all types of plastics, elastomers, resins, polymers and the like. It would therefore appear advantageous to ulitize coal for stationary energy needs while utilizing the liquid crude supply and synfuels for transportation as well as feedstock purposes.
  • coal slurries which comprise a pulverized, comminuted or ground coal admixed with water, and which may contain various additives to, for example, increase the wetability of the coal.
  • This slurry while capable of being transmitted by pipeline, requires special pipelines and pumping equipment.
  • Aqueous coal slurries have additional drawbacks. First the water which is necessary to slurry the coal is in short supply at the geographic region of the western U.S. coal reserve. Second, water must be removed from the slurry prior to introduction of the fuel into a furnace or boiler.
  • Non-aqueous or hydrocarbon containing liquid can also be used as the transmission medium to form a slurry of pulverized coal. These slurries still have attendant problems. Non-aqueous coal slurries also require special pipelines and pumping equipment. Since coal is still the main fuel constituent in such slurries, furnace and stack modifications are still required to burn coals from different regions. Non-aqueous fractions, unlike aqueous solutions, tend to solubilize constituents as well as impurities in the coal. This renders the slurrying liquid substantially unusable as a feedstock for many chemical syntheses. Additionally, burning of the slurry mixture results in emission of the pollutants present in the coal.
  • Coke is an expensive product which is produced from metallurgical coal. Methods have been proposed for producing coke slurry by adding coke which has been formed by conventional specialized coke production techniques, to certain hydrocarbon materials. Coke is an agglomerated material which has poor fluidity. It does, therefore, not form a readily transportable slurry which can be effectively conveyed in conventional pipeline systems. Coke, being an agglomerated product, tends to settle out. Coke particles, because of their surface and geometric characteristics, and because of their agglomerated structure, do not roll over each other and do not pack effectively.
  • a fuel composition comprising a liquid-solid admixture including a portion of a particulate coal char material dispersed in an amount of a liquid organic material effective to produce a fluidic, combustible, transportable composition.
  • the invention further extends to a method of producing a fuel composition, which comprises admixing a coal char with an amount of a liquid organic material effective to produce a fluidic transportable, combustible composition.
  • the coal char may be produced by the pyrolytic destructive distillation of a carbonaceous material in the absence of oxygen, and the liquid organic material may be derived entirely or at least partially from the pyrolytic destructive distillation.
  • the liquid organic material may be a lower chain alcohol of from 1 to about 4 carbon atoms.
  • composition of this invention is formed to create a composition which has fluidic characteristics such that it can be transported by certain existing pipeline facilities.
  • the liquid organic fraction which acts as a continuous phase in the admixture does not contain the impurities of the prior art slurries and thus is capable of being separated from the liquid-solid mixture prior to the ignition of the char.
  • the separated liquid is then available for use as a feedstock for synthesis of chemical compounds.
  • the liquid organic fraction is derived during the pyrolysis of the coal.
  • both the char and the liquid organic fraction are beneficiated.
  • the fuel composition of the instant invention can be produced by subjecting coal to pyrolytic destructive distillation in the absence of oxygen to produce a particulate char which is admixed in suitable proportions with a liquid organic fraction to produce a liquid/solid fluidic mixture.
  • the combustible liquid-solid mixture is produced by first subjecting coal to pyrolytic destructive thermal distillation in the absence of oxygen to produce a coal char.
  • the char is then pulverized or otherwise ground to produce a particulate matter.
  • the particulate matter is then beneficiated to produce a substantially pollutant-free char material.
  • the lower boiling organic fraction obtained from the pyrolysis of coal is admixed with the particulate beneficiated char in proportions so as to form the fluidic, solid-liquid, combustible fuel mixture.
