EP0056984B1 - Phased antenna array - Google Patents

Phased antenna array Download PDF

Info

Publication number
EP0056984B1
EP0056984B1 EP82100406A EP82100406A EP0056984B1 EP 0056984 B1 EP0056984 B1 EP 0056984B1 EP 82100406 A EP82100406 A EP 82100406A EP 82100406 A EP82100406 A EP 82100406A EP 0056984 B1 EP0056984 B1 EP 0056984B1
Authority
EP
European Patent Office
Prior art keywords
phase
antenna
individual
aerial
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82100406A
Other languages
German (de)
French (fr)
Other versions
EP0056984A1 (en
Inventor
Ulrich Dr.-Ing. Petri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CESSIONE;TELEFUNKEN SYSTEMTECHNIK GMBH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0056984A1 publication Critical patent/EP0056984A1/en
Application granted granted Critical
Publication of EP0056984B1 publication Critical patent/EP0056984B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present invention relates to a phase-controlled group antenna of the type specified in the preamble of patent claim 1.
  • Such antennas are used advantageously in particular as radar antennas for airspace surveillance.
  • ⁇ n is the size of the phase of the n-th radiator element to be set
  • sin 9 is the sine of the angle of the radiation direction against the normal on the antenna surface
  • x " is the coordinate of the antenna element in the direction parallel to the plane, which is defined by normal and Beam direction is formed
  • 10 0 is the operating wavelength.
  • phase control In the case of radar antennas for airspace surveillance, it is also common to use the phase control not only for beam pivoting, but also for widening the antenna lobe (beam spoiling).
  • a second value cp is added to the control phase ⁇ n, which has the effect that the wave field excited by the antenna elements no longer has a flat phase front, but a curved phase front.
  • a course of this beam broadening phase ⁇ p proportional to the cosine of the distance from the antenna center has proven to be particularly suitable
  • D is the diameter of the group antenna in the x direction and x is measured from the center of the antenna area.
  • Such a group antenna with adjustable phase shifters for pivoting and shaping the directional diagram is known for example from GB-A 2032723.
  • the setting values for the phase shifters are stored in a read memory.
  • phase-controlled group antennas show deviations of the relative phase positions of the individual radiator elements from their target phase value due to manufacturing tolerances or under the influence of temperature fluctuations and when the operating frequency changes.
  • phase deviations it is known from GB-A 1 353617 to determine phase correction values in a computer and to compensate for the phase errors using adjustable phase shifters.
  • the implementation of widened main lobes of group antennas often leads to unsatisfactory results in practice, since the diagrams widened by the curvature of the phase front are sensitive to incorrect deviations in the amplitude of the antenna elements.
  • the curvature of the phase front namely has the effect that the power radiated from the antenna surface is no longer preferably radiated only in one spatial direction, but rather that each antenna element radiates preferably in the direction perpendicular to the phase front at the respective location of the element.
  • the course of the amplitude of the main lobe of the antenna pattern is thus an approximation of the amplitude course of the antenna area.
  • the object of the present invention is to provide a phase-controlled group antenna which eliminates the disruptive effects of the tolerance-related amplitude errors on the diagram without major additional outlay, without having to accept additional power losses.
  • the solution according to the invention is given in the case of an antenna of the type described in the preamble of patent claim 1 by the characterizing features of patent claim 1. Claims 2 and 3 indicate favorable developments of the invention.
  • phase-controlled group antenna already has the necessary phase shifters, only an additional function of the computer used to control the phase shifters (beam stearing unit) is required for the antenna according to the invention.
  • the aim of this synthesis is to find the phase profile for a given distribution of the RF power over the antenna cross section P A (x), which causes this power to be radiated in the far field according to a desired distribution function P F (9), that is to say that an antenna diagram with the desired profile as a function of the direction angle is achieved in the sectional planes under consideration. Because of the reciprocity, all versions also apply analogously to the receiving antenna.
  • D is the diameter of the antenna and the direction in which the desired radiation should begin.
  • the distribution of the power over the antenna cross-section can be determined by measurement on the mounted antenna. Either you measure it at the inputs of the exciter - in this case the integral has to be replaced by the sum of the power of the exciter - or directly in front of the exciter on a near field measuring station.
  • the mean power of a row of elements is to be taken in each case across the planes of the radiation direction under consideration.
  • the desired power distribution in the far field depends on the application.
  • a sector diagram is often required: However, because of the diffraction effects, this ideal desired diagram leads to implementations with an oscillating diagram. It is therefore advisable to choose a similar one instead of the ideal sector function (4), which has no sharp jumps. If the use of antennas does not require a different power distribution in the far field, a different desired diagram should be selected accordingly (e.g. cosecans in the square).
  • a radiation direction 8 (x) can be assigned by numerically integrating (3) each coordinate value x on the antenna aperture.
  • the numerical integration of (5) provides the setting value for the control phase of the element at location x n .
  • phase values are stored as a constant in the computer used to control the phase shifter.
  • the phase values for each frequency must be determined and saved separately.
  • Fig. 1 shows an example of a linear group of dipoles 1-6 with the coordinates X 1 -X 6 ' which are excited by a transmitter T via a feed line Sp.
  • the phases ⁇ 1 - ⁇ 6 can be set by electronic phase shifters PS.
  • FIG. 2A shows the optical beam path and curves of the same phase in front of the group antenna according to FIG. 1.
  • the phase setting emits a curved wavefront from the antenna aperture.
  • the radiated power runs parallel to the optical beams S, which are perpendicular to the curves of the same phase Ph, in the spatial direction 9.
  • the angular position of the beams 9 (x) must be such that the power density per angular unit corresponds to the required profile P F ( 9) corresponds.
  • FIG. 2B An example of such a desired power distribution in the far field, a sector diagram, is shown in FIG. 2B.
  • FIG. 3A shows (in a Cartesian representation) a cross section through a diagram of a serially fed group antenna without the correction according to the invention of the amplitude errors via the setting of the control phases.
  • the asymmetrical diagram distortions are clearly visible, which can lead to considerable angle measurement errors when the antenna is operated.
  • 3B shows the diagram corrected using the concept of the invention on the same antenna.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

