EP0056984A1 - Phased antenna array - Google Patents

Phased antenna array Download PDF

Info

Publication number
EP0056984A1
EP0056984A1 EP82100406A EP82100406A EP0056984A1 EP 0056984 A1 EP0056984 A1 EP 0056984A1 EP 82100406 A EP82100406 A EP 82100406A EP 82100406 A EP82100406 A EP 82100406A EP 0056984 A1 EP0056984 A1 EP 0056984A1
Authority
EP
European Patent Office
Prior art keywords
phase
antenna
individual
radiator
radiator elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82100406A
Other languages
German (de)
French (fr)
Other versions
EP0056984B1 (en
Inventor
Ulrich Dr.-Ing. Petri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CESSIONE;TELEFUNKEN SYSTEMTECHNIK GMBH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of EP0056984A1 publication Critical patent/EP0056984A1/en
Application granted granted Critical
Publication of EP0056984B1 publication Critical patent/EP0056984B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present invention relates to a phase-controlled group antenna of the type specified in the preamble of patent claim 1.
  • Such antennas are used advantageously in particular as radar antennas for airspace surveillance.
  • ⁇ n is the size of the phase of the nth radiator element to be set
  • sin ⁇ is the sine of the angle of the radiation direction ⁇ against the normal on the antenna surface
  • x n is the coordinate of the antenna element in the direction parallel to the planes through normal and radiation direction is formed
  • ⁇ o is the wavelength
  • phase control In the case of radar antennas for airspace surveillance, it is also common to use the phase control not only for beam pivoting, but also for widening the antenna lobe (beam spoiling).
  • the control phase ⁇ n becomes a second value added, which has the effect that the wave field excited by the antenna elements no longer has a flat phase front, but a curved phase front.
  • a course of this club broadening phase proven proportional to the cosine of the distance from the antenna center D is the diameter of the group antenna in the x direction and x is measured from the center of the antenna area.
  • the implementation of these widened antenna lobes often leads to unsatisfactory results, since the diagrams widened by the curvature of the phase front are sensitive to incorrect deviations in the amplitude of the antenna elements.
  • the curvature of the phase front namely has the effect that the power radiated by the antenna surface is no longer preferably radiated only in one spatial direction, but rather that each antenna element preferably radiates in the direction of the perpendicular to the phase front at the respective location of the element.
  • the course of the amplitude of the main lobe of the antenna pattern is approximately a replica of the A mplitudenverlaufs over the antenna surface.
  • Line systems for feeding the antenna elements now often have tolerance-related or even systematic errors, in particular the serial feeds preferred because of their compactness, especially in the case of broadband use.
  • the result of this is that the antenna lobes obtained are deformed, which in turn leads to incorrect directional determinations in the radar application.
  • the object of the present invention is to provide a phase-controlled group antenna which eliminates the disruptive effects of the tolerance-related amplitude errors on the diagram without major additional outlay, without having to accept additional power losses.
  • Claim 2 describes a particularly advantageous embodiment of the inventive concept.
  • Claims 3 and 4 indicate favorable developments of the invention.
  • the basis for the subsequent derivation of a relationship between the measured amplitude curve and setting values for the phase setting is the application of the geometric optics to the synthesis of antenna diagrams by designing the phase curve, as described for. B. usual for the calculation of reflector antennas and z. B. in S. Silver: Microwave Antenna Theory and Design, Mc.Graw Hill 1949, pp. 497 ff. Is described.
  • the aim of this synthesis is to find the phase profile for a given distribution of the RF power over the antenna cross section P A (x), which causes this power to be radiated in the far field according to a desired distribution function P F (1 ⁇ ), ie an antenna diagram with the desired profile as a function of the directional angle ⁇ is achieved in the sectional planes considered. Because of the reciprocity, all versions also apply analogously to the receiving antenna.
  • each zone of the antenna mainly radiates in a certain spatial direction
  • the following assignment of the cross-sectional coordinates x to the angle ⁇ can be found from the energy conservation theorem D is the diameter of the antenna and ⁇ o the direction in which the desired radiation should begin.
  • the distribution of the power over the antenna cross-section can be determined by measurement on the mounted antenna. Either they are measured at the inputs of the pathogens - in this case the integral is to be replaced by the sum of the power of the pathogens - or directly in front of the pathogens on a near-field measuring station.
  • the mean power of a row of elements is to be taken in each case across the planes of the radiation direction under consideration.
  • the desired power distribution in the far field depends on the application.
  • a sector diagram is often required: However, because of the diffraction effects, this ideal desired diagram leads to implementations with an oscillating diagram. It is therefore advisable to choose a similar one instead of the ideal sector function (4), which does not show any sharp jumps. If the use of antennas does not require a different power distribution in the far field, a different desired diagram should be selected accordingly (e.g. cosecans in the square).
  • a radiation direction ⁇ (x) can be assigned by numerically integrating (3) each coordinate value x on the antenna aperture.
  • the phases you are looking for ⁇ (x) result from the fact that the radiation direction is perpendicular to the phase front, ie when the angle ⁇ is counted from the normal to the x direction, the derivation of the phase according to the coordinates x is equal to the tangent of the Angle ⁇
  • the numerical integration of (5) provides the setting value for the control phase of the element at location x.
  • phase values are stored as a constant in the computer used to control the phase shifter. If the radar system is operated in several frequencies and the radiation amplitudes of the elements change significantly over the frequency, the phase values for each frequency must be determined and saved separately.
  • FIG. 1 shows an example of a linear group of dipoles (1-6) with the coordinates x I -x 6 , which are excited by a transmitter T via a feed line S.
  • the phases ⁇ 1 - ⁇ 6 can be set by electronic phase shifters.
  • FIG. 2A shows the optical beam path and curves of the same phase in front of the group antenna according to FIG. 1. Due to the phase setting, the antenna aperture A starts from a curved wavefront. The radiated power runs parallel to the optical beams S, which are perpendicular to the curves of the same phase P, in the spatial direction ⁇ . The angular position of the rays ⁇ (x) must be such that the power density per angular unit corresponds to the required profile P F ( ⁇ ). An example of such a desired power distribution in the far field, a sector diagram, is shown in FIG. 2B.
  • FIG. 3A shows (in Cartesian representation) a cross section through a diagram of a serially fed group antenna without the correction according to the invention of the amplitude errors via the setting of the control phases.
  • the asymmetrical diagram distortions are clearly recognizable, which can lead to considerable angle measurement errors when operating the antenna.
  • FIG. 3B shows the diagram corrected using the concept of the invention on the same antenna.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