  • the lower boiling organic fraction used does not contain sulfur or nitrogen pollutants.
  • the beneficiated particulate char is admixed with a lower chain alcohol which is produced by well known synthetic methods utilizing coal and water or natural gas.
  • the ground, beneficiated char is sized to yield a particulate distribution which is bi-modal or tri-modal:
  • a particulate distribution which is bi-modal or tri-modal: The use of a bi-modal or tri-modal particulate char distribution greatly enhances the packing of the solid.
  • the drawing shows a schematic of process steps for producing a coal derived fuel composition of the instant invention wherein raw coal 12 from a coal mine 10 is conveyed continuously to a crusher means 14. Within crusher means 14 the raw coal 12 is fragmented to parti- cles in the range of 1/2" to 1/4" (12 to 6 mm) in diameter to produce a crushed coal product 16.
  • the crushed coal 16 is conveyed continuously to a pyrolytic destructive distillation means 18 which preferably contains a preheating chamber to remove moisture and entrained gases.
  • the pyrolytic destructive distillation means 18 provides for thermal destructive distillation of the coal in the absence of oxygen to produce a char portion 20 and a liquid organic fraction 34.
  • the char portion 20 is continously conveyed to a grinding means 22.
  • the char is pulverized or otherwise comminuted to produce a ground char product 24 which is inherently spherical in shape.
  • the ground char 24 is conveyed to a beneficiation means 26.
  • the ground char 24 is beneficiated by removal of undesirable constituents and pollutants such as sulfur and ash.
  • the open pore structure of the char facilitates this process.
  • the beneficiated char 28 is conveyed to a particulate sizing means 30.
  • the particulate is mechanically separated by particle size to produce a sized distribution of particulate char.
  • the sized char mixture 32 is continously conveyed to a mixing means 42.
  • the liquid organic fraction 34 is conveyed from the pyrolytic destructive distillation means 18 to a separation means 36 where the higher boiling fraction 38 containing the bulk of the nitrogen is separated for example by distillation from the remainder and conveyed to storage for use directly as a chemical reagent and feedstock.
  • the separation means 36 the lower boiling fraction 40 is rendered substantially free of combined and entrained materials which on combustion would produce sulfur oxides, nitrogen oxides, and like pollutants.
  • the lower boiling pollutant free fraction 40 is continuously conveyed to the mixing means 42.
  • the char mixture 32 and the liquid lower boiling fraction 40 are combined in appropriate proportions to produce the easily transportable char containing fuel composition 44 of the instant invention which is passed to storage 46 for distribution by pipeline or tanker vehicle in a manner similar to crude oil.
  • the coal that can be employed in accordance with the instant invention can be generally termed "combustible carbonaceous material". It is any of the combustible, carbon containing materials that will undergo pyrolytic destructive distillation to form char. Such materials comprise carbon containing shales, anthrasite coal, bituminous coal, and all of the soft coals, lignites, and the like.
  • coal is mined from a coal mine by either strip or underground methods as appropriate and well known in the art.
  • the raw coal material 12 is preferably subjected to preliminary crushing to reduce the particle size. Particle sizes of from 1/2" (12mm) to about 1/4" (6mm) in lateral dimension (diameter) are found useful, with particles of about 3/8" (4mm) being preferred.
  • the need for size reduction and the size of the reduced material will depend upon the pyrolytic conditions utilized as well as the composition of the coal material.
  • the crushing and/or grinding is preferably accomplished with impact mills such as counterrotating cage mills, hammer mills of the like. This is done to impart an impact type shock to the coal to separate material along natural planes, faulted surfaces, solution channels and the like.
  • the coal is sized by, for example, rough screening and gangue material is removed to assure a more uniform product for pyrolysis.
  • carbonaceous fines and the like are readily utilized and can be separated from the macro coal particles and conveyed directly to the pyrolytic destructive distillation means 18.
  • the macro coal particles are passed continously through a preheater within pyrolytic destructive distillation means 18 which is operated at 150° to 220°F (65° to 104°C) in order to remove gases and moisture. This is a well known process and is of value in that the BTU content of the resultant coal per unit weight is increased. This preheating also removes certain entrained gases which may have further value as fuel for the pyrolysis step.
  • the pyrolytic destructive distillation means 18 can be any pyrolysis apparatus which is well known in the art. Preferably, the pyrolysis is performed in a continuous process. As the crushed coal 16 is heated in the absence of oxygen, the entrained materials are vaporized and collected. Lower boiling organic fractions including hydrocarbons, cyclics, and aromatics as well as higher boiling organic fractions are emitted from the coal leaving a char material of essentially carbon which is of a porous structure and substantially spherical in shape. Included in the emitted constituents are the nitrogen containing polluting compounds such as pyridine, piperazine and the like.
  • the char 20 is continually conveyed to the grinding means 22.
  • the grinding means 22 reduces the char to a suitable fineness to facilitate beneficiation and subsequent sizing for use in the fuel admixture. Any conventional crushing and grinding means, wet or dry, may be employed. This would include ball grinders, roll grinders, rod mills, pebble mills and the like.
  • the particles are sized within the grinding means 22 and recycled to produce a uniform distribution of particles.
  • the char particles are of sufficient fineness to pass a 10 mesh screen and the majority of the particles are in the 100 to 200 mesh size. The mesh sizes refer to the Tyler Standard Screens.
  • the char 24 is continuously conveyed to the beneficiation means 26.
  • the beneficiation means 26 can be any device known in the art utilized to extract pollutants and other undesirable inorganics such as sulfur and ash from a particulate char material. This can be done for example, by washing, jigging, extraction, flotation, chemical reaction, and/or electrobeam techniques. The exact method employed will depend largely on the coal constituent utilized in forming the char, the sizes of the char particles and the conditions of pyrolysis.
  • the beneficiated char 28 is sized in particulate sizing means 30 which can be any apparatus known in the art for separating particles of a size in the order of 100 microns. Economically, screens or sieves are utilized, however cyclone separators of the like can also be employed. In sizing selections made so as to assure combustion, a second and/or third particle size is chosen to effect so-called "modal" packing.
  • the spheriod shape of the primary particle provides spacing or voids between adjacent particles which can be filled by a distribution of second or third finer particle sizes to provide bi-modal or tri-modal packing. This packing concept allows the compaction of substantially more fuel in a given volume of fuel mixture while still retaining good fluidity.
  • the resultant char mix 32 is conveyed by means of for example an air conduit to the mixing means 42 where it is combined in appropriate proportion with the lower boiling organic fraction 40.
  • the organic fraction 34 entering the separation means 36 is continuously fractionally distilled or otherwise separated to provide the lower boiling pollutant free organic fraction 40.
  • the exact amount of this fraction utilized will depend upon the properties of the combustible char containing admixture which are desired. Normally, fractions having boiling points up to about 200°F (94°C) have been found useful in carrying out the instant invention. Any remaining pollutant fraction could be separated by other means as, for example, steam stripping.
  • the higher boiling fractions 38 of the liquid organic fraction 34 advantageously contain certain sulfur and nitrogen compounds. This fraction is removed and can be used directly as a feedstock for chemical synthesis.
  • the particulate char and the lower boiling pollutant-free organic fraction 40 are admixed in the desired proportions and sent to storage 46.
  • an admixture is formed of char and the liquid constituent.
  • the ratio of char to liquid that can be utilized will depend upon the properties of the fuel desired.
  • the char constituent should comprise not less than about 45% by weight of the composition and preferably from about 45% to about 75% by weight.
  • the mixing means 42 can be any well known mixing apparatus in which an organic constituent and a coal char can be mixed together in specific proportions and pumped continuously to a storage tank such as 46.
  • Certain well known surfactant stabilizers may be added depending on the viscosity and non-settling characteristics desired.
  • Within the storage tank 46 it is generally not required to agitate the fuel admixture of the instant invention unless such storage is to be for an extended period. From the storage tank the fuel of the instant invention is preferably continuously conveyed by means of pipelines well known in the art to distant fixed source heat and electric generators.
  • liquid organic fraction 34 derived from the pyrolytic destructive distillation of coal can be utilized directly as a feedstock for chemical synthesis, transportation fuels or the like rather than as the liquid phase of the instant fuel admixture.
  • coal and water are utilized to produce first CO and H2and then methanol and other lower alcohols which are utilized as the liquid phase for the combustible fuel admixture of the instant invention.
  • Water released from the coal during preheating can be used as part of the water required in the synthesis, thus further preserving precious resources.
  • alcohol is employed to mean alcohols which contain from 1 to about 4 carbon atoms. These include for example, methanol, ethanol, propanol, butanol and the like.
  • the alcohol may range from substantially pure methanol to various mixtures of alcohols as are produced by the catalyzed reaction of synthesis gas or natural gas.
  • the alcohol constituent can be produced on site at the mine in conjunction with the pyrolytic destructive distillation. The process can be fired by coal, thereby negating the necessity to transport fuels long distances.
  • the C0 2 is scrubbed from the gaseous product leaving only hydrogen.
  • the hydrogen is admixed with gaseous products of equation I to produce a "syn gas" having desired ratio of hydrogen to carbon monoxide from which methanol and similar products are synthesized catalytically.
  • the respective constituents such as carbon monoxide and hydrogen are combined to produce methanol.
  • the synthesis of methanol is described in page 370-398 of vol. 13 of the above referenced KIRK-OTHMER ENCYCLOPEDIA.
  • the carbon monoxide and hydrogen are controlled in a ratio and temperature pressure combination to obtain maximum yields of the methanol fuel product.
  • Other methods for methanol synthesis at lower temperatures and pressures are also known, as for example, the ICI low pressure process as described in "Here's how ICI Synthesizes Methanol at Low Pressure" Oil and Gas Journal, vol. 66, pp. 106-9, February 12, 1968.
  • the methanol is used as the liquid phase to slurry the char 32 in mixing means 42.
  • the lower boiling organic fraction and/or the synthesized methanol will not dissolve or otherwise solubilize impurities since the coal has been charred and the char has been beneficiated.
  • the liquid phase of the composition can be readily extracted at the fuel mixture destination for use as a chemical synthesis feedstock.
  • the fuel composition of the instant invention can be mobilized or transported by all conventional means used for crude oil transportation, permitting the efficacious foreign export of coal derived fuels which has not heretofore been readily and easily accomplished.
  • the existing pipelines to docks and tanking facilities can readily be utilized. Oil tankers can empty their crude oil load in this country, and be refilled with the char containing composition of the instant invention which can be exported to other countries, thus improving the balance of payments of this country.
  • the liquid solid admixture upon reaching its ultimate destination, may be employed directly as a fuel for heating; for utilities such as power plants; or for process converters such as in the preparation of synthetic materials. On the other hand it may be separated into its constituents, char and the lower boiling organic fractions and/or methanol.
  • the char portion is employed as fuel, while the organic fraction and/or methanol can be employed as a feedstock or as a transportation fuel such as a gasoline additive or as an extender.
EP82301473A 1981-03-24 1982-03-22 Composition combustible et méthode de sa préparation Expired EP0061339B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82301473T ATE20905T1 (de) 1981-03-24 1982-03-22 Brennstoffzusammensetzung und methode zur herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24738281A 1981-03-24 1981-03-24
US247382 1981-03-24

Publications (3)

Publication Number Publication Date
EP0061339A2 true EP0061339A2 (fr) 1982-09-29
EP0061339A3 EP0061339A3 (en) 1983-09-21
EP0061339B1 EP0061339B1 (fr) 1986-07-23

Family

ID=22934721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82301473A Expired EP0061339B1 (fr) 1981-03-24 1982-03-22 Composition combustible et méthode de sa préparation

Country Status (6)

Country Link
EP (1) EP0061339B1 (fr)
AT (1) ATE20905T1 (fr)
AU (1) AU549579B2 (fr)
CA (1) CA1172851A (fr)
DE (1) DE3272077D1 (fr)
WO (1) WO1982003405A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3340971A1 (de) * 1983-11-11 1985-05-23 Johannes Dipl.-Ing. 6200 Wiesbaden Linneborn Verfahren zur herstellung von aus mindestens zwei komponenten bestehenden fluessigen brennbaren medien

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB292217A (en) * 1927-03-11 1928-06-11 James Yate Johnson Improvements in the production of stable suspensions or pastes of coal
US4030893A (en) * 1976-05-20 1977-06-21 The Keller Corporation Method of preparing low-sulfur, low-ash fuel
US4208251A (en) * 1978-06-19 1980-06-17 Rasmussen Ross H Process and apparatus for producing nonaqueous coke slurry and pipeline transport thereof
US4249911A (en) * 1979-02-15 1981-02-10 Hydrocarbon Research, Inc. Combustible fuel composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014661A (en) * 1975-03-17 1977-03-29 Texaco Inc. Fuel making process
US4192651A (en) * 1977-11-21 1980-03-11 The Keller Corporation Method of producing pulverulent carbonaceous fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB292217A (en) * 1927-03-11 1928-06-11 James Yate Johnson Improvements in the production of stable suspensions or pastes of coal
US4030893A (en) * 1976-05-20 1977-06-21 The Keller Corporation Method of preparing low-sulfur, low-ash fuel
US4208251A (en) * 1978-06-19 1980-06-17 Rasmussen Ross H Process and apparatus for producing nonaqueous coke slurry and pipeline transport thereof
US4249911A (en) * 1979-02-15 1981-02-10 Hydrocarbon Research, Inc. Combustible fuel composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3340971A1 (de) * 1983-11-11 1985-05-23 Johannes Dipl.-Ing. 6200 Wiesbaden Linneborn Verfahren zur herstellung von aus mindestens zwei komponenten bestehenden fluessigen brennbaren medien

Also Published As

Publication number Publication date
AU549579B2 (en) 1986-01-30
ATE20905T1 (de) 1986-08-15
WO1982003405A1 (fr) 1982-10-14
EP0061339A3 (en) 1983-09-21
AU8392182A (en) 1982-10-19
CA1172851A (fr) 1984-08-21
DE3272077D1 (en) 1986-08-28
EP0061339B1 (fr) 1986-07-23

Similar Documents

Publication Publication Date Title
US4475924A (en) Coal derived fuel composition and method of manufacture
US4702747A (en) Coal derived/carbon dioxide fuel slurry and method of manufacture
US4045092A (en) Fuel composition and method of manufacture
CA1080650A (fr) Preparation d'un combustible a faible teneur en soufre et produisant peu de cendres
Papachristodoulou et al. Coal slurry fuel technology
US11220646B2 (en) Coal-derived solid hydrocarbon particles
EP0037832A1 (fr) Boue charbon-eau et sa methode de preparation.
US5240592A (en) Method for refining coal utilizing short residence time hydrocracking with selective condensation to produce a slate of value-added co-products
US4671800A (en) Low rank and waste coal derived fuel compositions and method of manufacture of such compositions
US4704134A (en) Coal derived/aqueous fuel system and method of manufacture
US4089657A (en) Stabilized suspension of carbon in hydrocarbon fuel and method of preparation
US4146366A (en) Method of removing gangue materials from coal
US4842615A (en) Utilization of low rank and waste coals in transportable fluidic fuel systems
EP0485378A1 (fr) Procede ameliore de raffinage du charbon par hydrodisproportionnement avec temps de sejour court
US4854937A (en) Method for preparation of coal derived fuel and electricity by a novel co-generation system
US4018571A (en) Treatment of solid fuels
JPS59133295A (ja) 粉末化固体燃料、石油残留物および水をベ−スとする液体燃料、その製造方法、およびボイラ−または工業炉中のその応用
US4832831A (en) Method of refining coal by hydrodisproportionation
US4787915A (en) Method of varying rheology characteristics of novel coal derived fuel system
EP0061339B1 (fr) Composition combustible et méthode de sa préparation
US5045087A (en) Stabilized suspensions of carbon or carbonaceous fuel particles in water
Baker et al. Hydrothermal preparation of low-rank coal-water fuel slurries
Trass Characterization and preparation of biomass, oil shale and coal-based feedstocks
US4685936A (en) Method of varying rheology characteristics of novel coal derived fuel system
US4938782A (en) Method of refining coal by short residence time hydrodisproportionation to form a novel coal derived fuel system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860723

REF Corresponds to:

Ref document number: 20905

Country of ref document: AT

Date of ref document: 19860815

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860731

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3272077

Country of ref document: DE

Date of ref document: 19860828

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950309

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950313

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950315

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950322

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950323

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950401

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950428

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960322

Ref country code: GB

Effective date: 19960322

Ref country code: AT

Effective date: 19960322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960331

Ref country code: CH

Effective date: 19960331

Ref country code: BE

Effective date: 19960331

BERE Be: lapsed

Owner name: MEYER EDMOND GERALD

Effective date: 19960331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST