EP0057866B1 - Device for protecting containers having radioactive materials therein from corrosion - Google Patents

Device for protecting containers having radioactive materials therein from corrosion Download PDF

Info

Publication number
EP0057866B1
EP0057866B1 EP82100590A EP82100590A EP0057866B1 EP 0057866 B1 EP0057866 B1 EP 0057866B1 EP 82100590 A EP82100590 A EP 82100590A EP 82100590 A EP82100590 A EP 82100590A EP 0057866 B1 EP0057866 B1 EP 0057866B1
Authority
EP
European Patent Office
Prior art keywords
containers
container
metal salt
corrosion
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82100590A
Other languages
German (de)
French (fr)
Other versions
EP0057866A3 (en
EP0057866A2 (en
Inventor
Werner Holtmann
Hartmut Dipl.Phys. Kroll
Günther Dipl.Chem. Luthardt
Volker Portscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Original Assignee
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH, Nukem GmbH filed Critical Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Publication of EP0057866A2 publication Critical patent/EP0057866A2/en
Publication of EP0057866A3 publication Critical patent/EP0057866A3/en
Application granted granted Critical
Publication of EP0057866B1 publication Critical patent/EP0057866B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S422/00Chemical apparatus and process disinfecting, deodorizing, preserving, or sterilizing
    • Y10S422/903Radioactive material apparatus

Definitions

  • the invention relates to a device for the corrosion protection of containers containing radioactive substances, which are stored for a long time in suitable geological formations, the containers being conductively connected via connections to sacrificial anodes.
  • irradiated fuel assemblies After being temporarily stored in water tanks, irradiated fuel assemblies are processed either immediately or after further interim storage.
  • the nuclear fuels and broods are separated from the fission products and returned to the fuel cycle.
  • the cleavage products are by known methods, usually using large amounts of valuable materials, such as. B. lead and copper, conditioned and in geological formations such as salt domes practically no longer removable.
  • Metal containers e.g. Steel, cast iron, especially spheroidal graphite cast iron, lead, copper or other materials have disadvantages. These include partly in the manufacturing costs, but especially in the corrosion area, because Water ingress, even if it is unlikely to occur, must be included in safety considerations.
  • the invention was therefore based on the object of providing a device for the corrosion protection of containers containing radioactive substances, which have been stored for a long time in suitable geological formations, the containers being conductively connected via connections to sacrificial anodes, which cause the container corrosion when water occurs unexpectedly also avoided over very long periods of time, but at least delayed and minimized.
  • a metal salt is additionally arranged in a metallic casing in close proximity to the containers and the sacrificial anode, the metal of the metal salt having an electrochemically more noble potential than the material of the container and the metallic casing itself being less electrochemically than the container and than the metal salt, but is equally noble or nobler than the sacrificial anode.
  • a geological formation (6) there are long-term storage containers (1) in which radioactive material such as waste and irradiated fuel assemblies are stored.
  • Sacrificial anodes (2) are arranged in the vicinity of these containers (1), the sacrificial anodes being conductively connected to the containers (1) by means of connections (3). This ensures anodic corrosion protection, which takes effect when moisture enters the deposit due to an event.
  • the electrolyte formed by the water, for example a salt solution builds up a galvanic chain. As a result, the sacrificial anode (2) dissolves and the container (1) connected as the cathode with its radioactive inventory remains protected.
  • Metals with corresponding electrochemical properties can be used as sacrificial anodes, taking into account the respective material of the container (1). It is particularly advantageous if the potential difference between the container (1) and the sacrificial anode (2) is between 50 and 1000 mV, since the dissolution of the sacrificial anode, as a measure of the corrosion protection, is advantageously influenced. It is particularly advantageous to use zinc or zinc-containing moldings as sacrificial anode (2) because of its electrochemical behavior and because of its availability.
  • the moldings can consist, for example, of zinc and lead and can be produced by powder metallurgy by pressing, since this avoids potential shifts that could possibly occur due to alloy components.
  • the dissolution rate can be favorably influenced by sacrificial anodes manufactured using powder metallurgy.
  • the sacrificial anodes (2) are usually designed in a compact geometry. Other geometries are also possible in some cases. Among other things In some cases, sacrificial anodes can also be accommodated or embedded in tubs or over-containers that hold the containers (1).
  • the same material can be used with the container (1) as the material for the conductive connections (3). It is also possible to use graphite to be used as a conductor material that only serves to derive the electrons generated during the electrochemical reaction. When using several sacrificial anodes (2), these are expediently connected to one another by conductive connections (7).
  • a metal salt (4) is additionally arranged in a metallic sheath (5) in close proximity to the containers (1) and the sacrificial anodes (2), the metal of the metal salt being opposite the material of the container (1) has electrochemically more noble potential.
  • Copper salts can preferably be used as the metal salt (4), which is not in conductive connection with the containers (1) in the normal state. If electrolytes penetrate the bearing, copper ions will dissolve after a certain time. In exchange for, for example, iron ions from the container (1), these copper ions can deposit on the container (1) and form a coating that contributes to corrosion protection.
  • the metal salt (4) is surrounded by a metallic sheath (5), which in turn is less noble than the container (1) and as the metal salt (4), but is equally noble or nobler than the sacrificial anode (2).
  • a metallic sheath (5) which in turn is less noble than the container (1) and as the metal salt (4), but is equally noble or nobler than the sacrificial anode (2).
  • the device according to the invention surprisingly represents a long-term effective corrosion delay on the container (1) and thus contributes to the fact that until the radioactivity of the container inventory has decayed, the closure of the biosphere is ensured even in the worst case of damage, which is normally not to be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

Gegenstand der Erfindung ist eine Vorrichtung zum Korrosionsschutz von radioaktive Stoffe enthaltenden Behältern, die lange Zeit in geeigneten geologischen Formationen gelagert sind, wobei die Behälter über Verbindungen mit Opferanoden leitend verbunden sind.The invention relates to a device for the corrosion protection of containers containing radioactive substances, which are stored for a long time in suitable geological formations, the containers being conductively connected via connections to sacrificial anodes.

Bestrahlte Brennelemente werden nach einer vorübergehenden Aufbewahrung in Wasserbekken entweder sofort oder nach einer weiteren Zwischenlagerung aufgearbeitet. Dabei werden die nuklearen Brenn- und Brutstoffe von den Spaltprodukten getrennt und wieder dem Brennstoffkreislauf zugeführt. Die Spaltprodukte werden nach bekannten Verfahren, meist unter Verwendung grosser Mengen Wertstoffe, wie z. B. Blei und Kupfer, konditioniert und in geologischen Formationen wie Salzstöcken praktisch nicht mehr entnehmbar endgelagert.After being temporarily stored in water tanks, irradiated fuel assemblies are processed either immediately or after further interim storage. The nuclear fuels and broods are separated from the fission products and returned to the fuel cycle. The cleavage products are by known methods, usually using large amounts of valuable materials, such as. B. lead and copper, conditioned and in geological formations such as salt domes practically no longer removable.

Darüberhinaus wird überlegt (Berichte des Kernforschungszentrums Karlsruhe KFK 2535 und 2650), bestrahlte Brennelemente in absehbarer Zeit nicht aufzuarbeiten, auf die in ihnen vorhandenen Brenn- und Brutstoffe zu verzichten und die Brennelemente - nach einer angemessenen Abklingzeit in dafür vorgesehenen Lagern - in Salzformationen endzulagern. Die Lagerzeiten der bestrahlten Brennelemente können also Hunderte von Jahren betragen.In addition, it is being considered (reports from the Nuclear Research Center Karlsruhe KFK 2535 and 2650) not to reprocess irradiated fuel elements in the foreseeable future, to dispense with the fuels and broods present in them and - after an appropriate decay time in designated storage facilities - to be disposed of in salt formations. The storage times of the irradiated fuel assemblies can therefore be hundreds of years.

Wegen der unbestimmten Lagerdauer werden an derartige, für die Langzeit- und Endlagerung geeignete Behälter besondere Anforderungen gestellt. Erschwerend kommt hinzu, dass die Behälterlager schwer zugänglich sein müssen und folglich Überwachungsmöglichkeiten Grenzen gesetzt oder sogar auszuschliessen sind.Because of the indefinite storage period, special requirements are placed on containers that are suitable for long-term and final storage. To make matters worse, the container storage must be difficult to access and consequently monitoring options are limited or even excluded.

Es sind teilweise sehr aufwendige Konzepte bekannt, bestrahlte Brennelemente oder radioaktiven Abfall mittels Behältern aus Metall oder Beton in geologische Formationen wie z. B. in trockenen Salzstöcken zu lagern (Berichte des Kernforschungszentrums Karlsruhe KFK 3000).There are some very expensive concepts known, irradiated fuel elements or radioactive waste using containers made of metal or concrete in geological formations such as. B. to be stored in dry salt domes (reports of the Nuclear Research Center Karlsruhe KFK 3000).

Die Verwendung von Beton ist jedoch problematisch, da Langzeiterfahrungen über Hunderte oder gegebenenfalls über Tausende von Jahren naturgemäss nicht vorliegen. Auch Metallbehälter, z.B. aus Stahl, Gusseisen, speziell Kugelgraphitguss, Blei, Kupfer oder anderen Werkstoffen, weisen Nachteile auf. Diese liegen u.a. teils in den Herstellungskosten, vor allem jedoch auf dem Korrosionsgebiet, da u.a. Wassereinbrüche, wenn auch wenig eintrittswahrscheinlich, mit in sicherheitstechnische Überlegungen einbezogen werden müssen.However, the use of concrete is problematic since long-term experience over hundreds or possibly over thousands of years naturally does not exist. Metal containers, e.g. Steel, cast iron, especially spheroidal graphite cast iron, lead, copper or other materials have disadvantages. These include partly in the manufacturing costs, but especially in the corrosion area, because Water ingress, even if it is unlikely to occur, must be included in safety considerations.

Es ist allgemein bekannt, unterirdisch verlegte Metallbehälter, insbesondere Stahlbehälter, elektrochemisch zu schützen, indem man sie mit Opferanoden leitend verbindet. Dieser kathodische Korrosionsschutz ist jedoch nicht über sehr lange Zeiträume wirksam.It is generally known to electrochemically protect underground metal containers, in particular steel containers, by connecting them to sacrificial anodes in a conductive manner. However, this cathodic corrosion protection is not effective for very long periods.

Der Erfindung lag daher die Aufgabe zugrunde, eine Vorrichtung zum Korrosionsschutz von radioaktive Stoffe enthaltenden Behältern, die lange Zeit in geeigneten geologischen Formationen gelagert sind, wobei die Behälter über Verbindungen mit Opferanoden leitend verbunden sind, zu schaffen, die die Behälterkorrosion bei überraschendem Auftreten von Wasser auch über sehr lange Zeiträume vermeidet, zumindest aber verzögert und minimiert.The invention was therefore based on the object of providing a device for the corrosion protection of containers containing radioactive substances, which have been stored for a long time in suitable geological formations, the containers being conductively connected via connections to sacrificial anodes, which cause the container corrosion when water occurs unexpectedly also avoided over very long periods of time, but at least delayed and minimized.

Die Aufgabe wurde erfindungsgemäss dadurch gelöst, dass zusätzlich in räumlicher Nähe zu den Behältern und der Opferanode ein Metallsalz in einer metallischen Umhüllung angeordnet ist, wobei das Metall des Metallsalzes ein gegenüber dem Material des Behälters elektrochemisch edleres Potential aufweist und die metallische Umhüllung ihrerseits elektrochemisch unedler als der Behälter und als das Metallsalz, jedoch gleich edel oder edler als die Opferanode ist.The object was achieved according to the invention in that a metal salt is additionally arranged in a metallic casing in close proximity to the containers and the sacrificial anode, the metal of the metal salt having an electrochemically more noble potential than the material of the container and the metallic casing itself being less electrochemically than the container and than the metal salt, but is equally noble or nobler than the sacrificial anode.

Anhand der schematischen Abbildung ist die erfindungsgemässe Vorrichtung beispielhaft näher erläutert.The device according to the invention is explained in more detail by way of example using the schematic illustration.

In einer geologischen Formation (6), z.B. Salzstock, befinden sich Langzeitlagerbehälter (1), in denen radioaktives Material wie Abfälle und bestrahlte Brennelemente endgelagert werden. In der Nähe dieser Behälter (1) sind Opferanoden (2) angeordnet, wobei die Opferanoden mit den Behältern (1) durch Verbindungen (3) leitend verbunden sind. Dadurch ist ein anodischer Korrosionsschutz sichergestellt, der wirksam wird, wenn durch ein Ereignis Feuchtigkeit in die Lagerstätte gelangt. Der durch das Wasser gebildete Elektrolyt, beispielsweise eine Salzlösung, baut eine galvanische Kette auf. Dadurch löst sich die Opferanode (2) auf, und der als Kathode geschaltete Behälter (1) mit seinem radioaktiven Inventar bleibt geschützt.In a geological formation (6), e.g. Salzstock, there are long-term storage containers (1) in which radioactive material such as waste and irradiated fuel assemblies are stored. Sacrificial anodes (2) are arranged in the vicinity of these containers (1), the sacrificial anodes being conductively connected to the containers (1) by means of connections (3). This ensures anodic corrosion protection, which takes effect when moisture enters the deposit due to an event. The electrolyte formed by the water, for example a salt solution, builds up a galvanic chain. As a result, the sacrificial anode (2) dissolves and the container (1) connected as the cathode with its radioactive inventory remains protected.

Als Opferanoden können Metalle mit entsprechenden elektrochemischen Eigenschaften unter Berücksichtigung des jeweiligen Materials der Behälter (1) verwendet werden. Es ist dabei besonders günstig, wenn die Potentialdifferenz zwischen dem Behälter (1) und der Opferanode (2) zwischen 50 und 1000 mV beträgt, da die Auflösung der Opferanode, als Mass für den Korrosionsschutz, vorteilhaft beeinflusst wird. Besonders vorteilhaft ist es, als Opferanode (2) wegen seines elektrochemischen Verhaltens und wegen seiner Verfügbarkeit Zink oder zinkhaltige Formkörper zu verwenden. Die Formkörper können beispielsweise aus Zink und Blei bestehen und pulvermetallurgisch durch Pressen hergestellt sein, da so Potentialverschiebungen, die durch Legierungsbestandteile möglicherweise auftreten könnten, vermieden werden. Durch pulvermetallurgisch hergestellte Opferanoden kann die Auflösungsgeschwindigkeit günstig beeinflusst werden.Metals with corresponding electrochemical properties can be used as sacrificial anodes, taking into account the respective material of the container (1). It is particularly advantageous if the potential difference between the container (1) and the sacrificial anode (2) is between 50 and 1000 mV, since the dissolution of the sacrificial anode, as a measure of the corrosion protection, is advantageously influenced. It is particularly advantageous to use zinc or zinc-containing moldings as sacrificial anode (2) because of its electrochemical behavior and because of its availability. The moldings can consist, for example, of zinc and lead and can be produced by powder metallurgy by pressing, since this avoids potential shifts that could possibly occur due to alloy components. The dissolution rate can be favorably influenced by sacrificial anodes manufactured using powder metallurgy.

Die Opferanoden (2) sind normalerweise in kompakter Geometrie gestaltet. Fallweise sind aber auch andere Geometrien möglich. U.a. können Opferanoden in manchen Fällen auch in Wannen bzw. Überbehältern, die die Behälter (1) aufnehmen, untergebracht oder eingelassen sein.The sacrificial anodes (2) are usually designed in a compact geometry. Other geometries are also possible in some cases. Among other things In some cases, sacrificial anodes can also be accommodated or embedded in tubs or over-containers that hold the containers (1).

Als Material für die leitenden Verbindungen (3) kann mit dem Behälter (1) artgleiches Material verwendet werden. Es ist auch möglich, Graphit als Leitermaterial einzusetzen, das nur zur Ableitung der bei der elektrochemischen Reaktion entstehenden Elektronen dient. Bei der Verwendung mehrerer Opferanoden (2) sind diese zweckmässigerweise untereinander durch leitende Verbindungen (7) verbunden.The same material can be used with the container (1) as the material for the conductive connections (3). It is also possible to use graphite to be used as a conductor material that only serves to derive the electrons generated during the electrochemical reaction. When using several sacrificial anodes (2), these are expediently connected to one another by conductive connections (7).

Um einen Langzeitschutz sicherzustellen, wird zusätzlich in räumlicher Nähe zu den Behältern (1) und den Opferanoden (2) ein Metallsalz (4) in einer metallischen Umhüllung (5) angeordnet, wobei das Metall des Metallsalzes ein gegenüber dem Material des Behälters (1) elektrochemisch edleres Potential aufweist. Als Metallsalz (4), das im Normalzustand nicht mit den Behältern (1) in leitender Verbindung steht, können vorzugsweise Kupfersalze verwendet werden. Im Falle des Eindringens von Elektrolyten in das Lager werden nach einer gewissen Zeit Kupferionen in Lösung gehen. Im Austausch gegen beispielsweise Eisenionen des Behälters (1) können sich diese Kupferionen auf dem Behälter (1) niederschlagen und einen Überzug bilden, der zum Korrosionsschutz beiträgt.In order to ensure long-term protection, a metal salt (4) is additionally arranged in a metallic sheath (5) in close proximity to the containers (1) and the sacrificial anodes (2), the metal of the metal salt being opposite the material of the container (1) has electrochemically more noble potential. Copper salts can preferably be used as the metal salt (4), which is not in conductive connection with the containers (1) in the normal state. If electrolytes penetrate the bearing, copper ions will dissolve after a certain time. In exchange for, for example, iron ions from the container (1), these copper ions can deposit on the container (1) and form a coating that contributes to corrosion protection.

Das Metallsalz (4) ist von einer metallischen Umhüllung (5) umgeben, die ihrerseits elektrochemisch unedler als der Behälter (1) und als das Metallsalz (4), jedoch gleich edel oder edler als die Opferanode (2) ist. Dadurch wird sich beim Eindringen von Elektrolyt in das Lager zunächst die Opferanode (2) und dann erst die Umhüllung (5) auflösen, ehe sich das Metallsalz (4) auflöst.The metal salt (4) is surrounded by a metallic sheath (5), which in turn is less noble than the container (1) and as the metal salt (4), but is equally noble or nobler than the sacrificial anode (2). As a result, when the electrolyte penetrates into the bearing, the sacrificial anode (2) first dissolves and then the casing (5) before the metal salt (4) dissolves.

Die erfindungsgemässe Vorrichtung stellt auf überraschende Weise eine langzeitig wirksame Korrosionsverzögerung am Behälter (1) dar und trägt somit bei, dass bis zum Abklingen der Radioaktivität des Behälterinventars auch im ungünstigsten - an sich normalerweise nicht zu erwartenden - Schadensfall der Abschluss von der Biosphäre sichergestellt ist.The device according to the invention surprisingly represents a long-term effective corrosion delay on the container (1) and thus contributes to the fact that until the radioactivity of the container inventory has decayed, the closure of the biosphere is ensured even in the worst case of damage, which is normally not to be expected.

Claims (4)

1. A device for protecting from corrosion containers of radioactive material which are stored for a long time in suitable geological formations, the containers (1) being conductively connected to reactive anodes (2) by means of connectors (3), characterised in that a metal salt (4) is additionally positioned in the spatial vicinity of the containers (1) and the reactive anode (2) in a metallic sheath (5), the metal of the metal salt (4) having an electrochemical potential which is more resistant in radiation than that of the material of the container (1), and the metallic sheath (5) being electrochemically less resistant to oxidation than the container (1) and the metal salt (4) but equally resistant or more resistant than the reactive anode (2).
2. A device according to claim 1, characterised in that the difference in potential between the container (1) and the reactive anode (2) is from 50 to 1000 mV.
3. A device according to claim 1 and 2, characterised in that, zinc or zinc containing mouldings are used as reactive anode (2).
4. A device according to claim 1 to 3, characterised in that the metal salt (4) consists of copper sulphate.
EP82100590A 1981-02-03 1982-01-28 Device for protecting containers having radioactive materials therein from corrosion Expired EP0057866B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3103558 1981-02-03
DE3103558A DE3103558C2 (en) 1981-02-03 1981-02-03 Corrosion protection

Publications (3)

Publication Number Publication Date
EP0057866A2 EP0057866A2 (en) 1982-08-18
EP0057866A3 EP0057866A3 (en) 1983-03-23
EP0057866B1 true EP0057866B1 (en) 1985-09-25

Family

ID=6123918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82100590A Expired EP0057866B1 (en) 1981-02-03 1982-01-28 Device for protecting containers having radioactive materials therein from corrosion

Country Status (5)

Country Link
US (1) US4784823A (en)
EP (1) EP0057866B1 (en)
JP (1) JPS57178198A (en)
CA (1) CA1200784A (en)
DE (2) DE3103558C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3122328C2 (en) * 1981-06-05 1985-02-21 Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover Device for the corrosion protection of a container for long-term storage of radioactive substances
DE3613816A1 (en) * 1986-04-24 1987-10-29 Pipeline Engineering Ges Fuer Corrosion-protection device for metal storage vessels
CA2817915C (en) 2010-11-16 2020-02-18 Matco Services Inc. Method for protecting electrical poles and galvanized anchors from galvanic corrosion
DE102013213853A1 (en) * 2013-07-16 2015-01-22 Aktiebolaget Skf Corrosion protected bearing component and bearing arrangement
US9896738B2 (en) 2015-05-28 2018-02-20 Savannah River Nuclear Solutions, Llc Process for dissolving aluminum for recovering nuclear fuel

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303778A (en) * 1941-02-06 1942-12-01 Int Nickel Co Soil pipe
US2565544A (en) * 1946-08-28 1951-08-28 Aluminum Co Of America Cathodic protection and underground metallic structure embodying the same
FR957879A (en) * 1946-10-25 1950-02-28
FR957880A (en) * 1946-12-26 1950-02-28
US2478479A (en) * 1947-02-03 1949-08-09 Dow Chemical Co Cored magnesium anode in galvanic protection
US2601214A (en) * 1947-05-02 1952-06-17 Dow Chemical Co Cathodic protection of underground metals
US2480087A (en) * 1948-01-07 1949-08-23 Dow Chemical Co Rapid-wetting gypsum-base backfill for cathodic protection
US2645612A (en) * 1950-06-15 1953-07-14 American Smelting Refining Sacrificial anode
US2758082A (en) * 1952-08-13 1956-08-07 Frederick A Rohrman Cathodic protection
FR1261438A (en) * 1960-04-08 1961-05-19 Contre La Corrosion Soc Et Method and device for evaluating the potential of metal structures at a fixed station
US4196055A (en) * 1975-08-25 1980-04-01 The United States Of America As Represented By The Secretary Of The Navy Method of determining the presence of stray electrical currents in a solution
US4107017A (en) * 1976-11-08 1978-08-15 Sabins Industries, Inc. Anode analyzer
JPS53149136A (en) * 1977-06-01 1978-12-26 Hitachi Cable Ltd Corrosion preventing method for buried metal product
DE2804828A1 (en) * 1978-02-04 1979-08-09 Nukem Gmbh Steel container for storing spent nuclear fuel elements - is internally and/or externally coated with aluminium to inhibit tritium permeation
US4192765A (en) * 1978-02-15 1980-03-11 John N. Bird Container for radioactive nuclear waste materials
US4376753A (en) * 1979-12-20 1983-03-15 Electric Power Research Institute Corrosion protection system for nuclear power plant

Also Published As

Publication number Publication date
CA1200784A (en) 1986-02-18
DE3103558C2 (en) 1985-08-08
US4784823A (en) 1988-11-15
EP0057866A3 (en) 1983-03-23
JPS57178198A (en) 1982-11-02
EP0057866A2 (en) 1982-08-18
DE3103558A1 (en) 1982-10-14
DE3266455D1 (en) 1985-10-31

Similar Documents

Publication Publication Date Title
DE2449588A1 (en) PROCESS FOR PREPARING AQUATIC, RADIOACTIVE WASTE SOLUTIONS FROM NUCLEAR SYSTEMS FOR CONSOLIDATION
EP0057429B1 (en) Multi-layered container for transporting and storing radioactive wastes
EP0057866B1 (en) Device for protecting containers having radioactive materials therein from corrosion
DE2418518A1 (en) STORAGE DEVICE FOR RADIOACTIVE WASTE
DE1521694B2 (en) Galvanic anode
EP0072429B1 (en) Container for long-term storage of radioactive waste
DE3027999A1 (en) METHOD FOR PRODUCING A VESSEL FOR NUCLEAR FUEL AND NUCLEAR FUEL VESSEL
DE2814905A1 (en) ELECTROCHEMICAL STORAGE CELL OR -BATTERY
EP0068152A2 (en) Container for the long-lasting storage of radioactive materials
DE69119590T2 (en) Insoluble anode for electrolysis in aqueous solutions
DE3026249A1 (en) TRANSPORT AND / OR STORAGE CONTAINERS FOR RADIOACTIVE SUBSTANCES
EP0062831B1 (en) Container for a long term storage of radioactive materials
DE68905504T2 (en) CORROSION INHIBITION OF CLOSED, SECOND COOLING WATER CIRCUITS IN CORE SYSTEMS.
DE1905519B2 (en) PROCESS AND DEVICE FOR SEPARATING URANIUM AND PLUTONIUM COMPOUNDS BY LIQUID-LIQUID EXTRACTION
EP0029493B1 (en) Vessel protected against internal corrosion
US3689395A (en) Cathodic protection system and delay-activation anode
DE102010010214A1 (en) Radiation source container and method for extending the sealing time of a radiation source capsule, which is housed in the radiation source container
DE3103494C2 (en) Containers for the storage of radioactive substances
DE8032599U1 (en) CONTAINER FOR STORAGE OF RADIOACTIVE SUBSTANCES
DE897742C (en) Process for the production of radioactive metal foils and wires
DE1497194A1 (en) Photoconductor
DE8102667U1 (en) "Multi-layer container for safe long-term storage of radioactive material"
DE8111040U1 (en) Container for long-term storage of radioactive substances (II)
DE2741015A1 (en) CATHODE PROTECTION DEVICE FOR A CONSTRUCTION INSTALLED IN THE SEA USING SELF-CONSUMING ANODES
AT35667B (en) Material for the carriers of the active masses, as well as for the vessel and the contact devices of collectors with a fixed alkaline electrolyte.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB SE

17P Request for examination filed

Effective date: 19820925

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB SE

REF Corresponds to:

Ref document number: 3266455

Country of ref document: DE

Date of ref document: 19851031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19891211

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900111

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900131

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910131

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82100590.7

Effective date: 19910910