Die vorliegende Erfindung bezieht sich auf eine phasengesteuerte Gruppenantenne der im Oberbegriff des Patentanspruchs 1 angegebenen Art. Derartige Antennen finden insbesondere als Radarantennen für Luftraumüberwachung vorteilhafte Anwendung.The present invention relates to a phase-controlled group antenna of the type specified in the preamble of patent claim 1. Such antennas are used advantageously in particular as radar antennas for airspace surveillance.

Es ist bekannt, dass sich die Richtung der Antennenkeule von Gruppenantennen durch Veränderung der Phase der Antennenelemente trägheitslos verändern lässt. Bei einem ebenen oder linearen Array sind die Werte der Phasen der Ströme in den einzelnen Antennenelementen nach der folgenden bekannten Formel einzustellen:

Figure imgb0001
It is known that the direction of the antenna lobe of group antennas can be changed without inertia by changing the phase of the antenna elements. In the case of a flat or linear array, the values of the phases of the currents in the individual antenna elements must be set using the following known formula:
Figure imgb0001

In dieser Formel ist ϕn die Grösse der einzustellenden Phase des n-ten Strahlerelements, sin 9 ist der Sinus des Winkels der Abstrahlrichtung gegen die Normale auf der Antennenfläche, x" ist die Koordinate des Antennenelementes in der Richtung parallel zur Ebene, die durch Normale und Abstrahlrichtung gebildet wird, und 100 ist die Betriebswellenlänge.In this formula, ϕn is the size of the phase of the n-th radiator element to be set, sin 9 is the sine of the angle of the radiation direction against the normal on the antenna surface, x " is the coordinate of the antenna element in the direction parallel to the plane, which is defined by normal and Beam direction is formed, and 10 0 is the operating wavelength.