1. Phase-controlled aerial array with a plurality of individual radiator elements or lines of radiator elements each with a respective phase shifter (PS), which are connected through a common distributor network with a common feed line (Sp), wherein the target distribution of the relative amplitudes of the individual radiator elements (1 to 6) is determined by the location (X1 to X6 ) of the individual radiator element within the radiator array and by the desired aerial polar diagram, characterised thereby, that a readstore for the individual setting of the controllable phase shifters has setting values stored therein, which are so dimensioned in accordance with the deviation of the measured course of the actual relative amplitudes of the individual radiator elements (1 to 6) from the target distribution that the setting value phi n-B for the control of the phases of the n**th radiator element is connected by the relationship see diagramm : EP0056984,P4,F1 with the measured amplitude distribution PA (x) in the aerial aperture in dependence on the co-ordinates x extending parallely to the polar diagram section being considered and the desired polar diagram shape PF (delta) in dependence on the angle of the beam direction delta, wherein delta (x) is so defined that see diagramm : EP0056984,P4,F3 and wherein xn is the co-ordinate of the n**th aerial element, D is the diameter of the aerial aperture, -delta 0 is the angle, at which the radiation shall start, and lambda 0 is the operating wave length and the phase displacement phi const is as desired, but equal for all radiator elements.

Description

Die vorliegende Erfindung bezieht sich auf eine phasengesteuerte Gruppenantenne der im Oberbegriff des Patentanspruchs 1 angegebenen Art. Derartige Antennen finden insbesondere als Radarantennen für Luftraumüberwachung vorteilhafte Anwendung.The present invention relates to a phase-controlled group antenna of the type specified in the preamble of patent claim 1. Such antennas are used advantageously in particular as radar antennas for airspace surveillance.

Es ist bekannt, daß sich die Richtung der Antennenkeule von Gruppenantennen durch Veränderung der Phase der Antennenelemente trägheitslos verändern läßt. Bei einem ebenen oder linearen Array sind die Werte der Phasen der Ströme in den einzelnen Antennenelementen nach der folgenden bekannten Formel einzustellen:

Figure imgb0001
In dieser Formel ist ϕn die Größe der einzustellenden Phase des n-ten Strahlerelements, sin ϑ ist der Sinus des Winkels der Abstrahlrichtung ϑ gegen die Normale auf der Antennenfläche, x n ist die Koordinate des Antennenelementes in der Richtung parallel zur Ebenen die durch Normale und Abstrahlrichtung gebildet wird und λo ist die Wellenlänge.It is known that the direction of the antenna lobe of group antennas can be changed without inertia by changing the phase of the antenna elements. In the case of a flat or linear array, the values of the phases of the currents in the individual antenna elements must be set using the following known formula:
Figure imgb0001
In this formula, ϕ n is the size of the phase of the nth radiator element to be set, sin ϑ is the sine of the angle of the radiation direction ϑ against the normal on the antenna surface, x n is the coordinate of the antenna element in the direction parallel to the planes through normal and radiation direction is formed and λ o is the wavelength.

Bei Radarantennen zur Luftraumüberwachung ist es darüber hinaus üblich, die Phasensteuerung nicht nur zur Strahlschwenkung, sondern auch zur Verbreiterung der Antennenkeule (beam spoiling) zu benutzen. Dabei wird der Steuerungsphase ϕn ein zweiter Wert

Figure imgb0002
hinzuaddiert, der be- wirkt, daß das von den Antennenelementen angeregte Wellenfeld nicht mehr eine ebene Phasenfront, sondern eine gekrümmte Phasenfront aufweist. Als besonders geeignet hat sich z. B. ein Verlauf dieser Keulenverbreiterungsphase
Figure imgb0003
proportional dem Cosinus des Abstands von der Antennenmitte erwiesen
Figure imgb0004
Dabei ist D der Durchmesser der Gruppenantenne in x-Richtung und x werde von der Mitte der Antennenfläche aus gemessen. Die Realisierung dieser verbreiterten Antennenkeulen führt in der Praxis vielfach zu unbefriedigenden Ergebnissen, da die durch Krümmung der Phasenfront verbreiterten Diagramme empfindlich bezüglich fehlerhaften Abweichungen der Amplitude der Antennenelemente sind. Die Krümmung der Phasenfront bewirkt nämlich, daß die von der Antennenfläche abgestrahlte Leistung nicht mehr vorzugsweise nur in eine Raumrichtung abgestrahlt wird, sondern daß jedes Antennenelement vorzugsweise in die Richtung der Senkrechten auf die Phasenfront am jeweiligen Ort des Elements strahlt. Damit ist der Verlauf der Amplitude der Hauptkeule des Antennendiagramms angenähert ein Abbild des Amplitudenverlaufs über die Antennenfläche. Nun weisen Leitungssysteme zur Speisung der Antennenelemente vielfach toleranzbedingte oder sogar systematische Fehler auf, insbesondere die wegen ihrer Kompaktheit bevorzugten seriellen Speisungen, vor allem bei breitbandiger Verwendung. Dies hat zur Folge, daß die erzielten Antennenkeulen verformt sind, welches wiederum in der Radaranwendung zu fehlerhaften Richtungsbestimmungen führt.In the case of radar antennas for airspace surveillance, it is also common to use the phase control not only for beam pivoting, but also for widening the antenna lobe (beam spoiling). The control phase ϕ n becomes a second value
Figure imgb0002
added, which has the effect that the wave field excited by the antenna elements no longer has a flat phase front, but a curved phase front. Has been particularly suitable for. B. a course of this club broadening phase
Figure imgb0003
proven proportional to the cosine of the distance from the antenna center
Figure imgb0004
D is the diameter of the group antenna in the x direction and x is measured from the center of the antenna area. In practice, the implementation of these widened antenna lobes often leads to unsatisfactory results, since the diagrams widened by the curvature of the phase front are sensitive to incorrect deviations in the amplitude of the antenna elements. The curvature of the phase front namely has the effect that the power radiated by the antenna surface is no longer preferably radiated only in one spatial direction, but rather that each antenna element preferably radiates in the direction of the perpendicular to the phase front at the respective location of the element. Thus, the course of the amplitude of the main lobe of the antenna pattern is approximately a replica of the A mplitudenverlaufs over the antenna surface. Line systems for feeding the antenna elements now often have tolerance-related or even systematic errors, in particular the serial feeds preferred because of their compactness, especially in the case of broadband use. The result of this is that the antenna lobes obtained are deformed, which in turn leads to incorrect directional determinations in the radar application.

Eine Einschränkung der Toleranzen würde zu einem erheblichen Aufwand in der Entwicklung und Produktion solcher Speisungen führen. Eine nachträgliche Korrektur der Amplitudenwerte wäre nur durch zusätzliche Leistungsverluste zu erkaufen und ist schwierig zu realisieren.A limitation of the tolerances would lead to a considerable effort in the development and production of such feeds. A subsequent correction of the amplitude values could only be bought through additional power losses and is difficult to implement.

Aufgabe der vorliegenden Erfindung ist es, eine phasengesteuerte Gruppenantenne anzugeben, die ohne größeren zusätzlichen Aufwand die störenden Auswirkungen der toleranzbedingten Amplitudenfehler auf das Diagramm beseitigt, ohne zusätzliche Leistungsverluste in Kauf nehmen zu müssen.The object of the present invention is to provide a phase-controlled group antenna which eliminates the disruptive effects of the tolerance-related amplitude errors on the diagram without major additional outlay, without having to accept additional power losses.

Die erfindungsgemäße Lösung ist bei einer Antenne der im Oberbegriff des Patentanspruchs 1 beschriebenen Art durch die kennzeichnenden Merkmale des Patentanspruchs 1 gegeben.The solution according to the invention is given in an antenna of the type described in the preamble of claim 1 by the characterizing features of claim 1.

Anspruch 2 beschreibt eine besonders vorteilhafte Ausführung des Erfindungsgedankens. Die Ansprüche 3 und 4 geben günstige Weiterbildungen der Erfindung an.Claim 2 describes a particularly advantageous embodiment of the inventive concept. Claims 3 and 4 indicate favorable developments of the invention.

Wesentlich an der Erfindung ist also die Kompensation der-Auswirkung der fehlerhaften Amplituden durch Einstellung der Steuerphasen nach Maßgabe der gemessenen Amplitudenverteilung. Nachdem die phasengesteuerte Gruppenantenne ohnehin über die dazu notwendigen Phasenschieber verfügt, ist für die erfindungsgemäße Antenne nur eine zusätzliche Funktion des zur Steuerung der Phasenschieber verwendeten Rechners (Beam Stearing Unit) nötig.What is essential to the invention is therefore the compensation of the effect of the faulty amplitudes by setting the control phases in accordance with the measured amplitude distribution. Since the phase-controlled group antenna already has the necessary phase shifters, only an additional function of the computer used to control the phase shifters (beam stearing unit) is required for the antenna according to the invention.

Im folgenden wird eine besonders vorteilhafte Ausführung des Erfindungsgedankens unter Bezugnahme- auf die Abbildungen eingehend beschrieben.A particularly advantageous embodiment of the inventive concept is described in detail below with reference to the figures.

Grundlage der nachfolgenden Herleitung einer Beziehung zwischen gemessenem Amplitudenverlauf und Einstellwerten für die Phaseneinstellung ist die Anwendung der geometrischen Optik auf die Synthese von Antennendiagrammen durch Gestaltung des Phasenverlaufs,wie sie z. B. für die Berechnung von Reflektorantennen üblich und z. B. in S. Silver: Mikrowave Antenna Theory and Design, Mc.Graw Hill 1949, pp. 497 ff. beschrieben ist.The basis for the subsequent derivation of a relationship between the measured amplitude curve and setting values for the phase setting is the application of the geometric optics to the synthesis of antenna diagrams by designing the phase curve, as described for. B. usual for the calculation of reflector antennas and z. B. in S. Silver: Microwave Antenna Theory and Design, Mc.Graw Hill 1949, pp. 497 ff. Is described.

Ziel dieser Synthese ist es, zu einer gegebenen Verteilung der HF-Leistung über den Antennenquerschnitt PA (x) den Phasenverlauf zu finden, der bewirkt, daß diese Leistung gemäß einer gewünschten Verteilungsfunktion PF (1ϑ) im Fernfeld abgestrahlt wird, d. h., daß in den betrachteten Schnittebenen ein Antennendiagramm mit gewünschtem Verlauf in Abhängigkeit zum Richtungswinkel ϑ erzielt wird. Wegen der Reziprozität gelten grundsätzlich alle Ausführungen auch analog für die Empfangsantenne.The aim of this synthesis is to find the phase profile for a given distribution of the RF power over the antenna cross section P A (x), which causes this power to be radiated in the far field according to a desired distribution function P F (1ϑ), ie an antenna diagram with the desired profile as a function of the directional angle ϑ is achieved in the sectional planes considered. Because of the reciprocity, all versions also apply analogously to the receiving antenna.

Da, wie bereits dargelegt, bei diesem Verfahren der Diagrammsynthese jede Zone der Antenne hauptsächlich in eine bestimmte Raumrichtung strahlt, kann aus dem Energieerhaltungssatz folgende Zuordnung der Querschnittskoordinaten x zum Winkel ϑ gefunden werden

Figure imgb0005
D sei der Durchmesser der Antenne und ϑo die Richtung, bei der-die gewünschte Abstrahlung beginnen soll. Die Verteilung der Leistung über den Antennenquerschnitt läßt sich durch Messung an der montierten Gruppenantenne bestimmen. Entweder mißt man sie an den Eingängen der Erreger - in diesem Fall ist das Integral durch die Summe über die Leistung der Erreger zu ersetzen - oder direkt vor den Erregern auf einem Nahfeldmeßplatz.Since, as already explained, with this method of diagram synthesis each zone of the antenna mainly radiates in a certain spatial direction, the following assignment of the cross-sectional coordinates x to the angle ϑ can be found from the energy conservation theorem
Figure imgb0005
D is the diameter of the antenna and ϑ o the direction in which the desired radiation should begin. The distribution of the power over the antenna cross-section can be determined by measurement on the mounted antenna. Either they are measured at the inputs of the pathogens - in this case the integral is to be replaced by the sum of the power of the pathogens - or directly in front of the pathogens on a near-field measuring station.

Falls es sich nicht um eine lineare Antennengruppe, sondern um ein zweidimensionales Array handelt, ist jeweils die mittlere Leistung einer Zeile von Elementen quer zu Ebenen der betrachteten Abstrahlrichtung zu nehmen.If it is not a linear antenna group, but a two-dimensional array, the mean power of a row of elements is to be taken in each case across the planes of the radiation direction under consideration.

Die gewünschte Leistungsverteilung im Fernfeld hängt vom Anwendungszweck ab. Vielfach wird ein Sektordiagramm gefordert:

Figure imgb0006
Dieses ideale Wunschdiagramm führt allerdings wegen der Beugungseffekte zu Realisierungen mit oszillierendem Diagrammverlauf. Daher empfiehlt es sich, anstelle der idealen Sektorfunktion (4) eine dieser ähnlichen zu wählen, die keine scharfen Sprünge aufweist. Wenn die Antennenverwendung keine andere Leistungsverteilung im Fernfeld erfordert, ist entsprechend ein anderes Wunschdiagramm zu wählen (etwa Cosecans im Quadrat).The desired power distribution in the far field depends on the application. A sector diagram is often required:
Figure imgb0006
However, because of the diffraction effects, this ideal desired diagram leads to implementations with an oscillating diagram. It is therefore advisable to choose a similar one instead of the ideal sector function (4), which does not show any sharp jumps. If the use of antennas does not require a different power distribution in the far field, a different desired diagram should be selected accordingly (e.g. cosecans in the square).

Sind beide Funktionen PA und PF gegeben, so läßt sich durch numerische Integration von (3) jedem Koordinatenwert x auf der Antennenapertur eine Abstrahlrichtung ϑ(x) zuordnen. Die gesuchten Phasen

Figure imgb0007
= ϕ (x ) ergeben sich aus der Tat- sache, daß die Abstrahlrichtung senkrecht auf der Phasenfront steht, d. h. bei Zählung des Winkels ϑ von der Normalen auf die x-Richtung aus ist die Ableitung der Phase nach der Koordinaten x gleich dem Tangens des Winkels ϑ
Figure imgb0008
Die numerische Integration von (5)
Figure imgb0009
liefert direkt den Einstellwert für die Steuerphase des Elements am Ort x . nIf both functions P A and P F are given, a radiation direction ϑ (x) can be assigned by numerically integrating (3) each coordinate value x on the antenna aperture. The phases you are looking for
Figure imgb0007
= ϕ (x) result from the fact that the radiation direction is perpendicular to the phase front, ie when the angle ϑ is counted from the normal to the x direction, the derivation of the phase according to the coordinates x is equal to the tangent of the Angle ϑ
Figure imgb0008
The numerical integration of (5)
Figure imgb0009
provides the setting value for the control phase of the element at location x. n

Diese Phasenwerte werden in dem zur Steuerung des Phasenschiebers verwendeten Rechner als Konstante gespeichert. Soweit die Radaranlage in mehreren Frequenzen betrieben wird und die Strahlungsamplituden der Elemente sich über die Frequenz erheblich ändern, sind die Phasenwerte für jede Frequenz gesondert zu bestimmen und abzuspeichern.These phase values are stored as a constant in the computer used to control the phase shifter. If the radar system is operated in several frequencies and the radiation amplitudes of the elements change significantly over the frequency, the phase values for each frequency must be determined and saved separately.

FIG. 1 zeigt ein Beispiel für eine lineare Gruppe von Dipolen (1-6) mit den Koordinaten xI-x6, die von einem Sender T über eine Speiseleitung S angeregt werden. Die Phasen ϕ16 können durch elektronische Phasenschieber eingestellt werden. Vor den Dipolen ergibt sich eine Verteilung der HF-Leistung P (x), die z. B. mit einem Testempfänger R gemessen werden kann.FIG. 1 shows an example of a linear group of dipoles (1-6) with the coordinates x I -x 6 , which are excited by a transmitter T via a feed line S. The phases ϕ 16 can be set by electronic phase shifters. In front of the dipoles there is a distribution of the RF power P (x), which, for. B. can be measured with a test receiver R.

FIG. 2A zeigt den optischen Strahlengang und Kurven gleicher Phase vor der Gruppenantenne nach FIG. 1. Durch die Phaseneinstellung geht von der Antennenapertur A eine gekrümmte Wellenfront aus. Die abgestrahlte Leistung verläuft parallel zu den optischen Strahlen S,die senkrecht auf den Kurven gleicher Phase P stehen, in die Raumrichtung ϑ. Die Winkellage der Strahlen ϑ(x) hat so zu erfolgen, daß die Leistungsdichte pro Winkeleinheit dem geforderten Verlauf PF(ϑ) entspricht. Ein Beispiel für eine solche gewünschte Leistungsverteilung im Fernfeld, ein Sektordiagramm, ist in FIG. 2B dargestellt.FIG. 2A shows the optical beam path and curves of the same phase in front of the group antenna according to FIG. 1. Due to the phase setting, the antenna aperture A starts from a curved wavefront. The radiated power runs parallel to the optical beams S, which are perpendicular to the curves of the same phase P, in the spatial direction ϑ. The angular position of the rays ϑ (x) must be such that the power density per angular unit corresponds to the required profile P F (ϑ). An example of such a desired power distribution in the far field, a sector diagram, is shown in FIG. 2B.

Die FIG. 3A zeigt (in kartesischer Darstellung) einen Querschnitt durch ein Diagramm einer seriell gespeisten Gruppenantenne ohne die erfindungsgemäße Korrektur der Amplitudenfehler über die Einstellung der Steuerphasen. Deutlich erkennbar sind die assymetrischen Diagrammverzerrungen, die beim Betrieb der Antenne zu beträchtlichen Winkelmeßfehlern führen können. FIG. 3B zeigt demgegenüber das unter Anwendung des Erfindungsgedankens auf dieselbe Antenne korrigierte Diagramm.The FIG. 3A shows (in Cartesian representation) a cross section through a diagram of a serially fed group antenna without the correction according to the invention of the amplitude errors via the setting of the control phases. The asymmetrical diagram distortions are clearly recognizable, which can lead to considerable angle measurement errors when operating the antenna. FIG. 3B, on the other hand, shows the diagram corrected using the concept of the invention on the same antenna.

Claims (4)

1. Phasengesteuerte Gruppenantenne mit einer Vielzahl einzelner Strahlerelemente oder Zeilen von Strahlerelementen mit je einem steuerbaren Phasenschieber, die über ein Verteilernetzwerk mit einer gemeinsamen Speiseleitung verbunden sind, wobei die Soll-Belegung der relativen Amplituden der einzelnen Strahlerelemente durch den Ort des einzelnen Strahlerelements innerhalb der Strahlergruppe und durch das gewünschte Antennendiagramm festgelegt ist, dadurch gekennzeichnet, daß in einem Lesespeicher für die individuelle Einstellung der steuerbaren Phasenschieber Einstellwerte gespeichert sind, die nach Maßgabe der Abweichung des gemessenen Verlaufs der tatsächlichen relativen Amplituden der einzelnen Strahlerelemente von der Soll-Belegung so bemessen sind, daß-die Einstellung der Phasenschieber durch eine Steuereinrichtung auf diese Einstellwerte eine Kompensation der durch die Amplitudenabweichungen hervorgerufenen Diagrammverzerrungen bewirkt.1. Phase-controlled group antenna with a large number of individual radiator elements or rows of radiator elements, each with a controllable phase shifter, which are connected via a distribution network to a common feed line, the target assignment of the relative amplitudes of the individual radiator elements by the location of the individual radiator element within the radiator group and is determined by the desired antenna pattern, characterized in that setting values are stored in a read memory for the individual setting of the controllable phase shifters, which are dimensioned in accordance with the deviation of the measured profile of the actual relative amplitudes of the individual radiator elements from the target assignment, that the setting of the phase shifters by a control device to these setting values compensates for the diagram distortions caused by the amplitude deviations. 2. Phasengesteuerte Gruppenantenne nach Anspruch 1, dadurch gekennzeichnet, daß der Einstellwert
Figure imgb0010
zur Steuerung der Phasen des n-ten Strahlerelements mit der gemessenen Amplitudenbelegung PA(x) in der Antennenapertur in Abhängigkeit von der parallel zum betrachteten Diagrammschnitt verlaufenden Koordinaten x und der gewünschten Diagrammform PF(ϑ) in Abhängigkeit vom Winkel der Abstrahlrichtung. ϑ über die Beziehung
Figure imgb0011
mit ϑ (x) so definiert, daß.
Figure imgb0012
verknüpft ist, wobei x die Koordinate des n-ten Antennenn elements, D der Durchmesser der Antennenapertur und -ϑ o der Winkel, bei dem die Abstrahlung beginnen soll, sind und die Phasenverschisbung ϕconst beliebig, aber für alle Strahlerelemente gleich ist.
2. Phase-controlled group antenna according to claim 1, characterized in that the setting value
Figure imgb0010
to control the phases of the nth radiator element with the measured amplitude assignment P A (x) in the antenna aperture depending on the coordinates x running parallel to the diagram section under consideration and the desired diagram form P F (ϑ) depending on the angle of the radiation direction. ϑ about the relationship
Figure imgb0011
defined with ϑ (x) such that.
Figure imgb0012
is linked, where x is the coordinate of the nth antenna element, D the diameter of the antenna aperture and -ϑ o the angle at which the radiation is to begin, and the phase shift ϕ const is arbitrary but is the same for all radiator elements.
3. Phasengesteuerte Gruppenantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die steuerbaren Phasenschieber zugleich noch mit der Steuereinrichtung zur elektronischen Schwenkung des Diagramms verbunden sind.3. Phase-controlled group antenna according to claim 1 or 2, characterized in that the controllable phase shifters are also still connected to the control device for electronic pivoting of the diagram. 4. Phasengesteuerte Gruppenantenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß für die Be-triebsart mit mehreren Sendefrequenzen zu jeder Sendefrequenz ein eigener Satz Einstellwerte gespeichert ist.4. phase-controlled group antenna according to one of claims 1 to 3, characterized in that a separate set of setting values is stored for the operating mode with several transmission frequencies for each transmission frequency.
EP82100406A 1981-01-23 1982-01-21 Phased antenna array Expired EP0056984B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3102110A DE3102110A1 (en) 1981-01-23 1981-01-23 PHASE CONTROLLED GROUP ANTENNA
DE3102110 1981-01-23

Publications (2)

Publication Number Publication Date
EP0056984A1 true EP0056984A1 (en) 1982-08-04
EP0056984B1 EP0056984B1 (en) 1985-11-06

Family

ID=6123176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82100406A Expired EP0056984B1 (en) 1981-01-23 1982-01-21 Phased antenna array

Country Status (2)

Country Link
EP (1) EP0056984B1 (en)
DE (2) DE3102110A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2110231A1 (en) * 1971-03-04 1972-09-14 Licentia Gmbh Antenna system
DE2113856A1 (en) * 1970-08-12 1972-09-28 Licentia Gmbh Directional antenna with adjustable radiation pattern
GB1353617A (en) * 1970-08-22 1974-05-22 Emi Ltd Electronically steered aerial arrays
US3903524A (en) * 1973-05-25 1975-09-02 Hazeltine Corp Antenna system using variable phase pattern synthesis
DE2612148A1 (en) * 1976-03-23 1977-10-06 Siemens Ag Phase calculating circuit for lobe swinging radar antenna - has control data generator between central computer and phase calculator
DE2612147A1 (en) * 1976-03-23 1977-10-06 Siemens Ag Phase deflection aerial array - adds wanted focussing phase from memory to computed direction phase to control phase shifters
US4253098A (en) * 1978-10-26 1981-02-24 The Marconi Company Limited Radar systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2113856A1 (en) * 1970-08-12 1972-09-28 Licentia Gmbh Directional antenna with adjustable radiation pattern
GB1353617A (en) * 1970-08-22 1974-05-22 Emi Ltd Electronically steered aerial arrays
DE2110231A1 (en) * 1971-03-04 1972-09-14 Licentia Gmbh Antenna system
US3903524A (en) * 1973-05-25 1975-09-02 Hazeltine Corp Antenna system using variable phase pattern synthesis
DE2612148A1 (en) * 1976-03-23 1977-10-06 Siemens Ag Phase calculating circuit for lobe swinging radar antenna - has control data generator between central computer and phase calculator
DE2612147A1 (en) * 1976-03-23 1977-10-06 Siemens Ag Phase deflection aerial array - adds wanted focussing phase from memory to computed direction phase to control phase shifters
US4253098A (en) * 1978-10-26 1981-02-24 The Marconi Company Limited Radar systems

Also Published As

Publication number Publication date
DE3102110A1 (en) 1982-08-19
EP0056984B1 (en) 1985-11-06
DE3267204D1 (en) 1985-12-12

Similar Documents

Publication Publication Date Title
DE102011088045B4 (en) Phased array antenna and phase calibration method
DE69933145T2 (en) Calibration for an adaptive array antenna
DE19648203C2 (en) Multi-beam automotive radar system
DE112006003644B4 (en) radar device
DE102011088046B4 (en) Phased array antenna and phase calibration method
EP1532716B1 (en) Calibration device for an antenna array and method for calibrating said array
EP3039444B1 (en) Radar sensor for motor vehicles
DE112019006800T5 (en) Antenna device and radar device
DE3934155A1 (en) PHASE CONTROLLED ANTENNA ARRANGEMENT
DE102018207718A1 (en) Method for phase calibration of high-frequency components of a radar sensor
DE102018212147A1 (en) RADAR DEVICE
DE102018210070A1 (en) Procedure for calibrating a MIMO radar sensor for motor vehicles
DE102019120460A1 (en) HIKING WAVE IMAGE DISTRIBUTOR FOR A HIGH-RESOLUTION RADAR SYSTEM
DE2244724A1 (en) CONTROL DEVICE FOR AN ANTENNA LINE FOR GENERATING ELECTRONICALLY SWIVELING RADIATION DIAGRAMS
EP3467450A1 (en) Radar fill level measuring device with a radar system on chip
EP2616840A1 (en) Radar sensor for motor vehicles, especially lca sensor
DE69625949T2 (en) Group antenna device
EP2862235A1 (en) Antenna arrangement and method
EP1476921B1 (en) Device for emitting and receiving electromagnetic radiation
EP0056984B1 (en) Phased antenna array
EP0935825B1 (en) Radar sensor for a vehicle
DE102005011128A1 (en) Electronically controllable antenna e.g. planar patch antenna, for transceiver in airplane, has sensors directly arranged in reactive near field of emitter units to measure and calibrate amplitude and/or phase of units
DE10238588B4 (en) Mirror surface precision measuring device and mirror surface control system of a reflector antenna
EP0023606B1 (en) Antenna system for locating the position of a microwave signal source
DE2226435A1 (en) Radio interferometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT NL

17P Request for examination filed

Effective date: 19830119

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3267204

Country of ref document: DE

Date of ref document: 19851212

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: TELEFUNKEN SYSTEMTECHNIK GMBH

NLS Nl: assignments of ep-patents

Owner name: TELEFUNKEN SYSTEMTECHNIK GMBH TE ULM A.D. DONAU, B

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;TELEFUNKEN SYSTEMTECHNIK GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940131

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950131

Ref country code: CH

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990115

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990129

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990317

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000121

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST