EP0056806A1 - Device for recovering heat from underground water and/or from the soil adjoining the underground water - Google Patents

Device for recovering heat from underground water and/or from the soil adjoining the underground water

Info

Publication number
EP0056806A1
EP0056806A1 EP81901143A EP81901143A EP0056806A1 EP 0056806 A1 EP0056806 A1 EP 0056806A1 EP 81901143 A EP81901143 A EP 81901143A EP 81901143 A EP81901143 A EP 81901143A EP 0056806 A1 EP0056806 A1 EP 0056806A1
Authority
EP
European Patent Office
Prior art keywords
pipes
corrugated
groundwater
tube
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP81901143A
Other languages
German (de)
French (fr)
Inventor
Hans WÜRZBURGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KM Kabelmetal AG
Original Assignee
KM Kabelmetal AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19803015172 external-priority patent/DE3015172A1/en
Priority claimed from DE19803047397 external-priority patent/DE3047397A1/en
Application filed by KM Kabelmetal AG filed Critical KM Kabelmetal AG
Publication of EP0056806A1 publication Critical patent/EP0056806A1/en
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/18Pipes provided with plural fluid passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a device for extracting ground heat from the groundwater and / or the ground surrounding the groundwater by means of a probe inserted vertically into the ground from pipes carrying an intermediate carrier medium, of which the pipe or pipes facing the ground with their outer surface on their are completed at the lower end, and the intermediate carrier medium circulating in a closed circuit, the circuit being designed, on the one hand, to be arranged below the surface of the earth in contact with the groundwater and / or the surrounding earth and, on the other hand, connected to the primary side of a heat pump arranged outside the ground.
  • heat exchanger for geothermal use (earth spike) in the form of a few meters long hollow component that is pressed or lowered vertically into the ground and in which flow channels are designed so that a flowing heat transfer fluid in it first down and then is brought up again.
  • the disadvantage here is the relatively short overall length of such components, which is already limited to 5 to 6 m due to the transport.
  • the attempt to extract heat from the ground is limited to the near-surface area. Long-term operability and operational safety are not guaranteed due to the risk of premature freezing in such systems working near the surface.
  • the invention is therefore based on the object of creating a possibility which, in spite of the connection to the groundwater or the groundwater area, means no intervention in the groundwater balance and works without problems.
  • the pipe or pipes facing the ground with their outer surface are designed as corrugated pipes closed at the bottom, into which one or more smooth pipes protrude from above and open freely in the lower end facing the corrugated pipe closure .
  • the intermediate carrier medium is fed in a closed circuit on the primary side of a heat pump to be arranged outside of the ground and then removed from the intermediate carrier medium in the heat pump.
  • the use of the outer tube or tubes as corrugated tubes brings about an improvement in the efficiency of the heat transfer due to the enlarged surface of the corrugated tube compared to a smooth tube.
  • Another advantage of the corrugated pipe is the high seismic load capacity. During the operation of the heat probe, geological earth movements can therefore be absorbed by the flexibility of the corrugated pipe.
  • the corrugated pipe Compared to the known geothermal probes, in which pipes of a certain length are only connected to one another by connecting sleeves at the drilling point, the corrugated pipe also has the advantage that no leaks can occur at connecting points and, moreover, it is not necessary to subject the connecting points to a pressure test.
  • the corrugated tube or tubes are integrally formed over the entire length of the probe.
  • the entire length of the corrugated pipe - similar to a cable laying - can be unwound from the assembly point by a wooden reel and inserted into the borehole without additional work.
  • the device for extracting ground heat i.e. the geothermal probe
  • the geothermal probe consists of two concentric pipes
  • the area of the device designed to come into contact with the groundwater and / or moist soil has an inner pipe which extends into a pipe this enclosing outer tube is inserted freely suspended and opens in the lower area, and the outer corrugated tube is closed at its end facing away from the heat pump.
  • the outer corrugated tube expediently consists of a highly conductive material, for example metal, while the inner tube in relation to the outer tube consists of poorly thermally conductive material, for example plastic.
  • a suitable stainless steel can be used as the metal, and polyethylene is suitable as the plastic.
  • the intermediate carrier medium is guided downwards in the inner tube, enters the outer tube at the lower end and then flows upwards along the heat-conducting wall of the outer tube, the intermediate carrier medium previously cooled in the heat exchanger then the temperature of the groundwater or of the soil surrounding the outer tube assumes.
  • the last-mentioned embodiment has the particular advantage that the arrangement to be introduced into the soil can have a relatively small outside diameter and can therefore be introduced deep (up to 100 m and more) into the soil by means of a drilling device usually provided for a test borehole.
  • a mixture of water and food-friendly ethyl glycol is preferably suitable as the intermediate carrier medium. This ensures that no soil contamination can occur even if there are leaks in the circuit of the heat exchanger.
  • corrugated pipes are advantageously used for the outer pipe or pipes. These corrugated pipes can be made as desired if they only meet the requirements placed on an earth probe according to the invention. Especially for cases in which, in addition to good heat conduction to the groundwater and / or soil, a one-piece construction of the geothermal probe is required over the entire length, it has proven to be particularly expedient if the metallic corrugated pipe (s) consists of a longitudinally shaped pipe the edges tightly welded and then corrugated metal band thin wall thickness.
  • Wall thicknesses of a corrugated tube of 0.2 to 1.2 mm, preferably 0.4 to 0.8 mm, should be used as thin in the sense of this definition. If, as is also provided in a further development of the invention, the corrugation of the thin-walled outer tube or tubes is chosen so that the corrugation is helical, then there is a further advantage that the z. B. in two concentric tubes in the annular space between the inner smooth plastic tube and the outer corrugated metal tube brine, such as ethylene glycol L, is placed in turbulence, which leads to a highly uniform heat transfer.
  • brine such as ethylene glycol L
  • the heat absorption area is considerably enlarged ( ⁇ 1.5: 1.0), due to the small wall thickness of the outer corrugated pipe the thermal resistance is greatly reduced, but at the same time the Wellfom provides the mechanical stability necessary for the probe.
  • geothermal probes designed as corrugated tubes can be transported and rolled up on drums or coils in practically any length the required final lengths can be cut to size, for example only at the assembly site.
  • the corrugated tube earth probes can easily follow earth displacements without being subjected to mechanical stress that could destroy the probe.
  • the inner smooth tube hanging freely, ie without spacing elements, is suspended in the outer corrugated tube.
  • the corrugated tube can expediently consist of alloyed stainless steel. This also contributes to a favorable heat transfer. If the corrugated pipe comes into contact with outer brines or with groundwater enriched with copper, carbonic acid or the like in the deep area, galvanic currents due to element formation can be measured. The galvanic voltage is compensated by a potential equalization device with sacrificial anode, which is assigned to the corrugated tube according to a further inventive concept. This enables a lifespan of several decades to be achieved.
  • the invention is explained in more detail below with reference to the embodiment shown in the drawing.
  • the figure shows a schematic representation of the area formed for contact with the groundwater and / or moist soil of the heat exchanger in its intended position in a hole in the soil and a block diagram of a heat pump and a heating circuit of a building.
  • a groundwater-bearing layer 4 is present in the soil 1 below the topsoil 2 and a layer of sand 3.
  • a bore 5 is made in this soil.
  • a heat exchanger, designated as a whole by 6, has a region 7 which is provided for insertion into the bore.
  • the area 7 has a freely suspended inner tube 8, to which an intermediate carrier medium can be fed by a circulation pump 9a in the direction of the arrow A.
  • the intermediate carrier occurs at the lower end 9b, which is preferably made of plastic standing smooth inner tube and flows in one.
  • actual heat exchanger forming and formed as a corrugated tube 10 in the direction of arrow B upwards.
  • the corrugated tube 10 is formed in one piece over its entire length and consists of alloyed stainless steel.
  • the wave form of the corrugated tube has a design corresponding to a cord thread or a helical corrugation.
  • the heat exchanger is otherwise connected to the primary side 16 of a heat pump, designated overall by 9, the secondary side 15 of which can be connected to a heating circuit 13 of a building via lines 11 and 12.
  • a pressure compensation vessel is designated by 14.
  • a potential equalization device (not shown) with a sacrificial anode is assigned to the corrugated tube. The function is such that the heat contained in the moist soil or groundwater passes in the corrugated area of the outer tube 10 which forms the actual heat exchanger to the intermediate carrier medium and is removed from the intermediate carrier medium in the heat pump 9.
  • a possible embodiment of the earth probe consists, for example, of a corrugated outer tube 10 with a maximum outer diameter of 45 mm and a minimum inner diameter of 39 mm.
  • the wall thickness of the corrugated pipe made of stainless steel is 0.75 mm, the length of the corrugated pipe that is introduced into the ground is 50 m.
  • the inner tube 8, for. B. made of polyethylene, is a smooth tube, it can z. B. have an outer diameter of 25 mm and an inner diameter of 19.6 mm.
  • the minimum annular gap between smooth tube 8 and corrugated tube 10 is then approximately 7.10 -4 m 2 , the average annular gap 9-10 -4 m 2 .
  • two concentric tubes can be made so that a steel band is formed into a tube around an inner smooth plastic tube, welded at the edges and then corrugated. But you can also proceed so that the plastic tube is inserted into a finished corrugated tube. It is essential in any case that one-piece geothermal probes of 50, 100, 200 m or more can be produced in this way, the plastic tube arranged freely suspended inside stabilizing its position during operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

La recuperation s'effectue au moyen d'une sonde composee de tuyaux concentriques. Elle est constituee d'un tuyau interieur lisse (8) qui debouche librement dans un tuyau (10) a paroi ondulee et fermee a son extremite inferieure.The recovery is carried out by means of a probe composed of concentric pipes. It consists of a smooth interior pipe (8) which freely opens into a pipe (10) with a corrugated wall and closed at its lower end.

Description

Vorrichtung zur Entnahme von Bodenwärme aus dem Grundwasser und/oder dem das Grundwasser umgebenden ErdreichDevice for extracting ground heat from the groundwater and / or the soil surrounding the groundwater
Die vorliegende Erfindung betrifft eine Vorrichtung zur Entnahme von Bodenwärme aus dem Grundwasser und/oder dem das Grundwasser umgebenden Erdreich mittels einer senkrecht in den Boden eingeführten Sonde aus ein Zwischenträgermedium führenden Rohren, von denen das oder die mit ihrer äußeren Oberfläche dem Erdreich zugekehrten Rohre an ihrem unteren Ende abgeschlossen sind, und dem in geschlossenem Kreislauf umlaufenden Zwischenträgermedium, wobei der Kreislauf einerseits zur Anordnung unterhalb der Erdoberfläche in Kontakt mit dem Grundwasser und/oder dem umgebenden Erdreich ausgebildet und andererseits mit der Primärseite einer außerhalb des Erdreichs angeordneten Wärmepumpe verbunden ist.The present invention relates to a device for extracting ground heat from the groundwater and / or the ground surrounding the groundwater by means of a probe inserted vertically into the ground from pipes carrying an intermediate carrier medium, of which the pipe or pipes facing the ground with their outer surface on their are completed at the lower end, and the intermediate carrier medium circulating in a closed circuit, the circuit being designed, on the one hand, to be arranged below the surface of the earth in contact with the groundwater and / or the surrounding earth and, on the other hand, connected to the primary side of a heat pump arranged outside the ground.
Für die Entnahme von Bodenwärme unter Einsatz einer Wärmepumpe sind verschiedenartige Vorrichtungen bekannt. Sogenannte Erdwärmerückgewinnungsanlagen mit waagerecht ausgelegten Rohrsystemen erfordern aufwendige Verlegungsarbeiten und ein großes Grundstück. Sogenannte "Luft-Wasser"-Wärmepumpen sind aufwendig und bringen sowohl eine Lärmbelästigung als such eine Vegetationsbeeinflussung durch die abgegebene Kaltluft mit sich. Bei den bekannten Vorrichtungen wird das Grundwasser aus einem Brunnen entnommen, der Wärmepumpe zugeführt und nach der Wärmeentnahme und der damit verbundenen Temperaturab senkung wieder in das Erdreich eingeleitet. Es hat sich jedoch gezeigt, daß die für die Genehmigung der Errichtung einer derartigen Anlagen zuständigen Behörden vielfach Eingriffe in den Grundwasserhaushalt befürchten, da insbesondere nicht sichergestellt ist, ob das entnommene Grundwasser tatsächlich wieder ordnungsgemäß eingeleitet wird.Various types of devices are known for extracting ground heat using a heat pump. So-called geothermal heat recovery systems with horizontally laid pipe systems require complex laying work and a large plot of land. So-called "air-water" heat pumps are complex and involve both noise pollution and vegetation effects from the cold air that is emitted. In the known devices, the groundwater is taken from a well, fed to the heat pump and after the heat has been removed and the temperature associated therewith again initiated into the ground. However, it has been shown that the authorities responsible for approving the construction of such plants fear interventions in the groundwater budget in many cases, since in particular it is not certain whether the extracted groundwater will actually be discharged properly.
Bekannt ist auch bereits ein sog. Wärmeaustauscher für Erdwärmenutzung (Erdspieß) in Form eines einige Meter langen hohlen Bauteils, das senkrecht in das Erdreich gedrückt oder gesenkt wird und in dem Strömungskanäle so ausgebildet sind, daß eine strömende Wärmeübertragungsflüssigkeit in ihm erst nach unten und dann wieder nach oben geführt wird. Nachteilig hierbei ist die verhältnismäßig kurze Baulänge solcher Bauteile, die schon aufgrund des Transportes auf 5 bis 6 m beschränkt ist. Damit bleibt aber der Versuch eines Wärmeentzuges aus dem Erdreich auf den oberflächennahen Bereich beschränkt. Eine langdauernde Betriebsfähigkeit und die Betriebssicherheit sind durch die Gefahr eines vorzeitigen Einfrierens bei solchen in Oberflächennähe arbeitenden Anlagen nicht gewährleistet.Also known is a so-called heat exchanger for geothermal use (earth spike) in the form of a few meters long hollow component that is pressed or lowered vertically into the ground and in which flow channels are designed so that a flowing heat transfer fluid in it first down and then is brought up again. The disadvantage here is the relatively short overall length of such components, which is already limited to 5 to 6 m due to the transport. However, the attempt to extract heat from the ground is limited to the near-surface area. Long-term operability and operational safety are not guaranteed due to the risk of premature freezing in such systems working near the surface.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Möglichkeit zu schaffen, die trotz der Anbindung an das Grundwasser oder den Grundwasserbereich keinen Eingriff in den Grundwasserhaushalt bedeutet und störungsfrei arbeitet.The invention is therefore based on the object of creating a possibility which, in spite of the connection to the groundwater or the groundwater area, means no intervention in the groundwater balance and works without problems.
Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß das oder die mit ihrer äußeren Oberfläche dem Erdreich zugekehrten Rohre als unten abgeschlossene Wellrohre ausgebildet sind, in das oder die von oben ein oder mehrere Glattrohre hineinragen, die im unteren, dem Wellrohrabschluß zugekehrten Ende frei münden. Hierdurch ist es möglich, einen Wärmeaustauscher so im Grundwasser bzw. feuchten Erdreich anzubringen, daß das in dem Wärmeaustauscher enthaltende Zwischenträgermedium die Temperatur des Grundwassers bzw. des feuchten Erdreiches annimmt, ohne daß das Grundwasser selbst aus dem Erdreich entnommen wird. Das Zwischenträgermedium wird in einem geschlossenen Kreislauf der Primärseite einer außerhalb des Erdreichs anzuordnenden Wärmepumpe zugeführt und dann in der Wärmepumpe aus dem Zwischenträgermedium entnommen.This object is achieved according to the invention in that the pipe or pipes facing the ground with their outer surface are designed as corrugated pipes closed at the bottom, into which one or more smooth pipes protrude from above and open freely in the lower end facing the corrugated pipe closure . This makes it possible to mount a heat exchanger in the groundwater or moist soil in such a way that the intermediate carrier medium contained in the heat exchanger assumes the temperature of the groundwater or the moist soil without the groundwater itself from the soil is removed. The intermediate carrier medium is fed in a closed circuit on the primary side of a heat pump to be arranged outside of the ground and then removed from the intermediate carrier medium in the heat pump.
Die Verwendung des oder der Außenrohre als Wellrohre bringt infolge der vergrößerten Oberfläche des Wellrohres gegenüber einem glatten Rohr eine Verbesserung des Wirkungsgrades des Wärmeübergangs mit sich. Als weiterer Vorteil des Wellrohres ergibt sich eine große seismische Belastungsfähigkeit. Wähnend des Betriebes der Wärmesonde können daher geologische Erdbewegungen durch die Flexibilität des Wellrohres abgefangen werden. Gegenüber den bekannten Erdsonden, bei denen Rohre bestimmter Länge erst an der Bohrstelle durch Verbindungsmuffen miteinander verbunden werden, hat das Wellrohr darüber hinaus den Vorteil, daß keine Undichtigkeiten an Verbindungsstellen auftreten können und es überdies nicht erforderlich ist, die Verbindungsstellen jeweils einer Druckprüfung zu unterziehen. Das gilt insbesondere dann, wenn, wie in Durchführung des Erfindungsgedankens vorgesehen, das oder dieWellrohre über die gesamte Sondenlänge einstückig ausgebildet sind. In diesem Fall kann das Wellrohr - etwa ähnlich einer Kabelverlegung - in seiner gesamten Länge an der Montagestelle von einer Holzhaspel abgespult und ohne zusätzliche Arbeiten in das Bohrloch eingeführt werden.The use of the outer tube or tubes as corrugated tubes brings about an improvement in the efficiency of the heat transfer due to the enlarged surface of the corrugated tube compared to a smooth tube. Another advantage of the corrugated pipe is the high seismic load capacity. During the operation of the heat probe, geological earth movements can therefore be absorbed by the flexibility of the corrugated pipe. Compared to the known geothermal probes, in which pipes of a certain length are only connected to one another by connecting sleeves at the drilling point, the corrugated pipe also has the advantage that no leaks can occur at connecting points and, moreover, it is not necessary to subject the connecting points to a pressure test. This applies in particular if, as provided in the implementation of the inventive concept, the corrugated tube or tubes are integrally formed over the entire length of the probe. In this case, the entire length of the corrugated pipe - similar to a cable laying - can be unwound from the assembly point by a wooden reel and inserted into the borehole without additional work.
In Durchführung der Erfindung kann man so vorgehen, daß der zum Kontakt mit dem Grundwasser und/oder feuchten Erdreich ausgebildete Bereich des Kreislaufes des Wärmeaustauschers in einen Brunnenschacht bis unterhalb des Wasserspiegels des Grundwassers abgesenkt wird. Bei tiefer liegendem Grundwasser kann auch vorgesehen werden, daß eine Tiefbohrung mittels eines verlorenen Bohrkopfes erstellt wird, derart, daß das Erdreich jeweils herausgespült wird. Der zum Kontakt mit dem Grundwasser ausgebildete Bereich des Kreislaufes des Wärmeaustauschers befindet sich in diesen Fall an bzw. hinter dem verlorenen Bohrkopf und wird auf diese Weise entsprechend tief in das Erdreich eingebracht. Als vorteilhaft hat es sich in Weiterführung der Erfindung erwiesen, wenn das oder die mit ihrer äußeren Oberfläche dem Erdreich zugekehrten Wellrohre aus im Verhältnis zu dem oder den inneren Glattrohren gut wärmeleitfähigen Werkstoffen hergestellt sind. Besteht beispielsweise die Vorrichtung zur Entnahme von Bodenwärme, also die Erdsonde, aus zwei konzentrischen Rohren, dann kann in weiterer Ausgestaltung der Erfindung vorgesehen sein, daß der zumKontakt mit dem Grundwasser und/oder feuchten Erdreich ausgebildete Bereich der Vorrichtung ein Innenrohr aufweist, welches in ein dieses umschließendes Außenrohr freihängend eingeführt ist und im unteren Bereich mündet, und das Außenwellrohr an seinem der Wärmepumpe abgewandten Ende abgeschlossen ist. Dabei besteht das Außenwellrohr zweckmäßigerweise aus gut leitendem Werkstoff, beispielsweise Metall, während das Innenrohr im Verhältnis zum Außenrohr aus schlechter wärmeleitfähigem Werkstoff besteht, beispielsweise aus Kunststoff. Als Metall kann ein geeigneter Edelstahl Anwendung finden, als Kunststoff ist u. a. Polyethylen geeignet.In carrying out the invention, one can proceed in such a way that the area of the circuit of the heat exchanger designed for contact with the groundwater and / or moist soil is lowered into a well shaft to below the water level of the groundwater. In the case of deeper groundwater, provision can also be made for deep drilling to be carried out using a lost drill head, in such a way that the soil is flushed out in each case. The area of the circuit of the heat exchanger designed to come into contact with the groundwater is in this case on or behind the lost drill head and is thus introduced into the ground accordingly. In a further development of the invention, it has proven to be advantageous if the corrugated pipe or pipes facing the ground with their outer surface are made of materials which are highly thermally conductive in relation to the inner smooth pipe or pipes. If, for example, the device for extracting ground heat, i.e. the geothermal probe, consists of two concentric pipes, then in a further embodiment of the invention it can be provided that the area of the device designed to come into contact with the groundwater and / or moist soil has an inner pipe which extends into a pipe this enclosing outer tube is inserted freely suspended and opens in the lower area, and the outer corrugated tube is closed at its end facing away from the heat pump. The outer corrugated tube expediently consists of a highly conductive material, for example metal, while the inner tube in relation to the outer tube consists of poorly thermally conductive material, for example plastic. A suitable stainless steel can be used as the metal, and polyethylene is suitable as the plastic.
Das Zwischenträgermedium wird in dem Innenrohr nach unten geführt, tritt am unteren Ende in das Außenrohr ein und strömt dann längs der gut wärmeleitenden Wandung des Außenrohres nach oben, wobei das vorher im Wärmeaustauscher abgekühlte Zwischenträgermedium dann die Temperatur des Grundwassers bzw. des das Außenrohr umgebenden Erdreiches annimmt. Die letztgenannte Ausführungsform weist den besonderen Vorteil auf, daß die in das Erdreich einzuführende Anordnung einen relativ kleinen Außendurchmesser haben kann und somit mittels eines üblicherweise für eine Versuchsbohrung vorgesehenen Bohrgerätes tief (bis zu 100 m und mehr) in das Erdreich eingebracht werden kann.The intermediate carrier medium is guided downwards in the inner tube, enters the outer tube at the lower end and then flows upwards along the heat-conducting wall of the outer tube, the intermediate carrier medium previously cooled in the heat exchanger then the temperature of the groundwater or of the soil surrounding the outer tube assumes. The last-mentioned embodiment has the particular advantage that the arrangement to be introduced into the soil can have a relatively small outside diameter and can therefore be introduced deep (up to 100 m and more) into the soil by means of a drilling device usually provided for a test borehole.
Als Zwischenträgermedium eignet sich vorzugsweise eine Mischung aus Wasser und lebensmittelfreundlichem Ethylglykol. Damit ist gewährleistet, daß auch bei in dem Kreislauf des Wärmeaustauschers auftretenden Leckagen keine Bodenverseuchung erfolgen kann. für das oder die Außenrohre finden nach der Erfindung Wellrohre eine vorteilhafte Anwendung. Diese Wellrohre können beliebig hergestellt sein, wenn sie nur die an eine Erdsonde nach der Erfindung gestellten Forderungen erfüllen. Insbesondere für die Fälle, bei denen neben der guten Wärmeleitung zum Grundwasser und/oder Erdreich eine Einstückigkeit der Erdsonde über die gesamte Länge gefordert wird, hat es sich als besonders zweckmäßig erwiesen, wenn das oder die metallischen Wellrohre aus einem längseinlaufend zum Rohr geformten, an den Kanten dicht verschweißten und anschließend gewellten Metallband dünner Wandstärke bestehen. Als dünn im Sinne dieser Definition sollen Wandstärken eines Wellrohres von 0,2 bis 1,2 mm, vorzugsweise 0,4 bis 0,8 mm, verwendet werden. Wird, wie in Weiterführung der Erfindung auch vorgesehen, die Wellung des oder der dünnwandigen Außenrohre so gewählt, daß die Wellung wendeiförmig verläuft, dann ergibt sich als weiterer Vorteil, daß die z. B. bei zwei konzentrischen Rohren im Ringsraum zwischen dem inneren glatten Kunststoffrohr und dem äußeren gewellten Metallrohr befindliche Sole, etwa Ethylenglykol L, in Turbolenz versetzt wird, die zu einem höchst gleichmäßigen Wärmeübergang führt.A mixture of water and food-friendly ethyl glycol is preferably suitable as the intermediate carrier medium. This ensures that no soil contamination can occur even if there are leaks in the circuit of the heat exchanger. According to the invention, corrugated pipes are advantageously used for the outer pipe or pipes. These corrugated pipes can be made as desired if they only meet the requirements placed on an earth probe according to the invention. Especially for cases in which, in addition to good heat conduction to the groundwater and / or soil, a one-piece construction of the geothermal probe is required over the entire length, it has proven to be particularly expedient if the metallic corrugated pipe (s) consists of a longitudinally shaped pipe the edges tightly welded and then corrugated metal band thin wall thickness. Wall thicknesses of a corrugated tube of 0.2 to 1.2 mm, preferably 0.4 to 0.8 mm, should be used as thin in the sense of this definition. If, as is also provided in a further development of the invention, the corrugation of the thin-walled outer tube or tubes is chosen so that the corrugation is helical, then there is a further advantage that the z. B. in two concentric tubes in the annular space between the inner smooth plastic tube and the outer corrugated metal tube brine, such as ethylene glycol L, is placed in turbulence, which leads to a highly uniform heat transfer.
Dabei ist weiter zu berücksichtigen, daß zum Zwecke der Erzielung einer Turbulenz der Sole im Ringspalt dieser bei konzentrischen Rohren 6-10-4 bis 15.10-4m2, vorzugsweise 7-10-4 bis 10.10-4m2, betragen sollte. Die angegebenen Maße berücksichtigen einen mittleren Ringspalt zwischen glattem Inneπrohr und gewellten Außenrohr.It should also be taken into account that for the purpose of achieving turbulence of the brine in the annular gap, this should be 6-10 -4 to 15.10 -4 m 2 , preferably 7-10 -4 to 10.10 -4 m 2 , for concentric pipes. The dimensions given take into account an average annular gap between the smooth inner tube and the corrugated outer tube.
Unter Berücksichtigung der im Rahmen der Erfindung getroffenen Maßnahmen ergeben sich gegenüber den bekannten Vorrichtungen zur Entnahme von Erdwärme durch die Erfindung die folgenden wesentlichen Vorteile: die Wärneaufnähmetlache ist erheblich vergrößert (~1,5 : 1,0), durch die geringe Wandstärke des Außenwellrohres ist der Wärmewiderstand stark reduziert, durch die Wellfom gleichzeitig aber die für die Sonde notwendige mechanische Stabilität gegeben. Darüber hinaus sind als Wellrohre ausgebildete Erdsonden in praktisch beliebiger Länge auf Trommeln oder Spulen aufgewickelt leicht zu transportieren und auf die geforderten Endlängen, beispielsweise auch erst am Hontageort, zuschneidbar. Die Wellrohr-Erdsonden können Erdversetzungen problemlos folgen, ohne unter mechanische Spannung zu geraten, die die Sonde zerstören könnte. Hier ist noch von besonderem Vorteil, daß z. B. bei konzentrischer Ausführung das innere Glattrohr frei hängend, d. h. ohne Abstand haltende Elemente, im Außenwellrohr aufgehängt ist. Das führt weiter dazu, daß Wärmedehnungen aus unterschied lichen Betriebszuständen infolge der Kompensationsfähigkeit der Wellrohr-Sonde mühelos verkraftet werden können. Zweckmäßiderweise kann das Wellrohr aus legiertem Edelstahl bestehen. Auch dies trägt zu einem günstigen Wärmeübergang bei. Sollte das Wellrohr im tiefen Bereich mit Außensolen oder mit durch Kupfer, Kohlensäure oder dergl. angereichertem Grundwasser in Verbindung kommen, können galvanische Ströme infolge Elementbildung gemessen werden. Die galvanische Spannung wird durch eine dem Wellrohr nach einem weiteren Erfindungsgedanken zugeordnete Potentialausgleichseinrichtung mit Opferanode ausgeglichen. Dadurch kann eine Lebensdauer von mehreren Jahrzehnten erreicht werden.Taking into account the measures taken within the scope of the invention, the following significant advantages result over the known devices for extracting geothermal energy by the invention: the heat absorption area is considerably enlarged (~ 1.5: 1.0), due to the small wall thickness of the outer corrugated pipe the thermal resistance is greatly reduced, but at the same time the Wellfom provides the mechanical stability necessary for the probe. In addition, geothermal probes designed as corrugated tubes can be transported and rolled up on drums or coils in practically any length the required final lengths can be cut to size, for example only at the assembly site. The corrugated tube earth probes can easily follow earth displacements without being subjected to mechanical stress that could destroy the probe. Here it is of particular advantage that, for. B. in concentric design, the inner smooth tube hanging freely, ie without spacing elements, is suspended in the outer corrugated tube. This further leads to the fact that thermal expansions from different operating states can be easily coped with due to the compensation capability of the corrugated tube probe. The corrugated tube can expediently consist of alloyed stainless steel. This also contributes to a favorable heat transfer. If the corrugated pipe comes into contact with outer brines or with groundwater enriched with copper, carbonic acid or the like in the deep area, galvanic currents due to element formation can be measured. The galvanic voltage is compensated by a potential equalization device with sacrificial anode, which is assigned to the corrugated tube according to a further inventive concept. This enables a lifespan of several decades to be achieved.
Die Erfindung wird nachfolgend anhand des in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Die Figur zeigt eine schematische Darstellung des zum Kontakt mit den Grundwasser und/oder feuc ten Erdreiches ausgebildeten Bereichs des Wärmetauschers in seiner vorgesehenen Lage in einer Bohrung im Erdreich sowie ein Blockschaltbild einer Wärmepumpe und eines Heizkreislaufs eines Gebäudes.The invention is explained in more detail below with reference to the embodiment shown in the drawing. The figure shows a schematic representation of the area formed for contact with the groundwater and / or moist soil of the heat exchanger in its intended position in a hole in the soil and a block diagram of a heat pump and a heating circuit of a building.
Im Erdreich 1 sei unterhalb des Mutterbodens 2 und einer Sandschicht 3 eine grundwasserführende Schicht 4 vorhanden. In dieses Erdreich wird eine Bohrung 5 eingebracht. Ein insgesamt mit 6 bezeichneter Wärmeaustauscher weist einen Bereich 7 auf, der zum Einführen in die Bohrung vorgesehen ist. Der Bereich 7 weist ein frei eingehängtes Innenrohr 8 auf, welchem ein Zwischenträgermedium von einer Zirkulationspumpe 9a entsprechend der Pfeilrichtung A zuführbar ist. Das Zwischenträgermedium tritt am unteren Ende 9b des vorzugsweise aus Kunststoff be stehenden glatten Innenrohres aus und strömt in einem den. eigentlichen Wärmetauscher bildenden und als Wellrohr ausgebildeten Außenrohr 10 in Pfeilrichtung B nach oben. Das Wellrohr 10 ist über seine gesamte Länge einstückig ausgebildet und besteht aus legiertem Edelstahl. Die Wellenform des Wellrohres weist eine einem Kordelgewinde oder einer wendeiförmig verlaufenden Wellung entsprechende Gestaltung auf. Der Wärmeaustauscher ist im übrigen mit der Primärseite 16 einer insgesamt mit 9 bezeichneten Wärmepumpe verbunden, deren sekundäre Seite 15 über Leitungen 11 und 12 mit einem Heizkreislauf 13 eines Gebäudes verbindbar ist. Ein Druckausgleichsgefäß ist mit 14 bezeichnet. Dem Wellrohr ist eine (nicht dargestellte) Potentialausgleichseinrichtung mit einer Opferanode zugeordnet. Die Funktion ist derart, daß die im feuchten Erdreich bzw. Grundwasser enthaltene Wärme in dem gewellten Bereich des den eigentlichen Wärmeaustauscher bildenden Außenrohres 10 auf das Zwischenträgermedium übergeht und in der Wärmepumpe 9 dem Zwischenträgermedium wieder entnommen wird. Da zwischen dem direkt mit dam Außenrohr in Kontakt stehenden Grundwasser bzw. feuchten Erdreich und dem umgebenden Grundwasser bzw. feuchten Erdreich ständig ein Temperaturausgleich stattfindet, wird die durch das Zwischenträgermedium erfolgende Temperaturabsenkung kontinuierlich kompensiert. Es kommt hinzu, daß die Wärmepumpe diskontinuierlich arbeitet und während des BetriebsstillStandes ein weiterer Temperaturausgleich erfolgen kann.A groundwater-bearing layer 4 is present in the soil 1 below the topsoil 2 and a layer of sand 3. A bore 5 is made in this soil. A heat exchanger, designated as a whole by 6, has a region 7 which is provided for insertion into the bore. The area 7 has a freely suspended inner tube 8, to which an intermediate carrier medium can be fed by a circulation pump 9a in the direction of the arrow A. The intermediate carrier occurs at the lower end 9b, which is preferably made of plastic standing smooth inner tube and flows in one. actual heat exchanger forming and formed as a corrugated tube 10 in the direction of arrow B upwards. The corrugated tube 10 is formed in one piece over its entire length and consists of alloyed stainless steel. The wave form of the corrugated tube has a design corresponding to a cord thread or a helical corrugation. The heat exchanger is otherwise connected to the primary side 16 of a heat pump, designated overall by 9, the secondary side 15 of which can be connected to a heating circuit 13 of a building via lines 11 and 12. A pressure compensation vessel is designated by 14. A potential equalization device (not shown) with a sacrificial anode is assigned to the corrugated tube. The function is such that the heat contained in the moist soil or groundwater passes in the corrugated area of the outer tube 10 which forms the actual heat exchanger to the intermediate carrier medium and is removed from the intermediate carrier medium in the heat pump 9. Since there is constant temperature compensation between the groundwater or moist soil that is in direct contact with the outer pipe and the surrounding groundwater or moist soil, the temperature drop that occurs through the intermediate carrier medium is continuously compensated for. In addition, the heat pump works discontinuously and a further temperature compensation can take place during the shutdown.
Eine mögliche Ausführungsform der Erdsonde besteht beispielsweise aus einem gewellten Außenrohr 10 mit einem maximalen Außeridurchmesser von 45 mm und einem minimalen Innendurchmesser von 39 mm. Die Wandstärke des aus Edelstahl hergestellten Wellrohres betrage 0,75 mm, die Länge des Wellrohres, die in das Erdreich eingebracht wird, sei 50 m. Das Innenrohr 8, z. B. aus Polyethylen, ist ein Glattrohr, es kann in der vorgesehenen Ausführung z. B. einen Außendurchmesser von 25 mm und einen Innendurchmesser von 19,6 mm aufweisen. Der minimale Ringspalt zwischen Glattrohr 8 und Wellrohr 10 beträgt dann etwa 7.10-4m2, der mittlere Ringspalt 9-10-4m2. Die Herstellung einer nach der Erfindung ausgebildeten Erdsonde aus z. B. zwei konzentrischen Rohren kann so vorgenommen werden, daß um ein inneres glattes Kunststoffrohr ein Stahlband zum Rohr geformt, an den Kanten verschweißt und anschließend gewellt wird. Man kann aber auch so vorgehen, daß in ein fertiges Wellrohr das Kunststoffrohr eingeführt wird. Wesentlich ist in jedem Fall, daß auf diese Weise einstückige Erdsonden von 50, 100, 200 m oder mehr hergestellt werden können, wobei sich das im Innern frei hängend angeordnete Kunststoffrohr im Betrieb in seiner Lage selbst stabilisiert. A possible embodiment of the earth probe consists, for example, of a corrugated outer tube 10 with a maximum outer diameter of 45 mm and a minimum inner diameter of 39 mm. The wall thickness of the corrugated pipe made of stainless steel is 0.75 mm, the length of the corrugated pipe that is introduced into the ground is 50 m. The inner tube 8, for. B. made of polyethylene, is a smooth tube, it can z. B. have an outer diameter of 25 mm and an inner diameter of 19.6 mm. The minimum annular gap between smooth tube 8 and corrugated tube 10 is then approximately 7.10 -4 m 2 , the average annular gap 9-10 -4 m 2 . The production of an earth probe designed according to the invention from z. B. two concentric tubes can be made so that a steel band is formed into a tube around an inner smooth plastic tube, welded at the edges and then corrugated. But you can also proceed so that the plastic tube is inserted into a finished corrugated tube. It is essential in any case that one-piece geothermal probes of 50, 100, 200 m or more can be produced in this way, the plastic tube arranged freely suspended inside stabilizing its position during operation.

Claims

Patentansprüche Claims
1. Vorrichtung zur Entnahme von Bodenwärme aus dem Grundwasser und/ oder dem das Grundwasser umgebenden Erdreich mittels einer senkrecht in den Boden eingeführten Sonde aus ein Zwischenträgermedium führenden Rohren, von denen das oder die mit ihrer äußeren Oberfläche dem Erdreich zugekehrten Rohre an ihrem unteren Ende abgeschlossen sind, und dem in geschlossenem Kreislauf umlaufenden Zwischenträgermedium, wobei der Kreislauf einerseits zur Anordnung unterhalb der Erdoberfläche in Kontakt mit dem Grundwasser und/oder den umgebenden Erdreich ausgebildet und andererseits mit der Primärseite einer außerhalb des Erdreiches angeordneten Wärmepumpe verbunden ist, dadurch gekennzeichnet, daß das oder die mit ihrer äußeren Oberfläche dem Erdreich zugekehrten Rohre als unten abgeschlossene Wellrohre ausgebildet sind, in das oder die von oben ein oder mehrere Glattrohre hineinragen, die im unteren, dem Wellrohrabschluß zugekehrten Ende frei münden.1. Device for removing soil heat from the groundwater and / or the soil surrounding the groundwater by means of a probe inserted vertically into the soil from pipes carrying an intermediate carrier medium, of which the pipe or pipes facing the ground with their outer surface are sealed at their lower end are, and the intermediate medium circulating in a closed circuit, the circuit being designed for arrangement on the one hand below the surface of the earth in contact with the groundwater and / or the surrounding earth and on the other hand connected to the primary side of a heat pump arranged outside the ground, characterized in that or the pipes facing the ground with their outer surface are designed as corrugated pipes closed at the bottom, into which one or more smooth pipes protrude from above, which open out in the lower end facing the corrugated pipe termination.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das oder die mit ihrer äußeren Oberfläche dem Erdreich zugekehrten Wellrohre aus im Verhältnis zu dem oder den inneren Glattrohren gut wärmeleitfähigen. Werkstoffen bestehen. 2. Apparatus according to claim 1, characterized in that the or the corrugated pipes facing the ground with their outer surface from well thermally conductive in relation to the or the inner smooth pipes. Materials exist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das oder die Wellrohre aus Metall und das/die Glattrohre aus Kunststoff hergestellt sind.3. Apparatus according to claim 1 or 2, characterized in that the corrugated pipe or pipes are made of metal and / the smooth pipes are made of plastic.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß das oder die Wellrohre aus Edelstahl und das/die Glattrohre aus Polyethy len bestehen.4. The device according to claim 3, characterized in that the corrugated pipe or pipes made of stainless steel and / the smooth pipes made of polyethylene len.
5. Vorrichtung nach Anspruch 1 oder einem der folgenden, bei dem zwei Rohre konzentrisch zueinander angeordnet sind, dadurch gekennzeich net, daß in ein äußeres metallisches Wellrohr ein glattes Kunst stoffrohr freihängend eingeführt ist.5. Apparatus according to claim 1 or one of the following, in which two tubes are arranged concentrically to one another, characterized in that a smooth plastic tube is inserted freely suspended in an outer metallic corrugated tube.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß der Ring spalt zwischen den konzentrischen Rohren 6.10-4m2 bis 15-10-4m2, vorzugsweise 7.10-4 bis 10.10-4m2, beträgt.6. The device according to claim 5, characterized in that the ring gap between the concentric tubes 6.10 -4 m 2 to 15-10 -4 m 2 , preferably 7.10 -4 to 10.10 -4 m 2 .
7. Vorrichtung nach Anspruch 1 oder einem der folgenden, dadurch ge kennzeichnet, daß die Wellung des oder der mit der Oberfläche dem7. The device according to claim 1 or one of the following, characterized in that the corrugation of the or with the surface
Erdreich zugekehrten Rohre wendeiförmig verläuft.Soil-facing pipes are helical.
8. Vorrichtung nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß das oder die metallischen Wellrohre aus einem längseinlaufend zum Rohr geformten, an den Kanten dicht ver schweißten und anschließend gewellten Metallband dünner Wandstärke bestehen.8. The device according to claim 1 or one of the following, characterized in that the metallic corrugated tube or tubes consist of a longitudinally shaped to the tube, tightly welded at the edges and then corrugated metal strip thin wall thickness.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Wand stärke des metallischen Wellrohres 0,2 - 1,2 mm, vorzugsweise 0,4 - 0,8 mm, beträgt. 9. The device according to claim 8, characterized in that the wall thickness of the metallic corrugated tube 0.2 - 1.2 mm, preferably 0.4 - 0.8 mm.
10. Vorrichtung nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß das oder die Wellrohre über die gesamte Sondenlänge einstückig ausgebildet sind. 10. The device according to claim 1 or one of the following, characterized in that the or the corrugated tubes are integrally formed over the entire length of the probe.
11. Vorrichtung nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß das Zwischenträgermedium (Sole) eine Mischung von Wasser und Ethylenglykol L ist.11. The device according to claim 1 or one of the following, characterized in that the intermediate carrier medium (brine) is a mixture of water and ethylene glycol L.
12. Vorrichtung nach Anspruch 1 oder einen der folgenden, dadurch ge kennzeichnet, daß dem oder den metallischen Wellrohren eine Potentialausgleichseinrichtung mit einer Opferanode zugeordnet ist.12. The device according to claim 1 or one of the following, characterized in that a potential equalization device with a sacrificial anode is assigned to the metallic corrugated tubes.
13. Vorrichtung nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß der oder die im Kontakt mit den Grundwasser und/ oder dem umgebenden Erdreich ausgebildeten Bereiche des Kreislaufs zum Einführen in einen Erdschacht einer Erdbohrung ausgebildet sind. 13. The apparatus according to claim 1 or one of the following, characterized in that the or the areas formed in contact with the groundwater and / or the surrounding soil of the circuit are designed for insertion into an earth shaft of an earth hole.
EP81901143A 1980-04-19 1981-04-18 Device for recovering heat from underground water and/or from the soil adjoining the underground water Ceased EP0056806A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19803015172 DE3015172A1 (en) 1980-04-19 1980-04-19 Supplying underground heat to external heat pump - from sealed vertical concentric tube exchanger using circulating medium
DE3015172 1980-04-19
DE19803047397 DE3047397A1 (en) 1980-12-16 1980-12-16 Heat exchanger for extracting heat from underground water - consists of smooth plastics pipe inside corrugated steel pipe
DE3047397 1980-12-16

Publications (1)

Publication Number Publication Date
EP0056806A1 true EP0056806A1 (en) 1982-08-04

Family

ID=25785059

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81901143A Ceased EP0056806A1 (en) 1980-04-19 1981-04-18 Device for recovering heat from underground water and/or from the soil adjoining the underground water

Country Status (11)

Country Link
EP (1) EP0056806A1 (en)
JP (1) JPS57500570A (en)
AT (1) AT380099B (en)
AU (1) AU7152981A (en)
BR (1) BR8108443A (en)
CH (1) CH655380A5 (en)
DK (1) DK450981A (en)
FI (1) FI813491L (en)
GB (1) GB2086564B (en)
NL (1) NL8120120A (en)
WO (1) WO1981003061A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4369635A (en) * 1979-06-25 1983-01-25 Ladek Corporation Subterranean heating and cooling system
GB2160306B (en) * 1984-06-14 1987-12-09 Total Energy Conservation And Method of geothermal energy recovery
DE3801933A1 (en) * 1988-01-23 1989-08-03 Georg Knochel Method for absorbing geothermal energy using flowing water
GB2434200A (en) * 2006-01-14 2007-07-18 Roxbury Ltd Heat exchanger component for a geothermal system
WO2012060912A1 (en) * 2010-11-04 2012-05-10 Geoenergy Enterprises, Llc. Geothermal column
US20130283839A1 (en) * 2010-11-04 2013-10-31 Geoenergy Enterprises, Llc Geothermal system
ITPD20110237A1 (en) * 2011-07-13 2013-01-14 Termo Therm Srl GEOTHERMAL PROBE
AP2014007434A0 (en) 2011-08-16 2014-02-28 Red Leaf Resources Inc Verically compactable fluid transfer device
PL229827B1 (en) * 2015-11-09 2018-08-31 Wojciech Struzik Arrangement of devices for obtaining hot water from the underground water installation for the air conditioning and ventilation equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246418A (en) * 1938-03-14 1941-06-17 Union Oil Co Art of well drilling
US3648767A (en) * 1967-07-26 1972-03-14 Thermo Dynamics Inc Temperature control tube
DE2418182A1 (en) * 1974-04-13 1975-10-23 Philipp Rauth Recovery system of latent underground heat - using positive feed hot water circulation and steam processes
FR2357721A1 (en) * 1976-07-09 1978-02-03 Vignal Maurice Geothermal well sinking system - inserts plastics tube into hole and fills up surrounding annular space inside walls
JPS5452349A (en) * 1977-09-30 1979-04-24 Ushio Nagase Natural steam power application system
DE2751530A1 (en) * 1977-11-18 1979-05-23 Kabel Metallwerke Ghh Electricity generating plant powered by natural heat - has bladed rotor driven generator mounted in upflow path between cold and hot zones
US4164257A (en) * 1977-12-15 1979-08-14 Atlantic Richfield Company Internal protection of well casing
DE2850865A1 (en) * 1978-11-24 1980-06-04 Otto Lehmann Heat pump primary cycle system - has interconnected heat exchange tubes mounted vertical in soil
DE2928414A1 (en) * 1979-07-12 1981-01-29 Andreas Dipl Phys Dr Ing Hampe Heat exchanger for utilising underground energy - consists of metal or PVC Pipes inserted through hollow boring bars
LU81670A1 (en) * 1979-09-10 1980-01-24 Feist Artus METHOD FOR OBTAINING GROWTH AND DEVICE FOR CARRYING OUT THIS METHOD

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8103061A1 *

Also Published As

Publication number Publication date
DK450981A (en) 1981-10-29
AU7152981A (en) 1981-11-10
GB2086564A (en) 1982-05-12
CH655380A5 (en) 1986-04-15
BR8108443A (en) 1982-03-09
FI813491L (en) 1981-11-05
JPS57500570A (en) 1982-04-01
GB2086564B (en) 1984-05-02
NL8120120A (en) 1982-08-02
ATA902881A (en) 1985-08-15
WO1981003061A1 (en) 1981-10-29
AT380099B (en) 1986-04-10

Similar Documents

Publication Publication Date Title
EP1468226B1 (en) Heat source or heat sink unit with thermal ground coupling
WO1990000707A1 (en) Installation for energy exchange between the ground and an energy exchanger
DE2935832A1 (en) METHOD FOR OBTAINING GROWTH AND DEVICE FOR CARRYING OUT THIS METHOD
EP0056806A1 (en) Device for recovering heat from underground water and/or from the soil adjoining the underground water
DE3149636A1 (en) Heat exchanger, in particular for heat pumps
DE2928414A1 (en) Heat exchanger for utilising underground energy - consists of metal or PVC Pipes inserted through hollow boring bars
DE4329269C2 (en) Method of inserting an earth probe and an earth probe
DE102011014640A1 (en) Cooling device for photovoltaic elements and method for incorporating this in a building heating system
DE3115743A1 (en) Device for extracting ground heat from the groundwater and/or the earth surrounding the groundwater
DE2821959A1 (en) METHOD AND DEVICE FOR USING THE SOLAR AND GEOTHERMAL ENERGY IN OBJECTS PROVIDED WITH A DOUBLE-WALLED COVER
DE102007054185B3 (en) Geothermal probe and method for its installation
EP0056797B1 (en) Process of building heat store in the ground and heat store
DE3022588A1 (en) Underground heat extraction tube for heat pump - has insulation around inner and outer water circulating pipes to reduce heat losses
DE102019129308A1 (en) Earth probe system
DE202017105632U1 (en) Geothermal plant using a crack zone in hot dry rock
WO2011015341A1 (en) Mounting device for a geothermal probe
DE2913333A1 (en) Heat pump heat exchanger - has heat conductive support for pipe driven vertically into ground
DE2032101B2 (en) Process for the production of tight underground storage tanks for the storage of gases or liquids
DE3015172A1 (en) Supplying underground heat to external heat pump - from sealed vertical concentric tube exchanger using circulating medium
DE102009036324A1 (en) Geothermal probe mounting device
WO2005008018A2 (en) Method for heat drilling holes in ice and device for carrying out said method
DE102009060416B4 (en) Airlift process with fine bubbly buoyancy flow
DE3047397A1 (en) Heat exchanger for extracting heat from underground water - consists of smooth plastics pipe inside corrugated steel pipe
DE8010743U1 (en) DEVICE FOR TAKING SOIL HEAT
EP2757229B1 (en) Measuring device and method for monitoring the filling of a borehole

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820206

AK Designated contracting states

Designated state(s): FR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19840129

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WUERZBURGER, HANS