Bei Radarantennen zur Luftraumüberwachung ist es darüber hinaus üblich, die Phasensteuerung nicht nur zur Strahlschwenkung, sondern auch zur Verbreiterung der Antennenkeule (beam spoiling) zu benutzen. Dabei wird der Steuerungsphase ϕn ein zweiter Wert cp hinzuaddiert, der bewirkt, dass das von den Antennenelementen angeregte Wellenfeld nicht mehr eine ebene Phasenfront, sondern eine gekrümmte Phasenfront aufweist. Als besonders geeignet hat sich z.B. ein Verlauf dieser Keulenverbreiterungsphase ϕp proportional dem Cosinus des Abstandes von der Antennenmitte erwiesen

Figure imgb0002
In the case of radar antennas for airspace surveillance, it is also common to use the phase control not only for beam pivoting, but also for widening the antenna lobe (beam spoiling). A second value cp is added to the control phase ϕn, which has the effect that the wave field excited by the antenna elements no longer has a flat phase front, but a curved phase front. A course of this beam broadening phase ϕp proportional to the cosine of the distance from the antenna center has proven to be particularly suitable
Figure imgb0002

Dabei ist D der Durchmesser der Gruppenantenne in x-Richtung und x werde von der Mitte derAntennenfläche aus gemessen.D is the diameter of the group antenna in the x direction and x is measured from the center of the antenna area.

Eine derartige Gruppenantenne mit einstellbaren Phasenschiebern zur Schwenkung und Formung des Richtdiagramms ist beispielsweise aus GB-A 2032723 bekannt. Die Einstellwerte für die Phasenschieber sind in einem Lesespeicher abgelegt.Such a group antenna with adjustable phase shifters for pivoting and shaping the directional diagram is known for example from GB-A 2032723. The setting values for the phase shifters are stored in a read memory.

Die Speisenetzwerke von phasengesteuerten Gruppenantennen zeigen infolge von Fertigungstoleranzen oder unter dem Einfluss von Temperaturschwankung sowie beim Wechsel der Betriebsfrequenz Abweichungen der relativen Phasenlagen der einzelnen Strahlerelemente von ihrem Sollphasenwert. Zur Kompensation dieser Phasenabweichungen ist es aus GB-A 1 353617 bekannt, in einem Rechner Phasenkorrekturwerte zu ermitteln und über einstellbare Phasenschieber die Phasenfehler auszugleichen.The feed networks of phase-controlled group antennas show deviations of the relative phase positions of the individual radiator elements from their target phase value due to manufacturing tolerances or under the influence of temperature fluctuations and when the operating frequency changes. To compensate for these phase deviations, it is known from GB-A 1 353617 to determine phase correction values in a computer and to compensate for the phase errors using adjustable phase shifters.

Darüber hinaus führt die Realisierung verbreiterter Hauptkeulen von Gruppenantennen in der Praxis vielfach zu unbefriedigenden Ergebnissen, da die durch Krümmung der Phasenfront verbreiterten Diagramme empfindlich bezüglich fehlerhaften Abweichungen der Amplitude der Antennenelemente sind. Die Krümmung der Phasenfront bewirkt nämlich, dass die von der Antennenfläche abgestrahlte Leistung nicht mehr vorzugsweise nur in eine Raumrichtung abgestrahlt wird, sondern dass jedes Antennenelement vorzugsweise in die Richtung der Senkrechten auf die Phasenfront am jeweiligen Ort des Elements strahlt. Damit ist der Verlauf der Amplitude der Hauptkeule des Antennendiagramms angenähert ein Abbild des Amplitudenverlaufs über die Antennenfläche. Nun weisen Leitungssysteme zur Speisung der Antennenelemente vielfach toleranzbedingte oder sogar systematische Fehler auf, insbesondere die wegen ihrer Kompaktheit bevorzugten seriellen Speisungen, vor allem bei breitbandiger Verwendung. Dies hat zur Folge, dass die erzielten Antennenkeulen verformt sind, welches wiederum in der Radaranwendung zu fehlerhaften Richtungsbestimmungen führt.In addition, the implementation of widened main lobes of group antennas often leads to unsatisfactory results in practice, since the diagrams widened by the curvature of the phase front are sensitive to incorrect deviations in the amplitude of the antenna elements. The curvature of the phase front namely has the effect that the power radiated from the antenna surface is no longer preferably radiated only in one spatial direction, but rather that each antenna element radiates preferably in the direction perpendicular to the phase front at the respective location of the element. The course of the amplitude of the main lobe of the antenna pattern is thus an approximation of the amplitude course of the antenna area. Now line systems for feeding the antenna elements often have tolerance-related or even systematic errors, in particular the serial feeds preferred because of their compactness, especially in the case of broadband use. The result of this is that the antenna lobes obtained are deformed, which in turn leads to incorrect directional determinations in the radar application.

Eine Einschränkung der Toleranzen würde zu einem erheblichen Aufwand in der Entwicklung und Produktion solcher Speisungen führen. Eine nachträgliche Korrektur der Amplitudenwerte, beispielsweise über ein aus der DE-A 2113856 bekanntes steuerbares Speisenetzwerk in Form sogenannter Matrixsysteme, mit dem eine Änderung der Aperturbelegung einer Gruppenantenne möglich ist, wäre mit erheblichem Aufwand verbunden und nur durch zusätzliche Leistungsverluste zu erkaufen.A limitation of the tolerances would lead to a considerable effort in the development and production of such feeds. A subsequent correction of the amplitude values, for example via a controllable feed network in the form of so-called matrix systems known from DE-A 2113856, with which a change in the aperture assignment of a group antenna is possible, would be associated with considerable effort and could only be purchased through additional power losses.

Aufgabe der vorliegenden Erfindung ist es, eine phasengesteuerte Gruppenantenne anzugeben, die ohne grösseren zusätzlichen Aufwand die störenden Auswirkungen der toleranzbedingten Amplitudenfehler auf das Diagramm beseitigt, ohne zusätzliche Leistungsverlsute in Kauf nehmen zu müssen. Die erfindungsgemässe Lösung ist bei einer Antenne der im Oberbegriff des Patentanspruchs 1 beschriebenen Art durch die kennzeichnenden Merkmale des Patentanspruchs 1 gegeben. Die Ansprüche 2 und 3 geben günstige Weiterbildungen der Erfindung an.The object of the present invention is to provide a phase-controlled group antenna which eliminates the disruptive effects of the tolerance-related amplitude errors on the diagram without major additional outlay, without having to accept additional power losses. The solution according to the invention is given in the case of an antenna of the type described in the preamble of patent claim 1 by the characterizing features of patent claim 1. Claims 2 and 3 indicate favorable developments of the invention.

Wesentlich an der Erfindung ist also die Kompensation der Auswirkung der fehlerhaften Amplituden durch Einstellung der Steuerphasen nach Massgabe der gemessenen Amplitudenverteilung. Nachdem die phasengesteuerte Gruppenantenne ohnehin über die dazu notwendigen Phasenschieber verfügt, ist für die erfindungsgemässe Antenne nur eine zusätzliche Funktion des zur Steuerung der Phasenschieber verwendeten Rechners (Beam Stearing Unit) nötig.It is therefore essential to the invention to compensate for the effect of the faulty amplitudes by adjusting the control phases in accordance with the measured amplitude distribution. Since the phase-controlled group antenna already has the necessary phase shifters, only an additional function of the computer used to control the phase shifters (beam stearing unit) is required for the antenna according to the invention.

Im folgenden wird eine besonders vorteilhafte Ausführung des Erfindungsgedankens unter Bezugnahme auf die Abbildungen eingehend beschrieben.A particularly advantageous embodiment of the inventive concept is described in detail below with reference to the figures.

Grundlage der nachfolgenden Herleitung einer Beziehung zwischen gemessenem Amplitudenverlauf und Einstellwerten für die Phaseneinstellung ist die Anwendung der geometrischen Optik auf die Synthese von Antennendiagrammen durch Gestaltung des Phasenverlaufs, wie sie z.B. für die Berechnung von Reflektorantennen üblich und z.B. in S. Silver: Microwave Antenna Theory and Design, McGraw-Hill 1949, pp. 497 ff. beschrieben ist.Basis of the subsequent derivation of a relationship between the measured amplitude curve and setting values for the phase setting lung is the application of geometric optics to the synthesis of antenna diagrams by designing the phase curve, as is customary, for example, for the calculation of reflector antennas and, for example, in S. Silver: Microwave Antenna Theory and Design, McGraw-Hill 1949, pp. 497 ff. Is described.

Ziel dieser Synthese ist es, zu einer gegebenen Verteilung der HF-Leistung über den Antennenquerschnitt PA (x) den Phasenverlauf zu finden, der bewirkt, dass diese Leistung gemäss einer gewünschten Verteilungsfunktion PF (9) im Fernfeld abgestrahlt wird, d.h., dass in den betrachteten Schnittebenen ein Antennendiagramm mit gewünschtem Verlauf in Abhängigkeit zum Richtungswinkel erzielt wird. Wegen der Reziprozität gelten grundsätzlich alle Ausführungen auch analog für die Empfangsantenne.The aim of this synthesis is to find the phase profile for a given distribution of the RF power over the antenna cross section P A (x), which causes this power to be radiated in the far field according to a desired distribution function P F (9), that is to say that an antenna diagram with the desired profile as a function of the direction angle is achieved in the sectional planes under consideration. Because of the reciprocity, all versions also apply analogously to the receiving antenna.

Da, wie bereits dargelegt, bei diesem Verfahren der Diagrammsynthese jede Zone der Antenne hauptsächlich in eine bestimmte Raumrichtung strahlt, kann aus dem Energierhaltungssatz folgende Zuordnung der Querschnittskoordinaten x zum Winkel gefunden werden

Figure imgb0003
Since, as already explained, with this method of diagram synthesis, each zone of the antenna mainly radiates in a certain spatial direction, the following assignment of the cross-sectional coordinates x to the angle can be found from the energy conservation theorem
Figure imgb0003

D sei der Durchmesser der Antenne und die Richtung, bei der die gewünschte Abstrahlung beginnen soll. Die Verteilung der Leistung über den Antennenquerschnitt lässt sich durch Messung an der montierten Gruppenantenne bestimmen. Entweder misst man sie an den Eingängen der Erreger - in diesem Fall ist das Integral durch die Summe über die Leistung der Erreger zu ersetzen - oder direkt vor den Erregern auf einem Nahfeldmessplatz.D is the diameter of the antenna and the direction in which the desired radiation should begin. The distribution of the power over the antenna cross-section can be determined by measurement on the mounted antenna. Either you measure it at the inputs of the exciter - in this case the integral has to be replaced by the sum of the power of the exciter - or directly in front of the exciter on a near field measuring station.

Falls es sich nicht um eine lineare Antennengruppe, sondern um ein zweidimensionales Array handelt, ist jeweils die mittlere Leistung einerZeile von Elementen quer zu Ebenen der betrachteten Abstrahlrichtung zu nehmen.If it is not a linear antenna group, but a two-dimensional array, the mean power of a row of elements is to be taken in each case across the planes of the radiation direction under consideration.

Die gewünschte Leistungsverteilung im Fernfeld hängt vom Anwendungszweck ab. Vielfach wird ein Sektordiagramm gefordert:

Figure imgb0004
Dieses ideale Wunschdiagramm führt allerdings wegen der Beugungseffekte zu Realisierungen mit oszillierendem Diagrammverlauf. Daher empfiehlt es sich, anstelle der idealen Sektorfunktion (4) eine dieser ähnliche zu wählen, die keine scharfen Sprünge aufweist. Wenn die Antennenverwendung keine andere Leistungsverteilung im Fernfeld erfordert, ist entsprechend ein anderes Wunschdiagramm zu wählen (etwa Cosecans im Quadrat).The desired power distribution in the far field depends on the application. A sector diagram is often required:
Figure imgb0004
However, because of the diffraction effects, this ideal desired diagram leads to implementations with an oscillating diagram. It is therefore advisable to choose a similar one instead of the ideal sector function (4), which has no sharp jumps. If the use of antennas does not require a different power distribution in the far field, a different desired diagram should be selected accordingly (e.g. cosecans in the square).

Sind beide Funktionen PA und PF gegeben, so lässt sich durch numerische Integration von (3) jedem Koordinatenwert x auf der Antennenapertur eine Abstrahlrichtung 8(x) zuordnen. Die gesuchten Phasen ϕ B = (p (xn) ergeben sich aus der Tatsache, dass die Abstrahlrichtung senkrecht auf der Phasenfront steht, d.h. bei Zählung des Winkels von der Normalen auf die x-Richtung aus ist die Ableitung der Phase nach den Koordinaten x gleich dem Tangens des Winkels

Figure imgb0005
Die numerische Integration von (5)
Figure imgb0006
liefert direkt den Einstellwert für die Steuerphase des Elements am Ort xn.If both functions P A and P F are given, a radiation direction 8 (x) can be assigned by numerically integrating (3) each coordinate value x on the antenna aperture. The sought phases ϕ B = (p (x n ) result from the fact that the direction of radiation is perpendicular to the phase front, ie when the angle is counted from the normal to the x direction, the phase is derived from the coordinates x equal to the tangent of the angle
Figure imgb0005
The numerical integration of (5)
Figure imgb0006
provides the setting value for the control phase of the element at location x n .

Diese Phasenwerte werden in dem zur Steuerung des Phasenschiebers verwendeten Rechner als Konstante gespeichert.These phase values are stored as a constant in the computer used to control the phase shifter.

Soweit die Radaranlage in mehreren Frequenzen betrieben wird und die Strahlungsamplituden der Elemente sich über die Frequenz erheblich ändern, sind die Phasenwerte für jede Frequenz gesondert zu bestimmen und abzuspeichern.If the radar system is operated in several frequencies and the radiation amplitudes of the elements change significantly over the frequency, the phase values for each frequency must be determined and saved separately.

Fig. 1 zeigt ein Beispiel für eine lineare Gruppe von Dipolen 1-6 mit den Koordinaten X1-X6' die von einem Sender T über eine Speiseleitung Sp angeregt werden. Die Phasen ϕ16 können durch elektronische Phasenschieber PS eingestellt werden. Vor den Dipolen ergibt sich eine Verteilung der HF-Leistung PA(x), die z.B. mit einem Testempfänger R gemessen werden kann.Fig. 1 shows an example of a linear group of dipoles 1-6 with the coordinates X 1 -X 6 ' which are excited by a transmitter T via a feed line Sp. The phases ϕ 16 can be set by electronic phase shifters PS. In front of the dipoles there is a distribution of the RF power P A (x), which can be measured with a test receiver R, for example.

Fig. 2A zeigt den optischen Strahlengang und Kurven gleicher Phase vor der Gruppenantenne nach Fig. 1. Durch die Phaseneinstellung geht von der Antennenapertur eine gekrümmte Wellenfront aus. Die abgestrahlte Leistung verläuft parallel zu den optischen Strahlen S, die senkrecht auf den Kurven gleicher Phase Ph stehen, in die Raumrichtung 9. Die Winkellage der Strahlen 9(x) hat so zu erfolgen, dass die Leistungsdichte pro Winkeleinheit dem geforderten Verlauf PF(9) entspricht. Ein Beispiel für eine solche gewünschte Leistungsverteilung im Fernfeld, ein Sektordiagramm, ist in Fig. 2B dargestellt.FIG. 2A shows the optical beam path and curves of the same phase in front of the group antenna according to FIG. 1. The phase setting emits a curved wavefront from the antenna aperture. The radiated power runs parallel to the optical beams S, which are perpendicular to the curves of the same phase Ph, in the spatial direction 9. The angular position of the beams 9 (x) must be such that the power density per angular unit corresponds to the required profile P F ( 9) corresponds. An example of such a desired power distribution in the far field, a sector diagram, is shown in FIG. 2B.

Die Fig.3A zeigt (in kartesischer Darstellung) einen Querschnitt durch ein Diagramm einer seriell gespeisten Gruppenantenne ohne die erfindungsgemässe Korrektur der Amplitudenfehler über die Einstellung der Steuerphasen. Deutlich erkennbar sind die asymmetrischen Diagrammverzerrungen, die beim Betrieb der Antenne zu beträchtlichen Winkelmessfehlern führen können. Fig. 3B zeigt demgegenüber das unter Anwendung des Erfindungsgedankens auf dieselbe Antenne korrigierte Diagramm.FIG. 3A shows (in a Cartesian representation) a cross section through a diagram of a serially fed group antenna without the correction according to the invention of the amplitude errors via the setting of the control phases. The asymmetrical diagram distortions are clearly visible, which can lead to considerable angle measurement errors when the antenna is operated. 3B, on the other hand, shows the diagram corrected using the concept of the invention on the same antenna.

Claims (3)

1. Phase-controlled aerial array with a plurality of individual radiator elements or lines of radiator elements each with a respective phase shifter (PS), which are connected through a common distributor network with a common feed line (Sp), wherein the target distribution of the relative amplitudes of the individual radiator elements (1 to 6) is determined by the location (X1 to Xs) of the individual radiator element within the radiator array and by the desired aerial polar diagram, characterised thereby, that a readstore for the individual setting of the controllable phase shifters has setting values stored therein, which are so dimensioned in accordance with the deviation of the measured course of the actual relative amplitudes of the individual radiator elements (1 to 6) from the target distribution that the setting value ϕ for the control of the phases of the nth radiator element is connected by the relationship
Figure imgb0009
with the measured amplitude distribution PA (x) in the aerial aperture in dependence on the co-ordinates x extending parallely to the polar diagram section being considered and the desired polar diagram shape PF (-9) in dependence on the angle of the beam direction 9, wherein 9 (x) is so defined that
Figure imgb0010
and wherein x" is the co-ordinate of the nth aerial element, D is the diameter of the aerial aperture, -is the angle, at which the radiation shall start, and λo is the operating wave length and the phase displacement ϕconst is as desired, but equal for all radiator elements.
2. Phase-controlled aerial array according to claim 1, characterised thereby, that the controllable phase shifters are at the same time still connected with the control equipment for the electronic pivotation of the polar diagram.
3. Phase-controlled aerial array according to one of the claims 1 or 2, characterised thereby, that for the mode of operation with several transmission frequencies, an individual set of setting values is stored for each transmission frequency.
EP82100406A 1981-01-23 1982-01-21 Phased antenna array Expired EP0056984B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3102110 1981-01-23
DE3102110A DE3102110A1 (en) 1981-01-23 1981-01-23 PHASE CONTROLLED GROUP ANTENNA

Publications (2)

Publication Number Publication Date
EP0056984A1 EP0056984A1 (en) 1982-08-04
EP0056984B1 true EP0056984B1 (en) 1985-11-06

Family

ID=6123176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82100406A Expired EP0056984B1 (en) 1981-01-23 1982-01-21 Phased antenna array

Country Status (2)

Country Link
EP (1) EP0056984B1 (en)
DE (2) DE3102110A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2032723A (en) * 1978-10-26 1980-05-08 Marconi Co Ltd Synthetic aperture radar

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2113856C2 (en) * 1970-08-12 1983-12-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Scanning radar aerial with vertically movable field - varied automatically according to phase conditions set at aerial aperture by height error and elevation
GB1353617A (en) * 1970-08-22 1974-05-22 Emi Ltd Electronically steered aerial arrays
DE2110231A1 (en) * 1971-03-04 1972-09-14 Licentia Gmbh Antenna system
US3903524A (en) * 1973-05-25 1975-09-02 Hazeltine Corp Antenna system using variable phase pattern synthesis
DE2612147A1 (en) * 1976-03-23 1977-10-06 Siemens Ag Phase deflection aerial array - adds wanted focussing phase from memory to computed direction phase to control phase shifters
DE2612148A1 (en) * 1976-03-23 1977-10-06 Siemens Ag Phase calculating circuit for lobe swinging radar antenna - has control data generator between central computer and phase calculator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2032723A (en) * 1978-10-26 1980-05-08 Marconi Co Ltd Synthetic aperture radar

Also Published As

Publication number Publication date
DE3102110A1 (en) 1982-08-19
EP0056984A1 (en) 1982-08-04
DE3267204D1 (en) 1985-12-12

Similar Documents

Publication Publication Date Title
DE112006003644B4 (en) radar device
DE102011088045B4 (en) Phased array antenna and phase calibration method
DE69018906T2 (en) Phase controlled group antenna with temperature compensation.
DE19648203C2 (en) Multi-beam automotive radar system
DE102011088046B4 (en) Phased array antenna and phase calibration method
DE69933145T2 (en) Calibration for an adaptive array antenna
EP0028969B1 (en) Omnidirectional side lobe sum and difference beam forming network for a multielement antenna array and method for determining the weights thereof
DE102018207718A1 (en) Method for phase calibration of high-frequency components of a radar sensor
DE112019006800T5 (en) Antenna device and radar device
DE69103879T2 (en) COLLISION AVOIDING SYSTEM WITH AUTOMATIC CALIBRATION.
EP3039444B1 (en) Radar sensor for motor vehicles
US4276551A (en) Electronically scanned antenna
DE102019120460A1 (en) HIKING WAVE IMAGE DISTRIBUTOR FOR A HIGH-RESOLUTION RADAR SYSTEM
EP3467450A1 (en) Radar fill level measuring device with a radar system on chip
EP2616840A1 (en) Radar sensor for motor vehicles, especially lca sensor
DE102019212553B4 (en) Radar sensor, motor vehicle and method for operating a radar sensor
DE69625949T2 (en) Group antenna device
DE69008736T2 (en) BROADBAND CIRCULAR PHASE CONTROLLED GROUP ANTENNA.
EP3701280B1 (en) Radar sensor having a plurality of main beam directions
DE2306407C3 (en) Antenna system with high angular resolution for radar devices with separate transmitting and receiving antennas
EP0056984B1 (en) Phased antenna array
EP2732307B1 (en) Angular resolving radar sensor for motor vehicles
DE102005011128B4 (en) Calibration of an electronically controllable planar antenna and electronically controllable antenna with a probe in the reactive near field
EP0935825B1 (en) Radar sensor for a vehicle
EP0023606B1 (en) Antenna system for locating the position of a microwave signal source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT NL

17P Request for examination filed

Effective date: 19830119

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3267204

Country of ref document: DE

Date of ref document: 19851212

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: TELEFUNKEN SYSTEMTECHNIK GMBH

NLS Nl: assignments of ep-patents

Owner name: TELEFUNKEN SYSTEMTECHNIK GMBH TE ULM A.D. DONAU, B

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;TELEFUNKEN SYSTEMTECHNIK GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940131

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950131

Ref country code: CH

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990115

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990129

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990317

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000121

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST