EP0060922B1 - Wide band corrugated horn - Google Patents

Wide band corrugated horn Download PDF

Info

Publication number
EP0060922B1
EP0060922B1 EP81108333A EP81108333A EP0060922B1 EP 0060922 B1 EP0060922 B1 EP 0060922B1 EP 81108333 A EP81108333 A EP 81108333A EP 81108333 A EP81108333 A EP 81108333A EP 0060922 B1 EP0060922 B1 EP 0060922B1
Authority
EP
European Patent Office
Prior art keywords
section
cross
horn
hybrid mode
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81108333A
Other languages
German (de)
French (fr)
Other versions
EP0060922A1 (en
Inventor
Günter Dr.-Ing. Mörz
Francesco Dott. Ing. Intoppa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6127149&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0060922(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Publication of EP0060922A1 publication Critical patent/EP0060922A1/en
Application granted granted Critical
Publication of EP0060922B1 publication Critical patent/EP0060922B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • H01Q13/0225Corrugated horns of non-circular cross-section

Definitions

  • the present invention relates to a broadband grooved horn emitter, with a hybrid mode excitation part provided with a grooved structure, which has an internal clear cross-section of round shape which does not change over its entire length, the length and cross-section being dimensioned such that a waveguide shaft fed in completely only into one desired one Hybrid wave type is converted, and consists of a transition section also provided with a groove structure, the inner clear cross section of which passes from that of the hybrid mode excitation part to the cross section of the horn aperture.
  • Grooved horn radiators are used as primary radiators in reflector antennas. They are characterized by a low cross-polarization level, freedom from reflection, good side lobe suppression and a rotationally symmetrical radiation lobe (E-H adjustment of the lobe cuts). A grooved horn should have these good properties in the broadest possible frequency range.
  • both the hybrid mode excitation part and the horn aperture have a round cross-sectional shape.
  • the transition section between the hybrid mode excitation part and the horn aperture also has a round cross section.
  • the invention is based on the object of specifying a broadband grooved horn emitter of the type mentioned at the outset which is capable of generating a very broadband, double-polarized radiation field of elliptical shape.
  • the horn aperture has an elliptical cross section, that the transition section in a first zone changes to an elliptical cross section, which has the same axis ratio as the elliptical horn aperture cross section but almost the same size as the cross section of the hybrid mode excitation part, and that the transition section widens in a second zone to the size of the horn aperture cross section.
  • Fig. 1 shows a horn
  • Fig. 1a, b, c illustrate the changes in cross-section along its axis
  • 2 shows the longitudinal sectional view of a horn emitter provided with a groove structure.
  • the horn radiator shown in Fig. 1 begins with a section 1 which converts the incoming waveguide wave into a certain hybrid wave type, e.g. converted into the HE, 1 type in the case of a round cross-section.
  • a certain hybrid wave type e.g. converted into the HE, 1 type in the case of a round cross-section.
  • the inner clear cross-section is chosen so large that the usable hybrid wave type is excited and no higher hybrid wave type is viable at the highest transmission frequency.
  • the excitation part 1 has a constant cross section along its axis and is so long that the entire waveguide shaft is completely converted into the hybrid wave type.
  • transition section 2, 3 which converts the cross section of the excitation part, which is round in this exemplary embodiment, into the elliptical cross section of the horn aperture.
  • This transition section must be dimensioned such that no interference wave types can be excited in it, as in excitation part 1. For this reason, the transition from the partial excitation cross section to the horn aperture cross section takes place in two zones 2 and 3.
  • the first transition zone 2 the partial excitation cross-section is converted into a cross-section, but the shape of the cross-section does not yet correspond to that of the horn aperture.
  • the final cross section of this zone 2 should deviate as little as possible from that of the excitation section in order to exclude the possibility of interference wave excitation.
  • the transition zone of the exemplary embodiment shown in FIG. 1 is also designed accordingly. Starting with the round cross-section of the excitation part in the plane Z 1, only one of the two cross-sectional axes perpendicular to one another widens along the z-axis, whereas the other remains unchanged.
  • FIG. 1a and 1b illustrate the changes in the cross-sectional axes a (z) and b (z) along the z-axis.
  • the cut-off frequency of the interference wave types which are viable in this zone decreases, which leads to a reduction in the transmission bandwidth.
  • This disadvantage can be avoided with the following measure.
  • the cross-sectional axis b (z) is not left constant, but is lowered to a lower value b 2 . It should be noted here that b ( z ) must not drop below a limit value b c (shown in dash-dot lines in FIG. 1c), below which the usable hybrid wave type can no longer propagate.
  • the axial ratio a 2 / b 2 of the end cross section of the transition zone 2 is said to Axial ratio of the elliptical horn aperture correspond.
  • the transition zone 3 only the expansion of the elliptical cross-section in the plane z 2 to the horn aperture then takes place, the cross-sectional shape not being changed.
  • the cross-sectional axes a (z) and b (z) change linearly in the transition region along the z-axis.
  • a (z) and b (z) it is also possible for a (z) and b (z) to have non-linear but continuous functional profiles (dotted in FIG. 1 a, 1 b). This makes it possible to avoid kinks.
  • FIG. 2 shows part of a groove horn emitter cut open in the longitudinal direction, in which the grooves 4 are designed such that they are adapted to the same transmission bandwidth in all sections 1, 2 of the horn emitter.
  • a groove in the waveguide section with a small cross-section has a smaller bandwidth than a groove in the waveguide section with a larger cross-section.
  • the capacitive load is reduced with increasing cross-sectional size.
  • the width of the grooves 4 is increased in the transition part 2 with increasing cross-sectional expansion and the latch 5 at the end of the grooves is reduced. This measure is only necessary for extremely large bandwidths (approx.

Description

Die vorliegende Erfindung betrifft einen breitbandigen Rillenhornstrahler, mit einem mit einer Rillenstruktur versehenen Hybridmodenanregungsteil, das einen über seine gesamte Länge sich nicht ändernden inneren lichten Querschnitt von runder Form aufweist, wobei Länge und Querschnitt so bemessen sind, dass eine eingespeiste Hohlleiterwelle vollständig nur in einen gewünschten Hybridwellentyp umgewandelt wird, und mit einem ebenfalls mit einer Rillenstruktur versehenen Übergangsabschnitt besteht, dessen innerer lichter Querschnitt von dem des Hybridmodenanregungsteils auf den Querschnitt der Hornapertur übergeht.The present invention relates to a broadband grooved horn emitter, with a hybrid mode excitation part provided with a grooved structure, which has an internal clear cross-section of round shape which does not change over its entire length, the length and cross-section being dimensioned such that a waveguide shaft fed in completely only into one desired one Hybrid wave type is converted, and consists of a transition section also provided with a groove structure, the inner clear cross section of which passes from that of the hybrid mode excitation part to the cross section of the horn aperture.

Rillenhornstrahler werden als Primärstrahler in Reflektorantennen eingesetzt. Sie zeichnen sich aus durch einen geringen Kreuzpolarisationspegel, durch Reflexionsfreiheit, gute Nebenkeulenunterdrückung und durch eine rotationssymmetrische Strahlungskeule (E-H-Angleich der Keulenschnitte). Diese guten Eigenschaften sollte ein Rillenhornstrahler in einem möglichst breiten Frequenzbereich aufweisen.Grooved horn radiators are used as primary radiators in reflector antennas. They are characterized by a low cross-polarization level, freedom from reflection, good side lobe suppression and a rotationally symmetrical radiation lobe (E-H adjustment of the lobe cuts). A grooved horn should have these good properties in the broadest possible frequency range.

Ein einleitend dargelegter Rillenhornstrahler ist aus den NTG Fachberichten, Band 57, 1977, Seite 97 bis 101 bekannt. Bei dem in dieser Literaturstelle beschriebenen Rillenhornstrahler besitzen sowohl das Hybridmodenanregungsteil als auch die Hornapertur eine runde Querschnittsform. Folglich hat auch der Übergangsabschnitt zwischen dem Hybridmodenanregungsteil und der Hornapertur einen runden Querschnitt. Mit dieser Anordnung kann ein kreisförmiges Strahlungsfeld erzeugt werden.A grooved horn radiator described above is known from the NTG Fachberichten, Volume 57, 1977, pages 97 to 101. In the grooved horn radiator described in this reference, both the hybrid mode excitation part and the horn aperture have a round cross-sectional shape. As a result, the transition section between the hybrid mode excitation part and the horn aperture also has a round cross section. With this arrangement, a circular radiation field can be generated.

Der Erfindung liegt nun die Aufgabe zugrunde, einen breitbandigen Rillenhornstrahler der eingangs genannten Art anzugeben, der in der Lage ist, ein sehr breitbandiges, doppelt polarisiertes Strahlungsfeld von elliptischer Form zu erzeugen.The invention is based on the object of specifying a broadband grooved horn emitter of the type mentioned at the outset which is capable of generating a very broadband, double-polarized radiation field of elliptical shape.

Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass die Hornapertur einen elliptischen Querschnitt hat, dass der Übergangsabschnitt in einer ersten Zone auf einen elliptischen Querschnitt übergeht, der das gleiche Achsenverhältnis wie der elliptische Hornaperturquerschnitt aber nahezu die gleiche Grösse wie der Querschnitt des Hybridmodenanregungsteils besitzt, und dass der Übergangsabschnitt sich in einer zweiten Zone auf die Grösse des Hornaperturquerschnitts aufweitet.According to the invention, this object is achieved in that the horn aperture has an elliptical cross section, that the transition section in a first zone changes to an elliptical cross section, which has the same axis ratio as the elliptical horn aperture cross section but almost the same size as the cross section of the hybrid mode excitation part, and that the transition section widens in a second zone to the size of the horn aperture cross section.

Zweckmässige Ausführungen der Erfindung gehen aus den Unteransprüchen hervor.Appropriate embodiments of the invention emerge from the subclaims.

Anhand eines in der Zeichnung dargestellten Ausführungsbeispiels wird nun die Erfindung näher erläutert.The invention will now be explained in more detail with reference to an embodiment shown in the drawing.

Die Fig. 1 zeigt einen Hornstrahler und die Fig. 1a, b, c, verdeutlichen die Querschnittsänderungen entlang seiner Achse. Der Fig. 2 ist die Längsschnittansicht eines mit einer Rillenstruktur versehenen Hornstrahlers entnehmbar.Fig. 1 shows a horn, and Fig. 1a, b, c, illustrate the changes in cross-section along its axis. 2 shows the longitudinal sectional view of a horn emitter provided with a groove structure.

Der in Fig. 1 dargestellte Hornstrahler, bei dem der Übersichtlichkeit halber die Rillenstruktur nicht eingezeichnet ist, beginnt mit einem Abschnitt 1, der die eintretende Hohlleiterwelle in einen bestimmten Hybridwellentyp, z.B. beim Rundquerschnitt in den HE,1-Typ, umwandelt. Damit keine Verschlechterung der Strahlungseigenschaften des Rillenhornstrahlers auftritt, ist darauf zu achten, dass ausser dem gewünschten Hybridwellentyp keine weiteren höheren Hybridwellentypen angeregt werden. Aus diesem Grund ist der innere lichte Querschnitt so gross gewählt, dass gerade der nutzbare Hybridwellentyp angeregt wird und bei der obersten Übertragungsfrequenz noch kein höherer Hybridwellentyp existenzfähig ist. Das Anregungsteil 1 besitzt entlang seiner Achse einen konstanten Querschnitt und ist so lang, dass die gesamte Hohlleiterwelle vollständig in den Hybridwellentyp umgewandelt wird.The horn radiator shown in Fig. 1, in which the groove structure is not shown for the sake of clarity, begins with a section 1 which converts the incoming waveguide wave into a certain hybrid wave type, e.g. converted into the HE, 1 type in the case of a round cross-section. To ensure that the radiation properties of the grooved horn radiator do not deteriorate, it must be ensured that no other higher hybrid wave types are excited apart from the desired hybrid wave type. For this reason, the inner clear cross-section is chosen so large that the usable hybrid wave type is excited and no higher hybrid wave type is viable at the highest transmission frequency. The excitation part 1 has a constant cross section along its axis and is so long that the entire waveguide shaft is completely converted into the hybrid wave type.

Hinter dem Anregungsteil 1 folgt ein Übergangsabschnitt 2, 3, der den in diesem Ausführungsbeispiel runden Querschnitt des Anregungsteils in den elliptischen Querschnitt der Hornapertur überführt. Dieser Übergangsabschnitt muss so dimensioniert sein, dass in ihm wie im Anregungsteil 1 keine Störwellentypen angeregt werden können. Aus diesem Grunde findet der Übergang von dem Anregungsteilquerschnitt auf den Hornaperturquerschnitt in zwei Zonen 2 und 3 statt. Und zwar erfolgt in der ersten Übergangszone 2 die Überführung des Anregungsteilquerschnittes in einen Querschnitt, der in seiner Form aber noch nicht in seiner Grösse dem der Hornapertur entspricht. Der Endquerschnittdieser Zone 2 soll in seiner lichten Weite möglichst wenig von der des Anregungsteilquerschnitts abweichen, um die Möglichkeit von Störwellenanregung auszuschliessen. Dementsprechend ist auch die Übergangszone des in der Fig. 1 dargestellten Ausführungsbeispiels ausgebildet. Beginnend mit dem runden Querschnitt des Anregungsteils in der Ebene Z1 weitet sich entlang der z-Achse nur eine der beiden senkrecht aufeinanderstehenden Querschnittsachsen auf, wogegen die andere unverändert bleibt.Behind the excitation part 1 there is a transition section 2, 3 which converts the cross section of the excitation part, which is round in this exemplary embodiment, into the elliptical cross section of the horn aperture. This transition section must be dimensioned such that no interference wave types can be excited in it, as in excitation part 1. For this reason, the transition from the partial excitation cross section to the horn aperture cross section takes place in two zones 2 and 3. In the first transition zone 2, the partial excitation cross-section is converted into a cross-section, but the shape of the cross-section does not yet correspond to that of the horn aperture. The final cross section of this zone 2 should deviate as little as possible from that of the excitation section in order to exclude the possibility of interference wave excitation. The transition zone of the exemplary embodiment shown in FIG. 1 is also designed accordingly. Starting with the round cross-section of the excitation part in the plane Z 1, only one of the two cross-sectional axes perpendicular to one another widens along the z-axis, whereas the other remains unchanged.

Die Fig. 1a und 1b verdeutlichen die Änderungen der Querschnittsachsen a(z) und b(z) entlang der z-Achse. Die Querschnittsachse a(z) steigt von a1 = ao in der z,-Ebene am Ende des Anregungsteils 1 auf den Wert a2 in der zz-Ebene am Ende der Übergangszone 2 an. Die Querschnittsachse b(z) erfährt bis zur Ebene Z2 keine Änderung; es gilt b2 = b1 = bo. Infolge der Vergrösserung der Querschnittsachse a(z) und damit des Anwachsens der lichten Weite innerhalb der Übergangszone 2 erniedrigt sich die Grenzfrequenz der in dieser Zone existenzfähigen Störwellentypen, was zu einer Verringerung der Übertragungsbandbreite führt. Mit folgender Massnahme lässt sich dieser Nachteil vermeiden. Wie Fig. 1c zeigt, wird die Querschnittsachse b(z) nicht konstant gelassen, sondern auf einen geringeren Wert b2 herabgesenkt. Hierbei ist zu beachten, dass b(z) nicht unter einen Grenzwert bc (strichpunktiert in Fig. 1c eingezeichnet) absinken darf, unter dem die Ausbreitung des nutzbaren Hybridwellentyps nicht mehr möglich ist. Das Achsenverhältnis a2/b2 des Endquerschnitts der Übergangszone 2 soll dem Achsenverhältnis der elliptischen Hornapertur entsprechen. In der Übergangszone 3 erfolgt dann nur noch die Aufweitung des elliptischen Querschnitts in der Ebene z2 auf die Hornapertur, wobei die Querschnittsform nicht geändert wird.1a and 1b illustrate the changes in the cross-sectional axes a (z) and b (z) along the z-axis. The cross-sectional axis a (z) increases from a 1 = a o in the z, plane at the end of the excitation part 1 to the value a 2 in the z z plane at the end of the transition zone 2. The cross-sectional axis b (z) does not change up to the plane Z2 ; b 2 = b 1 = b o . As a result of the enlargement of the cross-sectional axis a (z) and thus the increase in the clear width within the transition zone 2, the cut-off frequency of the interference wave types which are viable in this zone decreases, which leads to a reduction in the transmission bandwidth. This disadvantage can be avoided with the following measure. As FIG. 1c shows, the cross-sectional axis b (z) is not left constant, but is lowered to a lower value b 2 . It should be noted here that b ( z ) must not drop below a limit value b c (shown in dash-dot lines in FIG. 1c), below which the usable hybrid wave type can no longer propagate. The axial ratio a 2 / b 2 of the end cross section of the transition zone 2 is said to Axial ratio of the elliptical horn aperture correspond. In the transition zone 3, only the expansion of the elliptical cross-section in the plane z 2 to the horn aperture then takes place, the cross-sectional shape not being changed.

Beim in der Fig. 1 dargestellten Rillenhornstrahler ändern sich die Querschnittsachsen a(z) und b(z) im Übergangsbereich entlang der z-Achse linear. Es ist aber auch möglich, dass a(z) und b(z) nichtlineare aber stetige Funktionsverläufe besitzen (punktiert in Fig. la, 1b angedeutet). Dadurch ist es möglich, Knickstellen zu vermeiden.In the grooved horn radiator shown in FIG. 1, the cross-sectional axes a (z) and b (z) change linearly in the transition region along the z-axis. However, it is also possible for a (z) and b (z) to have non-linear but continuous functional profiles (dotted in FIG. 1 a, 1 b). This makes it possible to avoid kinks.

Die Fig. 2 zeigt einen Teil eines in Längsrichtung aufgeschnittenen Rillenhornstrahlers, bei dem die Rillen 4 so gestaltet sind, dass sie in allen Abschnitten 1, 2 des Hornstrahlers an die gleiche Übertragungsbandbreite angepasst sind. Normalerweise hat eine Rille in dem Hohlleiterabschnitt mit kleinem Querschnitt eine kleinere Bandbreite als eine Rille im Hohlleiterabschnitt mit grösserem Querschnitt. Um eine homogene Bandbreitenanpassung längs der Hornstrahlerachse zu erreichen, wird die kapazitive Belastung mit zunehmender Querschnittsgrösse reduziert. Wie aus der Fig. 2 hervorgeht, wird dazu im Übergangsteil 2 mit steigender Querschnittserweiterung die Breite-der Rillen 4 vergrössert und die Falle 5 am Ende der Rillen vermindert. Diese Massnahme ist nur bei extrem grossen Bandbreiten erforderlich (ca. eine Oktave und darüber); im allgemeinen genügt es, die Rillenstruktur im Anregungs- und Übergangsbereich, z.B. gemäss der in der deutschen Patentschrift DE-PS 2616125 gezeigten Weise, an die erforderliche Übertragungsbandbreite anzupassen. Diese Anpassung der Rillenstruktur beinhaltet lediglich eine Variation der Rillenbreite, - Tiefe - und des Abstandes in Abhängigkeit vom Ort längs der Achse des Hornstrahlers. Im Hornabschnitt 1 ist eine derartige Variation der Rillenstruktur schon allein zur vollständigen Überführung der Hohlleiterwellen in die entsprechenden Hybridwellentypen erforderlich, wobei geringste Eigenreflexion vorausgesetzt wird. Selbst bei vollständiger Hybridwellenüberführung am Ausgang des Abschnitts 1 ist es mitunter erforderlich, auch in Abschnitt 2 eine Anpassung der Rillen (z.B. Rillentiefe, Rillenabstand) an den örtlichen Querschnitt durchzuführen, da die Hohlleiterwellenlängen örtlich verschieden sind. Bei unsymmetrischen Querschnitten (z. B. elliptisch) der Übergangszonen 2 und 3 kann es erforderlich sein, diese örtliche Anpassung der Rillen in den beiden Querschnittsachsen a(z) und b(z) unterschiedlich auszuführen. Hierfür bietet sich an, die Rillentiefe zu variieren, weil das aus Herstellungsgründen am einfachsten ist. Mit Hilfe dieser Massnahmen gelingt es, einen elliptischen Rillenhornstrahler zu erstellen, der in zwei Polarisationen identische Phasendrehungen aufweist.FIG. 2 shows part of a groove horn emitter cut open in the longitudinal direction, in which the grooves 4 are designed such that they are adapted to the same transmission bandwidth in all sections 1, 2 of the horn emitter. Normally, a groove in the waveguide section with a small cross-section has a smaller bandwidth than a groove in the waveguide section with a larger cross-section. In order to achieve a homogeneous bandwidth adjustment along the horn axis, the capacitive load is reduced with increasing cross-sectional size. As can be seen from FIG. 2, the width of the grooves 4 is increased in the transition part 2 with increasing cross-sectional expansion and the latch 5 at the end of the grooves is reduced. This measure is only necessary for extremely large bandwidths (approx. One octave and above); in general it is sufficient to design the groove structure in the excitation and transition area, e.g. according to the manner shown in German patent DE-PS 2616125, to adapt to the required transmission bandwidth. This adaptation of the groove structure only includes a variation of the groove width, depth and the distance depending on the location along the axis of the horn. In the horn section 1, such a variation of the groove structure is already necessary for the complete conversion of the waveguide waves into the corresponding hybrid wave types, the lowest self-reflection being required. Even in the case of a complete hybrid wave transfer at the output of section 1, it is sometimes necessary to adapt the grooves (e.g. groove depth, groove spacing) to the local cross-section in section 2, since the waveguide wavelengths differ locally. In the case of asymmetrical cross sections (e.g. elliptical) of the transition zones 2 and 3, it may be necessary to carry out this local adaptation of the grooves differently in the two cross-sectional axes a (z) and b (z). It is advisable to vary the groove depth because this is easiest for manufacturing reasons. With the help of these measures, it is possible to create an elliptical grooved horn that has identical phase rotations in two polarizations.

Claims (3)

1. Broadband corrugated horn including a hybrid mode exciting member (1) which has a circular inner free cross section that does not change over its entire length, with length and cross- sectional area being dimensioned in such a manner that a fed-in waveguide mode is completely converted into only one desired hybrid mode type and further including a transition section (2, 3), likewise provided with a corrugated structure, whose inner free cross section changes from the cross section of the hybrid mode exciting member to the cross section of the horn aperture, characterized in that the horn aperture has an elliptical cross section; the transition section (2, 3), in a first zone (2), changes to an elliptical cross section which has the same axis ratio as the elliptical horn aperture cross section but almost the same size as the cross section of the hybrid mode exciting member (1); and, in a second zone (3), the transition section widens to the size of the horn aperture cross section.
2. Broadband corrugated horn according to claim 1, characterized in that the first zone (2) of the transition section (2, 3) changes to an elliptical cross section whose one axis (b2) is unchanged compared to the diameter (bo) of the circular cross section of the hybrid mode exciting member (1).
3. Broadband corrugated horn according to claim 1, characterized in that the first zone (2) of the transition section (2, 3) changes to an elliptical cross section whose one axis (b2) is reduced in size compared to the diameter (bo) of the circular cross section of the hybrid mode exciting member (1).
EP81108333A 1981-03-13 1981-10-15 Wide band corrugated horn Expired EP0060922B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3109667 1981-03-13
DE19813109667 DE3109667A1 (en) 1981-03-13 1981-03-13 "WIDE-BAND GROOVED HORN SPOTLIGHT"

Publications (2)

Publication Number Publication Date
EP0060922A1 EP0060922A1 (en) 1982-09-29
EP0060922B1 true EP0060922B1 (en) 1987-01-28

Family

ID=6127149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108333A Expired EP0060922B1 (en) 1981-03-13 1981-10-15 Wide band corrugated horn

Country Status (4)

Country Link
US (1) US4472721A (en)
EP (1) EP0060922B1 (en)
CA (1) CA1190316A (en)
DE (2) DE3109667A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2542928B1 (en) * 1983-03-18 1985-10-04 Thomson Csf MICROPHONE PROPAGATION TRANSFORMER
US4533919A (en) * 1983-10-14 1985-08-06 At&T Bell Laboratories Corrugated antenna feed arrangement
JPH0770886B2 (en) * 1984-08-22 1995-07-31 日本電気株式会社 Elliptical corrugated feeder
US5109232A (en) * 1990-02-20 1992-04-28 Andrew Corporation Dual frequency antenna feed with apertured channel
US5552797A (en) * 1994-12-02 1996-09-03 Avnet, Inc. Die-castable corrugated horns providing elliptical beams
US6005528A (en) * 1995-03-01 1999-12-21 Raytheon Company Dual band feed with integrated mode transducer
CN1111315C (en) * 1999-08-05 2003-06-11 东南大学 Corrugated circular slot waveguide antenna
US6522306B1 (en) * 2001-10-19 2003-02-18 Space Systems/Loral, Inc. Hybrid horn for dual Ka-band communications
US7110716B2 (en) * 2002-01-30 2006-09-19 The Boeing Company Dual-band multiple beam antenna system for communication satellites
US7002528B2 (en) * 2002-02-20 2006-02-21 Prodelin Corporation Circularly polarized receive/transmit elliptic feed horn assembly for satellite communications
US7236681B2 (en) * 2003-09-25 2007-06-26 Prodelin Corporation Feed assembly for multi-beam antenna with non-circular reflector, and such an assembly that is field-switchable between linear and circular polarization modes
DE102004022516B4 (en) * 2004-05-05 2017-01-19 Endress + Hauser Gmbh + Co. Kg horn antenna
EP2535982A1 (en) 2011-06-15 2012-12-19 Astrium Ltd. Corrugated horn for increased power captured by illuminated aperture
KR101444659B1 (en) * 2013-10-04 2014-09-24 국방과학연구소 ANTENNA SYSTEM FOR simultaneous Triple-band Satellite Communication
FR3122287A1 (en) * 2021-04-21 2022-10-28 Swissto12 Sa Corrugated passive radiofrequency device suitable for an additive manufacturing process

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413642A (en) * 1966-05-05 1968-11-26 Bell Telephone Labor Inc Dual mode antenna
GB1269950A (en) * 1968-11-15 1972-04-06 Plessey Co Ltd Improvements in or relating to antenna feed systems
US3754273A (en) * 1970-10-24 1973-08-21 Mitsubishi Electric Corp Corrugated waveguide
GB1498905A (en) * 1975-04-11 1978-01-25 Marconi Co Ltd Corrugated horns
FR2331165A1 (en) * 1975-11-04 1977-06-03 Thomson Csf EXPONENTIAL CORNET AND ANTENNA CONTAINING SUCH A CORNET
US4040061A (en) * 1976-06-01 1977-08-02 Gte Sylvania Incorporated Broadband corrugated horn antenna
GB1586585A (en) * 1977-07-07 1981-03-18 Marconi Co Ltd Radio horns
DE2920757A1 (en) * 1979-05-22 1981-04-09 Siemens AG, 1000 Berlin und 8000 München Horn radiator for microwave equipment - has stepped plain portion followed by ribbed funnel portion, with specified shapes
DE2930932C2 (en) * 1979-07-30 1982-04-08 Siemens AG, 1000 Berlin und 8000 München Grooved horn radiator
EP0023933B1 (en) * 1979-08-13 1984-06-13 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Antenna system for transmitting circularly or linearly polarized microwaves
DE2939562C2 (en) * 1979-09-29 1982-09-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Horn antenna as exciter for a reflector antenna with a hybrid mode excitation part
DE3009254C2 (en) * 1980-03-11 1982-07-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Antenna exciter with a radiation pattern of elliptical cross-section

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTG-Fachberichte, Bd. 57, 1977, S. 97-101 *

Also Published As

Publication number Publication date
US4472721A (en) 1984-09-18
EP0060922A1 (en) 1982-09-29
DE3109667A1 (en) 1982-09-23
DE3175891D1 (en) 1987-03-05
CA1190316A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
EP0060922B1 (en) Wide band corrugated horn
DE818384C (en) Filter for the transmission of a band in waveguides of guided electrical micro waves
DE2801071C2 (en) Silencer for a duct through which a gas flow flows
DE2443166B2 (en) SYSTEM SWITCH FOR THE SEPARATION OF TWO SIGNALS, EACH OF TWO DOUBLE POLARIZED FREQUENCY BANDS
DE2805965A1 (en) INTERDIGITAL BANDPASS FILTER
DE3241890C2 (en)
DE3044367A1 (en) WALKING PIPES
DE1272394B (en) Microwave amplifier arrangement
DE2930932A1 (en) RILLED HORN SPOTLIGHT
DE19736367A1 (en) Waveguide filter for HF power amplifier
DE2220279C2 (en) Circuit arrangement for frequency conversion with a waveguide section and a non-linear semiconductor element arranged therein
DE3111106C2 (en)
DE3620555A1 (en) WAVE GUIDE FILTER FOR USE IN A MICROWAVE OVEN
DE2921790C2 (en) Microwave mixing circuit
DE2719283C2 (en) Antenna feed system for double polarization
DE2642448C3 (en) High frequency wave type converter
DE3011301A1 (en) MICROWAVE FILTER
DE2214522A1 (en) Microwave window
DE3044379A1 (en) WALKING PIPES
DE2708271C2 (en) Polarization switch
EP0285879B1 (en) Broad-band polarizing junction
DE1055626B (en) Reaction element in a waveguide section
DE1616252B2 (en) Broadband omnidirectional antenna for microwaves, consisting of a vertical circular waveguide and at least one cone reflector
DE3326527A1 (en) Grooved-horn aerial
DE2431278C2 (en) Quadrupole filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19830209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AEG - TELEFUNKEN NACHRICHTENTECHNIK GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANT NACHRICHTENTECHNIK GMBH

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3175891

Country of ref document: DE

Date of ref document: 19870305

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MESSERSCHMITT - BOELKOW - BLOHM GMBH, OTTOBRUNN

Effective date: 19871020

NLR1 Nl: opposition has been filed with the epo

Opponent name: MESSERSCHMITT - BOELKOW - BLOHM GMBH

ITTA It: last paid annual fee
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DEUTSCHE AEROSPACE AKTIENGESELLSCHAFT

Effective date: 19871020

NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

Free format text: PAT.BUL.05/88 CORR.:DEUTSCHE AEROSPACE AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930923

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931028

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931031

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931217

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941016

EAL Se: european patent in force in sweden

Ref document number: 81108333.6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941015

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 81108333.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19951005

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO